
Paravirtualization Effect on Single- and Multi-threaded
Memory-Intensive Linear Algebra Software

Lamia Youseff
Dept. of Computer Science,

University of California, Santa
Barbara.

lyouseff@cs.ucsb.edu

Keith Seymour
Dept. of Electrical Engineering

and Computer Science,
University of Tennessee.

seymour@eecs.utk.edu

Haihang You
Dept. of Electrical Engineering

and Computer Science,
University of Tennessee.
you@eecs.utk.edu

Dmitrii Zagorodnov
Dept. of Computer Science,

University of California, Santa
Barbara.

dmitrii@cs.ucsb.edu

Jack Dongarra
Dept. of Electrical Engineering

and Computer Science,
University of Tennessee.

dongarra@eecs.utk.edu

Rich Wolski
Dept. of Computer Science,

University of California, Santa
Barbara.

rich@cs.ucsb.edu

ABSTRACT
Previous studies have revealed that paravirtualization im-
poses minimal performance overhead on High Performance
Computing (HPC) workloads, while exposing numerous ben-
efits for this field. In this study, we are investigating the im-
pact of paravirtualization on the performance of automatically-
tuned software systems. We compare peak performance,
performance degradation in constrained memory situations,
performance degradation in multi-threaded applications, and
inter-VM shared memory performance. For comparison pur-
poses, we examine the proficiency of ATLAS, a quintessen-
tial example of an autotuning software system, in tuning
the BLAS library routines for paravirtualized systems. Our
results show that the combination of ATLAS and Xen par-
avirtualization delivers native execution performance and
nearly identical memory hierarchy performance profiles in
both single and multi-threaded scenarios. Furthermore, we
show that it is possible to achieve memory sharing among
OS instances at native speeds. These results expose new
benefits to memory-intensive applications arising from the
ability to slim down the guest OS without influencing the
system performance. In addition, our findings support a
novel and very attractive deployment scenario for computa-
tional science and engineering codes on virtual clusters and
computational clouds.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance; C.4 [Performance
of Systems]: Performance attributes

General Terms
Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’08, June 23-27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06 ...$5.00.

Keywords
Virtual Machine Monitors, Paravirtualization, AutoTuning,
BLAS, high performance, linear algebra, cloud computing

1. INTRODUCTION
Virtualization has historically offered numerous benefits

for high performance computing. It was, however ignored
in computationally intensive settings as a result of its po-
tential for performance retardation. A recent approach to
virtualization, dubbed paravirtualization has emerged as a
possible alternative. Originally developed to help consoli-
date servers in commercial settings, this OS-based approach
to virtualization has grown rapidly in popularity. To pro-
vide the greatest flexibility, portability, and instrumentation
possibilities, it comprises both software and hardware tech-
niques. Originally explored by Denali [28] and Xen [22] in
2003, this technique in which the guest and the host OSs
are both strategically modified to provide optimized perfor-
mance is used today in several virtualization systems.

To this end, several studies [19, 29, 30] have measured the
performance ramifications of running general HPC bench-
marks on paravirtualized systems and they report near-native
performance for different HPC workloads. At the same time,
other studies have focused on the flexibility and functional-
ity benefits of using modern virtualization techniques. For
example, OS-level check-pointing [20], fault-tolerance and
load balancing [8] are very attractive possibilities in HPC
environments. In addition, other researchers [25, 21] have
looked into dynamic adaptation of the guest OS for perfor-
mance and application-customized guest OSs for scientific
parallel codes [5, 15, 31].

Although previous studies of paravirtualization have ad-
dressed the general-case performance characteristics of HPC
benchmarks, they lacked the investigation of the perfor-
mance boundary and performance consequences under scarce
memory conditions. This has a remarkable importance in
HPC, because of the performance sensitivity of memory-
intensive codes and autotuning Linear Algebra (LA) pack-
ages to the memory characteristics. In this vein, we provide
a detailed study of the impact of the paravirtualized execu-
tion on LA codes that use autotuning software for portable
performance. We focus on several areas in which paravir-

tualization may have potentially deleterious effects: VM in-
terference with raw single-thread performance, interference
between VMs in multi-threaded performance, and VM in-
terference in shared memory communication efficiency.

Autotuning has become an important technology for“core”
libraries that are performance-critical since these systems
often require complex and otherwise labor-intensive config-
uration to achieve maximal performance levels. Thus, our
goals are two fold. First, we wish to understand how au-
totuning is affected by paravirtualization. For example, we
wish to know whether the autotuning software can “sense”
the presence of paravirtualization during the tuning process.
Secondly we wish to explore the potential impact paravir-
tualization may have on highly tuned numerical software.
While it may be that a vanilla installation is unaffected as
has been shown in previous studies [30], in this work we in-
vestigate the effects of paravirtualization on the performance
boundary.

In particular, we study the efficacy of Automatically Tuned
Linear Algebra Software (ATLAS) in detecting system con-
figurations for paravirtualized systems. We then use DGEMM
matrix-matrix multiplication as a memory-intensive code to
measure performance in Mflops for double precision arith-
metic and compare the performance of several OS kernels
with varying main memory allocations. With this in mind,
we investigate the different attributes of the memory hier-
archy of the paravirtualized system.

The main contribution of this paper is an exposition of
how paravirtualization (as implemented by Xen) impacts
the performance of LA codes, particularly with respect to
its use of the memory hierarchy. Also, with the increasing
prevalence of multi-core architectures, the issues of memory
contention as well as efficient communication and synchro-
nization between cores will be crucial to large-scale applica-
tion performance. Thus, we have studied whether running
highly tuned LA code in different VMs causes more perfor-
mance perturbation than multiple threads within a single
VM. Finally, as the ever increasing number of cores per chip
makes evident the need for low-overhead communication, we
study the efficiency of using shared memory between VM in-
stances on different cores. Our findings complete along with
our previous studies [30, 29], the investigation of the fea-
sibility of utilizing clusters of virtual machines to execute
scientific codes, without sacrificing performance. Our re-
search, therefore advocates the huge potential of deploying
scientific codes on virtual clusters and computing clouds.
In turn, this presents new and very attractive deployment
scenarios for computational sciences and engineering codes.
The novel deployment scenarios are not the only appealing
implication of our research, but the saving on the comput-
ing expenditure can be another very desirable advantage. As
the cost of virtual clusters comprises a fraction of comput-
ing hardware acquisition and maintenance costs, our results
have the potential to influence the total cost of the inquiry
process in the computational sciences and engineering.

The paper is structured as follows. We present a short
survey on paravirtualization in the next section, as well as
the terminology we will use. We detail our experimental
settings in the following section. Section 4 presents the im-
pact of paravirtualization on ATLAS system detection and
the performance of the generated and hand-tuned routines.
Next, Section 5 investigates the effect of the paravirtualiza-
tion on the memory hierarchy of the system, by describing its

impact on a memory intensive dense matrix-matrix multipli-
cation performance and characterizing its RSS (Resident Set
Size), swap and TLB activity. Section 6 continues the exam-
ination of matrix multiplication to determine whether par-
avirtualization has a negative effect on the performance of
multiple simultaneous instances. Section 7 discusses the im-
pact of paravirtualization on shared memory performance.
Finally, we discuss the implications of our work in Section 8
and present our conclusions in Section 9.

2. BACKGROUND
Historically, virtualization has been a technique for pro-

viding secure and flexible hosting of user and system pro-
grams spanning several trust levels. In an Internet comput-
ing setting, this hosting capability has relied on language se-
mantics (e.g. Java) to permit the importation of untrusted
code for execution by a software virtual machine. While
the approach has been successful, incompatibilities between
the virtual machine mandated by the language and the typ-
ical organization of actual computational resources (proces-
sors, memory, I/O subsystems, etc.) imposes a performance
penalty on virtualized program execution. Many powerful
and elegant optimization techniques have been developed
to minimize this penalty, but at present language virtual-
ized systems still do not achieve native execution speeds for
numerically-intensive applications.

A recent approach to virtualization, dubbed paravirtual-
ization has emerged as a possible alternative. Paravirtual-
ization is a software virtualization technique which allows
the virtual machines to achieve near native performance.
In paravirtualized systems, for example Xen [22], the sys-
tem software stack is augmented, as illustrated in Figure 1.
The stack on the left shows the traditional OS deployment
stack, while the right stack portrays the paravirtualized de-
ployment stack. In the latter, the hypervisor1 occupies a
small part of the main memory, and acts as a moderator
layer between the hardware and the guest OS kernels. On
top of the hypervisor, two types of guest OSs are run. The
first type is regarded as a privileged services guest OS, which
provides OS services to the other less-privileged OS and has
more direct access to memory, devices, and the hardware in
general. There must be at least one privileged virtual ma-
chine per physical machine. The other kind of guest OS is
a less privileged OS kernel, which uses paravirtualized de-
vice drivers and has moderated access to the hardware. The
privileged guest OS is responsible for running virtualization
software tools that manage, start, monitor and even migrate
the other less-privileged domains.

In order to measure the performance impact of paravir-
tualization on autotuning software, we used Automatically
Tuned Linear Algebra Software (ATLAS) [27, 9]. ATLAS

focuses on applying empirical search techniques to provide
highly tunable performance for linear algebra libraries. It
empirically explores the search spaces for the values of the
different parameters for Basic Linear Algebra Subprograms
(BLAS) [17, 7, 10] and Linear Algebra Package (LAPACK) [3]
routines for matrix operations. Those kinds of matrix ker-

1The hypervisor is a small piece of software that runs di-
rectly on the hardware and acts as a slim layer between the
guest OSs and the hardware. It is also referred to as virtual
machine monitor (VMM). Accordingly, the OS kernels that
run on the hypervisor are termed virtual machines, or guest
OSs.

Routine Operation Description

GEmmNN C = αAB + βC General Dense non-transpose non-transpose Matrix-Matrix Multiplication
GEmmNT C = αABT + βC General Dense non-transpose transpose Matrix-Matrix Multiplication
GEmmTN C = αAT B + βC General Dense transpose non-transpose Matrix-Matrix Multiplication
GEmmTT C = αAT BT + βC General Dense transpose transpose Matrix-Matrix Multiplication
GEmvN y = αAx + βy General Vector-Matrix Multiplication
GEmvT y = αAT x + βy General Vector-Matrix transpose Multiplication
GER A = αxyT + A General Rank one update

Table 1: Mathematical notations for the routines in BLAS and LAPACK libraries.

Hardware

OS

Applications

Hardware

Host OS (Xen VMM)

Applications

Guest OS

Applications

Guest OS

Figure 1: The two software stacks in our experi-
mentation settings. (i) the stack on the left is the
traditional (native) software stack. (ii) the stack on
the right shows the virtualized software stack.

nels are among the most widely studied and optimized rou-
tines in computational science due to their influence on the
overall performance of many applications. Traditionally, de-
velopers either carefully optimized these algorithms by hand
or they relied on compiler optimizations to improve the per-
formance. Hand-tuning requires a lot of expertise and quite
a bit of effort from the developer. Even if the hand-tuning
is successful, it is not often portable to other architectures,
so the developer has to repeat the process multiple times
to support a useful set of platforms. On the other hand,
using compiler optimizations requires almost no effort from
the developer, but may only give modest results, especially
compared to the theoretical peak performance of the ma-
chine. Many compiler optimization techniques such as loop
blocking, loop unrolling, loop permutation, fusion and distri-
bution have been developed to transform programs written
in high-level languages to run efficiently on modern archi-
tectures [1, 23]. Commonly referred to as model-driven op-
timization, most compilers select the optimization parame-
ters such as block size, unrolling factor, and loop order with
analytical models. The models may be based on real ar-
chitectural attributes or other heuristics, but compilers are
burdened with the task of handling a wide variety of code,
so the built-in optimizers usually cannot compete with ex-
perienced hand-tuners. In contrast, empirical optimization
techniques generate a large number of code variants for a
particular algorithm (e.g. matrix multiplication) using dif-
ferent optimization parameter values or different code trans-
formations. All these candidates run on the target machine
and the one that gives the best performance is picked. Using
this empirical optimization approach, projects like ATLAS,
PHiPAC [6], OSKI [26], and FFTW [12] can successfully
generate highly optimized libraries for dense and sparse lin-
ear algebra kernels and FFT respectively. This empirical
approach has been recognized as an alternative approach
to traditional compiler optimizations and machine specific

Parameter Description

NB L1 Blocking factor.
ma MULADD boolean flag to

indicate whether the MULADD
is done as one operation or not.

la latency between floating
point operations.

nb blocking factor used in
each specific routine.

nu, mu and ku Unrolling factors for M, N, K
loops respectively.

Xunroll and Y unroll Unrolling factors for X, Y
loops respectively.

Table 2: Description of the parameters used in tun-
ing the BLAS routines.

hand-tuning of linear algebra libraries, since it normally gen-
erates faster libraries than the other approaches and can
adapt to many different machine architectures. In a recent
report from Berkeley on the future of parallel computing [4],
software autotuners were regarded as a way to enable ef-
ficient optimizations and should become more adopted in
translating parallel programs and code generation. Towards
this end, we expect autotuners will be more embraced in
the near future, and will run on virtualized machines such
as the computing clouds. Hence, we are investigating in this
paper the impact of paravirtualization on the operation of
autotuners.

With this in mind, we used the performance and the pa-
rameter values of the autotuned BLAS library as an in-
dication of the efficiency of the autotuning process in par-
avirtualized environments. ATLAS is convenient to use for
these experiments because of its widespread use for gener-
ating tuned LA libraries. In addition, the detected charac-
teristics of the system can be easily examined in the log files
and compared among the different OS kernel configurations.
Also, since ATLAS typically achieves 75-90% of peak per-
formance in the native configuration, it should give a good
indication of whether the various OS kernel configurations
are capable of high sustained floating point performance.

Notice that ATLAS essentially performs a “parameter-
sweep” search of the performance space so that it can iden-
tify the values of the specific parameters that yield the best
performance (among those tested). The resulting library
configuration typically achieves a better performance than
a generic installation. Because applications running near
peak machine speed can be more performance sensitive to
effects introduced by their OS environment (e.g. OS noise),
we wish to examine the degree to which paravirtualization

interferes with an optimized installation. Notice also that
the set of parameters identified by ATLAS are conveniently
logged making it possible to use them to detect specific per-
formance differences between native and paravirtualized exe-
cution. That is, by comparing ATLAS tuning logs for native
and virtualized optimization, we should be able to identify
immediately how paravirtualization is affecting the execu-
tion of optimized LAPACK libraries.

To help understand some of the parameters and the sub-
routine names mentioned in this paper, we will briefly de-
scribe the BLAS and LAPACK naming convention (for full
details, see [3]). Subroutines are named XYYZZ or XYYZZZ,
where X indicates the data type (S for single precision, D for
double precision, etc.), YY indicates the matrix type (GE for
general, GB for banded, etc.), and the final ZZ or ZZZ indi-
cates the computation performed (MM for matrix-matrix mul-
tiply, MV for matrix-vector multiply, etc.). Therefore, DGEMM
would be a double-precision general matrix-matrix multi-
plication. In this matrix-matrix multiplication routine, an
M ×K matrix A multiplies a K ×N matrix B, resulting in
the M×N matrix C. ATLAS finds the optimal value for the
best blocking and loop unrolling factors for on-chip multi-
ply using timings, i.e. it examines the search space by trying
different values for blocking and loop unrolling. In Table 1,
we outline the BLAS routines that ATLAS optimizes and
in Table 2, brief descriptions of the different parameters for
the routines are outlined.

3. EXPERIMENTAL SETTINGS
We ran our experiments on a Pentium D dual-core ma-

chine, where each core is a 2.8-GHz Pentium with an 800-
MHz processor bus, 16KB of L1 cache and 1024KB L2 cache.
The machine memory system uses a 533-MHz bus with 1 GB
of dual interleaved DDR2 SDRAM memory.

In order to find the performance ramifications of paravir-
tualization, we compare the performance of three types of
OS kernels. Furthermore, we test two configurations that
differ in the main memory size allocated at boot time for
each OS kernel. The first kernel is a Fedora Core Linux
2.6.19 kernel, which we used as a base performance kernel,
and henceforth referred to as “native”. For this kernel, the
device drivers, applications and BLAS libraries run directly
in the OS (without virtualization), which is the common
software stack used nowadays in HPC clusters.

On the other hand, the paravirtualized software stack is
different, as we described in the previous section. We used
Xen as our paravirtualizing software, with the hypervisor
in the first 32MB of the main memory. Furthermore, in
Xen terminology, the privileged guest OS is dubbed Dom0
(for Domain 0) while the less privileged guest OS is dubbed
DomU (for Domain Unprivileged). We adopt this termi-
nology for the rest of our paper. For each of the three
OS kernels (native, Dom0, DomU), we test the performance
with two main memory configurations: 256MB and 756MB.
The reason for changing the total memory assigned to the
systems was to test the performance of the system under
limited memory conditions and to generate near-boundary
memory cases for virtualized systems. We disabled the bal-
loon driver2 in Xen domains in order to isolate the impact

2The balloon driver in Xen allows the domains to grow and
shrink dynamically in their total main memory allocation,
according to their runtime memory workloads.

 0

 200

 400

 600

 800

 1000

DomU 756MBDomU 256MBDom0 756MBDom0 256MBNative 756MBNative 256MB

P
er

fo
rm

an
ce

 in
 M

flo
ps

FPU Register to Register Performance

Figure 2: Performance of the register-to-register
FPU for double precision numbers; as detected by
ATLAS for the OS kernels.

of the balloon driver on memory performance and to build
a fair comparison between the different systems. In our ex-
perimentation, we used Linux kernel 2.6.16 as the guest OS
for both dom0 and domU, patched with Xen 3.0.4. All the
OS kernels were built with SMP support.

We use ATLAS 3.7.35, the latest version available for
autotuning the BLAS routines. We compare the perfor-
mance achieved using the ATLAS-generated code (with and
without SSE2 support). We also compare the performance
achieved by the DGEMM routine for different matrix sizes.
In addition, threading was enabled in all ATLAS builds to
allow ATLAS to build parallel libraries.

4. AUTOTUNING SOFTWARE SYSTEMS
ATLAS is one of the earliest autotuning software sys-

tems for performance optimization. We use ATLAS in our
research as a quintessential example of an autotuner for pro-
cessors with deep memory hierarchies and pipelined func-
tional units. As we described in Section 2, ATLAS uses
an empirical search methodology to optimize the different
routines for BLAS and LAPACK. This search process is
composed of three key phases. In the first phase, ATLAS

focuses on detecting the system characteristics. Through a
probe process, ATLAS collects information about cache size
of the system, the floating point unit (FPU), the number of
registers, and other architectural information. The second
phase is concerned with determining the best values of pa-
rameters to be used in generating the BLAS and LAPACK

routines based on the detected system characteristics and
the results of the empirical search. After tuning, ATLAS

runs cache benchmarks to determine the optimal value for
CacheEdge, which represents the value of the cache size for
blocking the matrix matrix multiplication routines. Finally,
ATLAS uses all the information it gathered to generate the
optimized BLAS library. In the next three subsections, we
detail the performance of ATLAS in each of the three phases
respectively. For those results, we found that the precision
of the multiplication (i.e. single versus double) does not im-
pact the difference in performance between the OS kernels.
Therefore, we only detail the double precision performance

Native SMP Dom0 SMP DomU SMP
Parameter 256MB 756MB 256MB 756MB 255MB 756MB

L1 Cache Size 16KB 16KB 16KB 16KB 16KB 16KB
Sys Info nreg 7 7 7 7 7 7

FPU: Pipeline cycle 6 6 6 6 6 6
FPU: Registers num. 15 15 15 15 15 15

Table 3: System characterization as detected by ATLAS for the OS kernels.

results.

4.1 System Characteristics Detection
In order for ATLAS to autotune the BLAS libraries, it

starts its operation by probing the system characteristics.
Table 3 shows the output of ATLAS for each of these pa-
rameters. The first row shows that ATLAS detected L1
cache to be of size 16KB for all the OS kernels. The second
row illustrates the number of registers detected in each of
the systems, for which ATLAS detected 7 registers for all
three OS kernels. The length of the floating point pipeline
(in cycles) is presented in the third row, while the number
of FPU registers is presented in the fourth row.

Furthermore, Figure 2 shows the floating point unit (FPU)
register-to-register performance (i.e., with no memory la-
tency) as measured by ATLAS. For each of these perfor-
mance numbers, we present an average of 20 runs with er-
ror bars reflecting the margin of error for a 95% confidence
level of the mean. In this figure, the Y -axis represents the
performance in Mflops. Therefore, we concluded from the
measurements that there is no significant performance differ-
ence between the OS kernels for FPU operation. Overall, we
concluded from these results that the paravirtualization does
not alter the system characterization, nor does it impose any
performance overhead in register-to-register performance for
floating point operations.

4.2 Cache Blocking Size Configuration
Tuning the CacheEdge (i.e., cache blocking parameter)

can help increase performance and reduce the memory us-
age of BLAS routines. In this phase, ATLAS attempts to
determine the optimal cache size for blocking the matrix-
matrix multiplication routines. It first tests the blocking
performance using only L1 cache, then uses different values
of L2 cache.

We compared the performance achieved by each OS ker-
nel for L1 cache and each value of L2 blocking. Figure 3
depicts the performance in Mflops of a double precision
matrix-matrix multiplication of dimension 2500 using only
L1 cache blocking, while Figure 4 represents the perfor-
mance of using L2 blocking. All the numbers reported here
are the average of 20 runs. For the latter figure, the x-
axis represents the size of L2 cache in KB used in blocking,
while the y-axis represents the corresponding performance.
The error bars reflect the margin of error for 95% confi-
dence level. Note that we extended the ATLAS subpro-
gram which does the CacheEdge measurements to evaluate
the performance beyond the physical L2 cache size in order
to monitor any difference. However, no performance differ-
ence was detected between the native and paravirtualized
kernels. Figure 5 shows a histogram of the final CacheEdge
selected by ATLAS for the 20 runs, after disregarding the
runs where ATLAS chose only L1 blocking. The reason

 0

 1000

 2000

 3000

 4000

 5000

DomU.756MDomU.256MDom0.756MDom0.256MNative.756MNative.256M

P
er

fo
rm

an
ce

 in
 M

flo
ps

Cache Edge Performance using L1 Cache blocking

Figure 3: Performance of the 2500d matrix-matrix
multiplication for L1 cache blocking.

ATLAS does not choose the same CacheEdge size for L2
blocking every time is that the code is sensitive to the slight
performance difference for cache sizes between 512KB and
2048KB. Therefore, a small variability in the performance
impacts the chosen CacheEdge but does not impact the over-
all performance as Figures 3 and 4 show. That is, a small
difference in performance will cause ATLAS to choose a dif-
ferent power of 2 for the cache block size (a relatively large
change). The histogram in Figure 5 reflects the variation of
cache-block size which ATLAS selected over different runs,
but Figures 3 and 4 show that this variation does not ulti-
mately affect the overall performance (note the small error
bars in the figures).

In addition, Table 4 outlines the median values of the
CacheEdge selected. The reason we chose to report the me-
dian rather than the mean is that ATLAS chooses among
different categorical values of L2, i.e., the median was more
representative of the optimal CacheEdge’s choice. From Ta-
ble 4 and Figure 5, we gather that the selection of the opti-
mal CacheEdge performance is similar for all the OS kernels.
This shows that ATLAS finds minimal or no difference be-
tween the different OS kernels in choosing their optimal L2
blocking size.

4.3 Routines Generation and Tuning
In order for ATLAS to obtain the best performance from

the system, it runs different routines and measures their per-
formance to choose the most efficient optimization for the
BLAS library customization. Some of the computational
kernels that come with ATLAS are hand-written assembly
routines, while others are autogenerated based on the output

 0

 1000

 2000

 3000

 4000

 5000

 16384 8192 4096 2048 1024 512 256 128 64 32

P
er

fo
rm

an
ce

 in
 M

flo
ps

L2 Cache Edge size in KB

Cache Edge measurements for different L2 Cache blocking values

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 4: Performance of the 2500d matrix-matrix
multiplication for L2 cache blocking.

OS Kernels Selected CacheEdge

Native 256MB 1024KB
Native 756MB 1536KB
Dom0 256MB 1152KB
Dom0 756MB 1536KB
DomU 256MB 1536KB
DomU 756MB 1024KB

Table 4: Median of the CacheEdge selected by
ATLAS for the OS kernels.

 0

 2

 4

 6

 8

 10

 16384 8192 4096 2048 1024 512 256 128 64 32 16

F
re

qu
en

cy

Cache Edge value in KB

Histogram of the Cache Edge elected by ATLAS

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 5: Histogram of the CacheEdge selected by
ATLAS.

 0

 1000

 2000

 3000

 4000

 5000

 6000

dGenerated_codedSSE2_code

P
er

fo
rm

an
ce

 in
 M

flo
ps

Performance of the handtuned SSE2 code versus the automatically generated code

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 6: Performance in Mflops of double precision
matrix-matrix multiplication for the OS kernels, us-
ing the handwritten, and autogenerated routines.

of the system probe phase. In many cases and especially for
the popular architectures, the hand-written computational
kernels perform much better than the generated routines,
since the former kernels make use of specific special archi-
tectural features that ATLAS code generator does not cur-
rently support. In this section, we compare the performance
of the ATLAS generated codes and the hand-written codes
for the different OS kernels.

We found that, for all the routines, ATLAS selected the
handwritten versions as they performed about 4X faster
than the generated code for single precision and 2X faster for
double precision. Figure 6 shows the performance achieved
by the handwritten routines in comparison to the perfor-
mance of the generated routines for the different OS kernels
for double precision. The reason behind the better perfor-
mance of the hand-written code is its use of the SSE2 assem-
bly instructions, which run on the SSE2 unit in the Pentium
CPUs. SSE is an extension to the streaming SIMD (single
instruction, multiple data), which is a recent addition to the
Pentium processors to support floating point operations and
is backed with an extra set of instructions for SIMD on x86.
The handwritten code, which includes the SSE2 (i.e., second
version of SSE) assembly instructions, made use of this extra
processing power. SSE2 allows the processor to perform two
and four times the number of floating point operations per
cycle in double precision and single precision, respectively.

In order to understand the difference in the performance of
the autogenerated codes, we examined the values of the pa-
rameters used by ATLAS to generate the distinct routines,
as well as the performance of these routines. For complete-
ness, Table 5 illustrates the values for the different param-
eters that ATLAS selected to optimize the computational
routines. Each of these factors is optimized for each of the
computational routines (shown in the first column in the ta-
ble) in BLAS and LAPACK libraries. The routine names
are described in Section 2, and the average performance over
20 runs is shown in Figure 7.

After ATLAS has picked the optimal values for the tuning
parameters, it generates the computational routines for the
BLAS libraries using those values. We investigated the per-
formance of the generated routines using the tuned param-

 0

 500

 1000

 1500

 2000

 2500

dgerdgemvTdgemvNdmmTTdmmTNdmmNTdmmNN

P
er

fo
rm

an
ce

 in
 M

flo
ps

Performance of the BLAS Double Precision Routines

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 7: Performance of the ATLAS-generated BLAS routines based on the tuned parameters for double
precision.

Routine Parameter Value

NB 36

GEmmNN & ma 1
GEmmNT & lat 6
GEmmTN & nb 48
GEmmTT mu 6

nu 1
ku 48

GEMVN Xunroll 32
Yunroll 4

GEMVT Xunroll 2
Yunroll 16

GER mu 16
nu 1

Table 5: ATLAS automatically chose the same val-
ues for each tuning parameter, irrespective of the
underlying OS kernel or its main memory allocation.

eters. Figure 7 represents the performance of the generated
routines for the different kernels, in double precision. In this
figure, the Y -axis represents the performance in Mflops. We
noticed again that there was no significant difference in the
values of the tuned parameters or the performance of the
autogenerated routines between the different OS kernels. In
conclusion, we detected no difference between ATLAS sys-
tem detection, and auto-tuning between the native and par-
avirtualized OS kernels.

5. MEMORY INTENSIVE APPLICATIONS
In the second set of experiments, we are investigating the

impact of paravirtualization on the different levels of the
memory hierarchy. Towards this end, we explore the par-
avirtualized memory hierarchy behavior using a memory-
intensive application. For that, we use double-precision ma-
trix matrix multiplication code that uses the BLAS level-3

libraries as a driver code for our experiments. This driver
code is characterized by a growing memory consumption of
up to 350 MB. We describe our DGEMM driver code in the
next subsection, and the memory hierarchy performance in
the subsequent subsections.

5.1 DGEMM Driver Description and
Performance

Among the other BLAS library routines, ATLAS tunes
the DGEMM routine to efficiently execute double precision
matrix-matrix multiplication at optimal performance. We
generated a driver code that uses the ATLAS-optimized
DGEMM routine for square matrix sizes ranging from 100
to 4000 and we recorded the time and performance in Mflops
attained for each matrix size. The general pseudocode of the
driver is outlined below.

for Dimension 100 to 4000, step 100

for runs 1 to n, step 1

malloc matrices A, B, C;

randomize values in A, B, C;

t1 = time;

call dgemm (A, B, C, alpha, beta);

t = time - t1 ;

free A, B, C;

calculate the MFLOPS of runs;

For each matrix dimension, we rerun the same driver code
at least 5 times. In addition, we ensured that the OS kernel
is not penalizing our driver code because of its increasing
memory or computational requirements, by forking a dif-
ferent process for each run for each matrix dimension. As
outlined in the DGEMM driver pseudocode, the driver code
creates 3 matrices, and fills them with random numbers,
causing the page table entries for this newly allocated mem-
ory to be populated and avoiding having Linux use the lazy
memory allocation scheme 3. We measure the time needed

3Recent Linux kernels use an optimization scheme dubbed

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on Native 256MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on Dom0 256MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on DomU 256MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on Native 756MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on Dom0 756MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Dgemm Driver code Performance on DomU 756MB

Figure 8: The performance in Mflops for the DGEMM driver code as a function of the matrix dimensions.
The upper row of figures portrays the performance for the kernels with 256MB memory, while the lower row
of figures represents the performance for the kernels with 756 MB.

by the DGEMM code to calculate the multiplication out-
put, and free the allocated memory afterward. Therefore,
the memory requirement by the driver code process for a
specific matrix dimension x is 3x2. Consequently, the data-
section memory requirement of the driver code ranges from
237KB to 366MB for matrix dimension from 100 to 4000,
respectively.

We show the results of our experiments in Figure 8, which
consists of 6 subfigures, one for each of the OS kernel config-
urations. The upper row of subfigures represents the perfor-
mance curves of the native, Dom0 and DomU kernels con-
figured with 256MB main memory, while the lower row of
subfigures represents the performance curves of the same
kernels, but with 756MB main memory. Each of the six
subfigures plots the performance in Mflops on the y-axis
as a function of the matrix dimension on the X-axis. The
curves show the average Mflops attained by the driver code
at each matrix dimension, while the error bars demonstrate
the minimum and the maximum Mflops attainable through
the execution of several runs of the driver code.

For all kernel configurations in the 6 subfigures, the perfor-
mance increases until it exceeds 4 Gflops at matrix dimen-
sion of 700, which corresponds to having DGEMM driver
process memory size of 11.21 MB. The reason behind the
increasing Mflops between matrix dimensions of 100 to 700
is the resolution of the timing. The total execution time of
the DGEMM process is short for small size matrices, which
takes less than 0.25 seconds, and therefore the problem size
is not large enough to achieve the peak Mflops of the ma-
chine. Nevertheless, the growing curve was similar for all of
the OS kernel configurations up to matrix dimension 700,
whether their total main memory was 256MB or 756MB.
The performance of the driver code, afterward stabilizes up

lazy-malloc, which delays the actual allocation of the mem-
ory requested by the process until its actual use.

to dimension of 3100 for all kernels equally.
Although the main memory size did not impact the Mflops

achieved by the DGEMM driver code up to matrix dimen-
sion of 3100, its impact was clearly encountered by larger
matrices running on limited main-memory OS kernels. For
the three OS kernels with the main memory allocation of
756MB (lower row of figures), the performance attainable
by the driver code stabilized for matrix dimensions larger
than 800. On the other hand, the three other OS kernels
with main-memory allocation of 256MB experienced perfor-
mance degradation when the DGEMM driver memory re-
quirement exceeded a certain threshold. This threshold was
the matrix dimension of 3100 for all of the kernels, which
corresponds to the matrices memory size of 219MB. The
cause of this performance degradation is the memory swap-
ping of the driver memory, as we show in the next subsec-
tion. Because the total main memory is limited to 256MB
in these three OS configurations, the OS kernel starts to
swap out the DGEMM driver data as its size increases, and
as physical memory becomes constrained. The OS kernels
with 756MB do not experience the same performance degra-
dation, since their main memory allocations are much larger
than the DGEMM memory consumption.

In order to thoroughly understand the memory consump-
tion in each OS kernel configuration and its impact on the
DGEMM driver process, we had to study it in the context
of other entities using the memory, including the data and
code sections of the OS kernels.

5.2 Kernel Memory and DGEMM
Resident Set Size

The first portion of memory we investigated was the kernel
memory. Figure 9 is a stack bar graph of the kernel memory
components and how much space they occupy in the physical
RAM. The kernel memory is consumed by two main com-

ponents: the kernel code, and the kernel data. DomU has
the smallest kernel code size of the three OS kernels, which
is a byproduct of the exclusion of all the hardware driver
codes from the unprivileged domain. Xen has implemented
a split driver architecture, where it splits the driver interface
into two separate portions with a well-defined API between
them. Dom0 contains all of the physical drivers to the hard-
ware, as well as the back-end of the split driver codes, while
domUs contain only the front-end drivers, which are much
smaller in code size, and much simpler in interfaces. As a re-
sult of this split design, DomU has the smallest kernel code
size, while Dom0 has the largest.

The second component of the kernel memory is the kernel
data, which is the amount of memory statically reserved for
the kernel data structures. For the native kernel and Dom0,
they both have almost the same size of data in memory
(1.05MB), while the DomU kernel has half much this data
memory (0.52MB). The reason behind that is also the split
structure architecture. Since the interface between the back-
end and front-end drivers is simpler, DomU is keeping much
simpler data structures for the physical drivers’ interface,
which in turn minimized the amount of memory needed for
the kernel data.

Given the amount of memory allocated to the kernel space,
the rest of the memory is available to the user processes, in-
cluding our DGEMM driver code. Since we run our DGEMM
driver at run-level one to avoid any unnecessary noise in
the system, the only active processes at any one time were
the DGEMM driver, the init process, the udev daemon and
the shell. The udev daemon is a user daemon to serialize
the events for device handling, and consumes 868KB of the
physical memory. init is the parent process of all user pro-
cesses in the system, and consumes 648KB of the physical
memory. The shell consumes 1420KB of the physical mem-
ory. Therefore, as the init process, udevd and shell consumes
collectively 2.8MB, the rest of the memory is available for
our DGEMM driver code to use.

To monitor the memory consumption of the DGEMM
driver in physical memory, we tracked its Resident Set Size
(RSS). The RSS reflects the number of pages the process
has in real memory, minus 3 pages for administrative pur-
poses. RSS only includes the pages that count towards text,
data, or stack space of the process. This does not include
pages that have not been demand-loaded in, or which are
swapped out. The RSS growth of the DGEMM driver code
is shown in Figure 10. In this figure, the Y -axis represents
the resident set size in KB as a function of the matrix size
on the X-axis for different OS kernels. From this figure, we
were able to characterize the memory pressure the DGEMM
driver code is placing on the different OS kernels. The three
756MB kernels have a growing RSS as the driver memory
demand grows. On the other hand, the RSS growth of the
256MB kernels ceases at matrix dimension 3100, both for
the native kernel and the paravirtualized kernels. This ef-
fect is caused by the limited main memory allocated to the
kernels, in which case the OS kernel would start swapping
out portions of the process address space in order to keep
a minimal amount of memory space available for the other
processes as well as the kernel.

5.3 Swap Disk Activity
In addition to the RSS, we investigated the swap disk

activity in order to characterize its impact on the attainable

 0

 1

 2

 3

 4

 5

 6

 7

 8

DomU.756MDomU.256MDom0.756MDom0.256MNative.756MNative.256M

M
em

or
y

in
 M

B

OS Kernel Memory Consumption

kernel data
kernel code

Figure 9: Memory consumption of the OS kernels
with different memory configurations.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 500 1000 1500 2000 2500 3000 3500 4000

R
es

id
en

t S
et

 s
iz

e
in

 K
ilo

by
te

s

Matrix Dimension

Resident Set Size of the Dgemm Driver Code

Native, Dom0
and DomU 756MB
OS-kernels

Native, Dom0
and DomU 256MB
OS-kernels

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 10: The number of pages the DGEMM driver
has in real memory.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 n

um
be

r
of

 s
w

ap
pe

d
by

te
s

in
 s

ys
te

m

Matrix Dimension

Swap Disk Activity for Each OS Kernel

Native, Dom0
and DomU 756MB
OS-kernels

Native, Dom0
and DomU 256MB
OS-kernels

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 11: The swap disk activity shown as the num-
ber of swapped bytes.

performance. Towards this end, we monitored the swap disk
activity and recorded the number of major and minor faults
for each process in order to depict the MMU activity and
the memory replacement policy between the native system
and the paravirtualized system policies.

As Figure 10 has shown, the amount of physical memory
for the matrix data is limited for the OS kernels with 256MB
memory allocation, thus the OS kernel would start swapping
out portion of the process address space. We monitored the
swap disk activity using the Linux free command, which is
portrayed by Figure 11. It is important to note that the swap
disk activity here is reflecting all kernel swap activity and not
just the DGEMM driver code alone. For the three 756MB
OS kernels, there was no swap activity. This is expected
since the 756MB kernels had extended memory and have
no need to swap the driver process out of memory. On the
other hand, the 256MB kernels have a different swapping
activity, where they start swapping at matrix dimension of
3100 as illustrated in Figure 11. Naturally, this is explained
by the limited memory size allocated for those OS kernels.
Therefore, Figure 10 and 11 confirms that the performance
drop in the DGEMM driver code for 256MB kernels was
caused by the swapping activity of the kernels.

In addition, we evaluated the MMU policy replacement
for the kernels by studying the number of the major and
minor faults as a function of the matrix dimension. Figure 12
depicts the number of major page faults (on the Y -axis) as
a function of the matrix dimension (on the X-axis). Notice
that each page is 4096 bytes. We observe that all the 256MB
kernels start swapping the DGEMM process address space
at matrix dimension 3100.

Likewise, measuring the minor page faults can illustrate
the behavior of the MMU and the replacement policy. A
minor fault is a page that was marked for eviction by the
replacement policy, but which was used by the user process
before it was actually evicted. Figure 13 reflects the number
of minor page faults in the system as a function of the matrix
dimension. Again, there was no significant difference in the
behavior of all the 756MB kernels. There was no significant
difference between the behavior of all the 256MB kernels.
However, we noticed a difference in the number of minor
page faults between the 256MB kernels and the 756MB ker-

nels. For the 256MB kernels, the replacement policy is more
aggressive in evicting pages from the main memory due to
the memory pressure of the DGEMM process as the memory
becomes more scarce in the system. Therefore, we noticed
that the number of minor faults for the three 256MB kernels
increased tremendously as the DGEMM driver grew beyond
matrix dimension of 3100, as a result of memory scarcity.
Yet, there was no significant difference between the native
and paravirtualized kernels in their MMU behavior, both in
the scarcity and abundance of memory.

5.4 TLB Activity and Performance
The final level in the memory hierarchy that we inves-

tigated was the T ranslation Lookaside Buffer (TLB). We
present the TLB performance for the various OS kernels un-
der different memory configurations in this subsection. We
used Oprofile [18], which is a low-overhead system-wide pro-
filer that uses hardware counters to collect system statistics.
Although there are several other similar profilers, Opro-
file is the only profiler ported to Xen to profile the hy-
pervisor, Dom0 and DomU. We measured two hardware
events: the instruction TLB misses (ITLB), and the data
TLB misses(DTLB). The data collected from the DGEMM
driver is shown in Figures 14 and 15.

The TLB size on the Pentium machines, which is the ar-
chitecture we used in our experiments, is 64 entries for data
TLB and 32 entries for instruction TLB. Given our memory
intensive DGEMM driver, the rate of growth of the data
is much faster than the size of the data TLB. This leads to
having the number of DTLB misses to grow as the DGEMM
process size grows, and the DTLB curve to follow a 3x2, the
same function for data growth for the DGEMM driver data.
Interestingly, There was no significant difference between
the OS kernels based on their main memory allocation. In
contrast with DTLB number of misses, the ITLB misses
for DGEMM driver code is minimal as shown in Figure 15,
which is due to the small size of code section of the DGEMM
driver. However, we noticed that ITLB misses started to in-
crease at matrix dimension 3100 for the OS kernels with
256MB. The ITLB misses start going up at the same time
the swapping activity starts going up. We believe the extra
swapping has resulted in more context switches between user
code and system code and thus more instruction TLB entries
expired, which in turn affected the measured ITLB activity
for 256MB OS kernels. However, there was no difference in
their TLB activity between the native and paravirtualized
kernels with the same memory allocation.

6. MULTIPLE THREADS PERFORMANCE
In the previous set of experiments, we studied the per-

formance of a memory-intensive application and its influ-
ence on the paravirtualized kernel under memory pressure.
We presented the performance difference between the native
and paravirtualized kernels with similar main-memory allo-
cation. Our results illustrate that paravirtualization has no
significant impact on the performance of memory-intensive
applications, even when memory becomes a scarce resource.

The next logical inquiry would question the performance
ramification of paravitualization on multiple concurrent DGEMM
threads. In this respect, we are questioning the performance
difference between running several threads in the same user
space, and running each thread inside its own isolated vir-
tual machine. This is an important investigation to tackle,

 0

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 n

um
be

r
of

 m
aj

or
 fa

ul
ts

 b
y

pa
ge

Matrix Dimension

Total Number of Major Faults in each OS Kernel

Native, Dom0
and DomU 256MB
OS-kernels

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 12: The number of major faults caused by
the DGEMM driver code.

 0

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
ot

al
 n

um
be

r
of

 m
in

or
 fa

ul
ts

 b
y

pa
ge

Matrix Dimension

Total Number of Minor Faults in each OS Kernel

Native, Dom0
and DomU 256MB
OS-kernels

Native, Dom0
and DomU 756MB
OS-kernels

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 13: The number of minor faults caused by
the DGEMM driver code.

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 s

am
pl

es
 c

ol
le

ct
ed

 fo
r

D
T

LB
 m

is
se

s

Matrix Dimension

DTLB misses for the Dgemm Driver code

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 14: The number of Data TLB misses as mea-
sured by Oprofile.

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 s

am
pl

es
 c

ol
le

ct
ed

 fo
r

IT
LB

 m
is

se
s

Matrix Dimension

ITLB misses for the Dgemm Driver code

Native 256MB
Native 756MB
Dom0 256MB
Dom0 756MB
DomU 256MB
DomU 756MB

Figure 15: The number of Instr TLB misses as mea-
sured by Oprofile.

since the latter model posses several benefits like encapsula-
tion and fault-isolation. Furthermore, this model simplifies
dynamic load balancing, as it enables OS-migration which
allows virtual machines to be allocated to other physical
nodes, transparently to the user process. For those ben-
efits, we believe that executing several DGEMM threads
in their separate VMs is an advantageous model. How-
ever, the interference between the different VMs running
memory-intensive processes might degrade the performance
harnessed by the DGEMM process. In addition, it is ex-
pected that concurrent processes in different VMs would
encounter higher overhead, since the overhead of executing
separate OS kernels in VMs is higher than the overhead of
executing threads. For that, we designed another two exper-
iments to investigate the potential impact of the interference
on several concurrent DGEMM processes.

In order to evaluate the performance overhead of run-
ning concurrent DGEMM processes in separate VMs, we
compare their performance with the same number of con-
current DGEMM processes running in the same VM. In
order to ensure a fair comparison, we allocate the sum of

main-memory of the separate VMs to the one VM running
the DGEMM processes. To simplify our experimentation,
we run our tests with two concurrent DGEMM processes.
The results of our experimentation are shown in Figure 16.
The subfigure on the left portrays the average Mflops of two
concurrent DGEMM processes executing in the same VM,
which runs a SMP-enabled OS kernel with two CPUs, and
512MB memory allocated at startup. On the other hand,
the subfigure on the right portrays the average Mflops of
two concurrent DGEMM processes running in two separate
VMs with 256MB main-memory each. For each of the two
VMs, we ensured to allocate one physical CPU for each,
in order to isolate the effect of context-switching between
physical CPUs.

For both experiments, we observed that both performance
curves increase until they exceed 4 Gflops, when the perfor-
mance stabilizes for both curves equally. This essentially
mirrors the single process results shown in Section 5 for
the same amount of memory. Afterwards, we observe that
the right subfigure performance curve degrades much slower
with lower variance at matrix dimension 3100 than the left

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Average Performance of two concurrent Dgemm processes on DomU 512MB

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

fo
rm

an
ce

 in
 M

flo
ps

Matrix Dimension

Average Performance of two concurrent Dgemm processes; each executing on one DomU 256MB

Figure 16: The performance in Mflops of two concurrent DGEMM driver code threads as a function of the
matrix dimensions. The left subfigure portrays the average performance of the two DGEMM processes for a
kernel with 512MB memory, while the right subfigure represents the performance of two DGEMM processes
running in two VMs, each VM with 256 MB.

subfigure. Furthermore, the total achieved Mflops by the
two process in the same VM (i.e. left subfigure) are nega-
tively impacted.

We believe that this is a result of the memory and perfor-
mance isolation offered by virtualization. To explain, since
the two processes are sharing the same user-space memory,
they therefore are prone to the overhead of context switch-
ing. In addition, as the affinity of processes running in the
same VM is not fixed to specific CPUs, the OS kernel is
context-switching the processes to more than one CPU dur-
ing its execution time. This, in turn randomly prolongs the
overall execution time of the processes, which is reflected
by the high variance in data, as shown in the left subfig-
ure. On the other hand, we believe that the lower variance
in the separate VMs (i.e. right subfigure) is caused by the
fixed affinity of the CPUs of the VMs. To sum, these ex-
periments show that concurrent memory-intensive processes
in separate VMs can achieve at least similar, or even better
performance to threads sharing the same VM, due to the
performance isolation between VMs and ability to control
CPU affinity of virtual machines. Although these experi-
ments do not present a comprehensive examination of this
performance difference, it illustrates the potential perfor-
mance and functionality advantages of encapsulating con-
current memory-intensive processes in distinct VMs.

7. INTER VM COMMUNICATION
In this section, we will consider the performance impact of

para-virtualization on applications that communicate across
different virtual machine domains.

Current virtualization systems are specifically designed
to isolate processes running in different operating systems
from each other. With the possibility of over a hundred
cores within a single HPC machine, however, both flexi-
bility and scalability requirements make it necessary to be
able to support – within the same machine – multiple op-
erating systems that can be used simultaneously by a sin-
gle large-scale application. Such applications will consist of
“tasks” that exchange messages, but within which different

forms of parallelism based on shared memory (e.g., MIMD
or SIMD/vector) will be combined. To support such ap-
plications, we examined a memory-sharing mechanism for
Xen-based virtual machines and evaluated its performance
with micro-benchmarks.

The current approach to implementing memory isolation
in Xen is to partition the available physical memory among
hosted domains, guarding writes to page tables, but allowing
standard virtual memory address resolution in the absence
of page faults. When a guest OS needs to update its page
tables, it must explicitly call Xen through a “hypercall” so
that Xen can check to ensure the memory being updated
belongs to that OS. To enable efficient communication be-
tween domains running on the same machine – e.g., when
they establish a network connection – Xen offers “grant ta-
bles,” which enable a guest OS to grant access to regions of
their own memory to other guests. We evaluated the imple-
mentation of page sharing, a implemented with grant tables,
so that individual memory pages can be shared among guest
OSs.

We crafted three simple micro-benchmarks to measure the
efficiency of memory sharing:

• Raw: passes control back-and-forth between two do-
mains using a single shared binary variable. This bench-
mark measures the raw speed of memory sharing.

• Sync: uses classic P/V semaphores implemented using
bakery algorithm [16] to enforce synchronized (and nec-
essarily alternating) access to a shared integer variable.
This benchmark demonstrates the performance of a
more realistic fine-grained synchronization scenario.

• TCP: uses a socket with alternating send() and recv()

invocations in each thread. Our intent was to measure
the overhead of TCP connection management and Xen
protection mechanisms.

We used our micro-benchmarks to measure the latency of
communication between two threads as follows. For each

benchmark run, the threads passed control back-and-forth
for 106 times. We then computed the mean duration of an
iteration (along with its standard deviation).

For each benchmark, we studied three cases. The first
is memory sharing between processes executing under na-
tive Linux, the second is memory sharing between Dom0
and DomU OSs, and the third is memory sharing between
two DomUs. In all cases we enable Linux processor affin-
ity to minimize cache and TLB pollution effects. Finally,
we were concerned about the possibility that enabling sup-
port for SMP threading in the host kernel might perturb
the results. Thus we conducted the experiments both for
the native host without SMP support and with it enabled.
Table 6 summarizes the results. Each row of the table corre-
sponds to a benchmark, with Sync appearing twice (Sync1k

involved passing one thousand bytes from one thread to the
other instead of a single integer).

From the table, we can see that memory sharing via mod-
ified grant tables under Xen (first three rows) proceeds at
native speeds. It may appear that, in fact, Xen is faster
(the first element in the first column is larger than the oth-
ers). However, in this case, the memory sharing had to be
between user-level processes (since the kernel is not multi-
threaded). We included this test as a control of our mea-
surement infrastructure as we would expect user-space to
user-space transfers to be more expensive. In all other cases
shown in the first three rows, however, the transfers are
kernel-to-kernel and the data indicates that the speeds are
the same. More rigorously, comparisons of the means using
a t-test for all but the first value in the first row provides no
evidence contradicting the assertion that the means are the
same.

The values in the bottom two rows of the table allow us to
speculate on how shared-memory communication compares
to socket-based communication. While our Sync1k results
are comparable to bulk-data bandwidth measurements re-
ported in literature [32], the latency of fine-grained synchro-
nization is lower when using shared memory, as our TCP
experiment (in the last row of Table 6) illustrates. Message-
passing in shared memory is at least 50 faster than in a
socket.

These simple experiments indicate that it is possible to
achieve memory sharing among OS instances at native exe-
cution speeds for multi-core systems using para-virtualization.

8. DISCUSSION
In this paper, we have measured and analyzed the paravir-

tualization impact on performance in several ways. First, we
examined its impact on autotuned LA routines as configured
by ATLAS. Then, we examined the performance degrada-
tion when running multiple DGEMM instances under single
and multiple VM scenarios. Finally, we looked at the per-
formance of memory sharing between OS instances.

As it is of particular importance to highly-tuned LA code,
we have focused on the different levels of the memory hi-
erarchy and compared the memory characteristics between
the native non-paravirtualized OS kernel and the paravir-
tualized kernels since paravirtualization affects the way in
which virtual memory is manipulated. Our results show
that there is no significant difference in performance be-
tween native execution and paravirtualized execution even
when ATLAS tunes the performance of the libraries to near

peak speeds. These results are quite remarkable since par-
avirtualization could easily impact virtual memory system
activity (e.g. TLB miss rate) by introducing another level of
process scheduling and I/O indirection. Further, one might
expect these effects to manifest near the performance bound-
ary of high-tuned numerical programs. However, as the ma-
jor workload of the computational code uses non-privileged
instructions that run at the native speed of the processor, it
does not impact the overall tuning of the ATLAS routines.
Although under heavy memory usage, the Xen hypervisor
is frequently invoked to trap every page-table update, this
overhead did not invest itself in the overall attainable per-
formance by the DGEMM code.

Our results also demonstrated that the paravirtualiza-
tion did not affect the processor characteristics detected by
ATLAS. The kinds of characteristics that need to be de-
tected will depend on the particular application being tuned.
In the case of dense linear algebra, some of the important
characteristics are cache size, number of registers, functional
unit latencies, memory latency, etc. In some sense, the ex-
act value of a certain characteristic is not as important as
its effect on the performance of the generated code. For
example, while it is useful to know that a processor has a
cache size of 256KB, the tuning system really wants to know
how much data it can typically fit in a matrix block before
incurring too many cache misses. Thus, the detected values
can be viewed as good starting points or bounds for explo-
ration of the search space, but not sufficient by themselves
to generate the best code. Having the hardware detection
coupled with an empirical parameter search allows the sys-
tem to cope with any inaccuracies in the detection of the
characteristics.

We have additionally shown that peak performance was
not significantly degraded when running multiple instances
of DGEMM under two virtualization scenarios: single VM
with multiple threads and multiple VMs each with a single
thread. This is an encouraging result since it would allow
taking advantage of the potential benefits of isolating the
tasks in separate VMs without incurring a serious perfor-
mance penalty. As a practical illustration, data centers are
already partitioning their resources into separate VMs which
are assigned to different customers simultaneously.

In the previous scenario, the separate DGEMM instances
had no need to communicate with each other, but for large-
scale HPC applications, this will almost certainly be a ne-
cessity. We have addressed this issue by examining the per-
formance of memory sharing between different OS instances,
showing that native execution speeds are possible. This is
a promising result for HPC application performance since
most MPI implementations can use shared memory com-
munications between processes on the same machine, but
not necessarily across VMs. However, there is some recent
research demonstrating good results with an MPI implemen-
tation enabled with inter-VM shared memory [13].

Therefore, our results show that the combination of ATLAS

autotuning and Xen paravirtualization deliver native exe-
cution performance and nearly identical memory hierarchy
performance profiles. Given that the host OS does not nec-
essarily require a fully dedicated core, linear algebra soft-
ware can take full advantage of the computational power
of the physical hardware without being penalized for run-
ning in a paravirtualized environment. Furthermore, some
previous results from our research and others confirmed that

Native host OS w/o SMP host OS w/ SMP

Linux host-guest guest-guest host-host host-guest guest-guest

Raw 0.49 (0.03) 0.36 (0.007) 0.36 (0.005) 0.36 (0.009) 0.35 (0.005) 0.39 (0.03)

Sync 1.4 (0.02) 0.8 (0.01) 0.8 (0.02) 0.8 (0.01) 0.78 (0.03) 0.8 (0.02)

Sync1k 3.4 (0.07) 3.3 (0.05) 3.3 (1.14) 2.8 (0.15) 3.1 (0.2) 2.9 (0.1)

TCP 52.6 (0.4) 56.7 (0.2) 80.9 (0.3) 38.4 (0.3) 70.3 (0.4) 104.0 (0.5)

Table 6: Latency of communication under Raw, Sync, and TCP micro-benchmarks. The units are microseconds, each

number not in parentheses is the average over 106 iterations of 25 runs and the parenthesized number is the standard deviation

of the 25 runs.

paravirtualization did not impact MPI communications per-
formance over popular network infrastructure, like Ethernet
and Infiniband [24]. This, in turn allows linear algebra rou-
tines to efficiently run in distributed virtual environments.

Our results expose a new potential benefit of paravirtual-
ization for numerically and memory intensive applications.
Having the performance of the DGEMM driver code depen-
dent on the amount of memory available at user space, slim-
ming and customization of the OS kernel to run as a virtual
machine can possibly deliver better performance than native
kernels, as a slimmed down kernel can be tuned to allow the
user space process to have more memory than running on a
native system (which is configured to run a full workload).
In addition, our results support the feasibility of deploying
linear algebra systems and memory intensive applications
on virtualized systems. Consequently, this would support
the practicality of utilizing virtual clusters [11] and cloud
computing as a computing environment for those applica-
tions. For example, in Amazon’s Elastic Cloud (EC2) [2]
and IBM’s Blue Cloud [14], the hosted kernels are specifi-
cally configured for numerical execution.

9. CONCLUSIONS
In this paper, we have examined the impact of paravirtu-

alization on several aspects of performance relevant to HPC
applications. We presented a comprehensive evaluation of
the memory hierarchy characteristics of the paravirtualized
kernels. We presented experimentation to show the impact
of paravirtualization on empirically autotuned codes for lin-
ear algebra software. We also studied the performance of a
memory-intensive application and its influence on the par-
avirtualized kernel under memory pressure. We presented
the performance difference between the native and paravir-
tualized kernels with similar main-memory allocation. Then
we investigated the performance degradation when running
multiple instances of the same memory-intensive application
under different VM scenarios. Finally, we examined the cost
of inter-VM communication via shared memory.

Our results illustrate that paravirtualization has no sig-
nificant impact on the performance of memory-intensive ap-
plications, even when memory becomes a scarce resource.
Paravirtualization, furthermore, does not alter the system
image and does not affect the ability of empirically tuned
codes to produce peak performance for linear algebra soft-
ware. Given the rise of the new paradigm of cloud comput-
ing, paravirtualization exposes new deployment scenarios for
linear algebra computational kernels and software.

10. REFERENCES

[1] R. Allen and K. Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufmann Publishers,
2002.

[2] Amazon. Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2, 2007.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[5] G. Back and D. S. Nikolopoulos. Application-Specific
Customization on Many-Core Platforms: The
VT-ASOS Framework. In Proceedings of the Second
Workshop on Software and Tools for Multi-Core
Systems, March 2007.

[6] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.
Optimizing Matrix Multiply Using PHiPAC: A
Portable, High-Performance, ANSI C Coding
Methodology. In International Conference on
Supercomputing, pages 340–347, 1997.

[7] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
A. Lumsdaine, A. Petitet, R. Pozo, K. Remington,
and R. C. Whaley. An Updated Set of Basic Linear
Algebra Subprograms (BLAS). ACM Transactions on
Mathematical Software, 28(2):135–151, June 2002.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’05), Boston, MA, USA, May 2005.

[9] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, C. Whaley, and K. Yelick. Self
Adapting Linear Algebra Algorithms and Software.
Proceedings of the IEEE, 93(2), 2005. Special Issue on
“Program Generation, Optimization, and Adaptation”.

[10] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J.
Hanson. An Extended Set of FORTRAN Basic Linear
Algebra Subprograms. ACM Transactions on
Mathematical Software, 14(1):1–17, Mar. 1988.

[11] I. Foster, T. Freeman, K. Keahy, D. Scheftner,

B. Sotomayer, and X. Zhang. Virtual clusters for grid
communities. In CCGRID ’06: Proceedings of the
Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06), pages
513–520, Washington, DC, USA, 2006. IEEE
Computer Society.

[12] M. Frigo and S. G. Johnson. FFTW: An Adaptive
Software Architecture for the FFT. In Proc. 1998
IEEE Intl. Conf. Acoustics Speech and Signal
Processing, volume 3, pages 1381–1384. IEEE, 1998.

[13] W. Huang, M. Koop, and D. Panda. Efficient
One-Copy MPI Shared Memory Communication in
Virtual Machines. In IEEE Cluster 2008, 2008.

[14] IBM. IBM Blue Cloud. http://www-
03.ibm.com/press/us/en/pressrelease/22613.wss, Nov.
2007.

[15] C. Krintz and R. Wolski. Using Phase Behavior in
Scientific Application to Guide Linux Operating
System Customization. In Workshop on Next
Generation Software at IEEE International Parallel
and Distributed Processing Symposium (IPDPS), April
2005.

[16] L. Lamport. A new solution of Dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453–455, Aug. 1974.

[17] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic Linear Algebra Subprograms for Fortran
usage. ACM Transactions on Mathematical Software,
5(3):308–323, Sept. 1979.

[18] J. Levon. Oprofile - a system profiler for linux.
http://oprofile.sourceforge.net/, 2004.

[19] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis.
Virtualization for High-Performance Computing.
SIGOPS Oper. Syst. Rev., 40(2):8–11, April 2006.

[20] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive Fault Tolerance for HPC with Xen
Virtualization. In ICS ’07: Proceedings of the 21st
Annual International Conference on Supercomputing,
pages 23–32, New York, NY, USA, 2007. ACM.

[21] T. Naughton, G. Vallee, and S. Scott. Dynamic
Adaptation using Xen. In First Workshop on
System-level Virtualization for High Performance
Computing (HPCVirt 2007), Mar 2007.

[22] P. Barham and B. Dragovic and K. Fraser and S.
Hand and T. Harris and A. Ho and R. Neugebauer.
Virtual Machine Monitors: Xen and the Art of
Virtualization. In Symposium on Operating Systems
Principles (SOSP), 2003.

[23] D. A. Padua and M. Wolfe. Advanced Compiler
Optimizations for Supercomputers. Commun. ACM,
29(12):1184–1201, 1986.

[24] A. Ranadive, M. Kesavan, A. Gavrilovska, and
K. Schwan. Performance Implications of Virtualizing
Multicore Cluster Machines. In Workshop on HPC
System Virtualization, in conjunction with Eurosys’08,
Glasgow, UK, 2008.

[25] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen.
Autonomic Live Adaptation of Virtual Computational
Environments in a Multi-Domain Infrastructure. In
Autonomic Computing, 2006. ICAC ’06. IEEE
International Conference on, pages 5–14, 2006.

[26] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library

of Automatically Tuned Sparse Matrix Kernels. In
Proc. SciDAC 2005, Journal of Physics: Conference
Series, volume 16, San Francisco, CA, June 2005.

[27] R. C. Whaley, A. Petitet, and J. Dongarra.
Automated Empirical Optimizations of Software and
the ATLAS Project. Parallel Computing, 27(1-2):3–35,
January 2001.

[28] A. Whitaker, M. Shaw, and S. Gribble. Scale and
Performance in the Denali Isolation Kernel. In
Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[29] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Evaluating the Performance Impact of Xen on MPI
and Process Execution For HPC Systems. In VTDC
’06: Proceedings of the 2nd International Workshop on
Virtualization Technology in Distributed Computing,
2006.

[30] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Paravirtualization for HPC Systems. In G. Min, B. D.
Martino, L. T. Yang, M. Guo, and G. Rünger, editors,
ISPA Workshops, volume 4331 of Lecture Notes in
Computer Science, pages 474–486. Springer, 2006.

[31] L. Youseff, R. Wolski, and C. Krintz. Linux Kernel
Specialization for Scientific Application Performance.
Technical Report UCSB Technical Report 2005-29,
Univ. of California, Santa Barbara, Nov 2005.

[32] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin.
Xensocket: A high-throughput interdomain transport
for vms. Technical report, IBM Research Technical
Report RC24247, 2007.

