Optimizing Matrix Multiplication for a
Short-Vector SIMD Architecture — CELL
Processor.

Jakub Kurzak?®, Wesley Alvaro?, Jack Dongarra "¢

& Department of Electrical Engineering and Computer Science, University of
Tennessee

b Computer Science and Mathematics Division, Oak Ridge National Laboratory
¢School of Mathematics € School of Computer Science, University of Manchester

Abstract

Matrix multiplication is one of the most common numerical operations, especially
in the area of dense linear algebra, where it forms the core of many important
algorithms, including solvers of linear systems of equations, least square problems,
and singular and eigenvalue computations. The STI CELL processor exceeds the
capabilities of any other processor available today in terms of peak single precision,
floating point performance. In order to fully exploit the potential of the CELL
processor for a wide range of numerical algorithms, fast implementation of the
matrix multiplication operation is essential. The crutial component is the matrix
multiplication kernel crafted for the short vector Single Instruction Multiple Data
architecture of the Synergistic Processing Element of the CELL processor. In this
paper, single precision matrix multiplication kernels are presented implementing
the C = C — A x BT operation and the C' = C' — A x B operation for matrices
of size 64 x 64 elements. For the latter case, the performance of 25.55 Gflop/s is
reported, or 99.80 percent of the peak, using as little as 5.9 KB of storage for code
and auxiliary data structures.

Key words: instruction level parallelism, single instruction multiple data,
synergistic processing element, loop optimizations, vectorization

1 Introduction

The CELL Broadband Engine Architecture (CBEA) has been developed jointly
by the alliance of Sony, Toshiba and IBM (STI). The CELL processor is an in-
novative multi-core architecture consisting of a standard processor, the Power

Preprint submitted to Elsevier 28 May 2008

Processing Element (PPE), and eight short-vector Single Instruction Multi-
ple Data (SIMD) processors, referred to as the Synergistic Processing Ele-
ments (SPEs). The SPEs are equipped with scratchpad memory referred to
as the Local Store (LS) and a Memory Flow Controller (MFC) to perform
Direct Memory Access (DMA) transfers of code and data between the system
memory and the Local Store.

This paper is only concerned with the design of computational micro-kernels
for the SPE in order to fully exploit Instruction Level Parallelism (ILP) pro-
vided by its SIMD architecture. Issues related to parallelization of code for
execution on multiple SPEs, including intra-chip communication and synchro-
nization, are not discussed here. SPE architercural details important to the
discussion are presented in §5.1 and also throughout the text, as needed. Plen-
tiful information about the design of the CELL processor and CELL program-
ming techniques is in public the domain [1,2].

2 Motivation

The current trend in processor design is towards chips with multiple process-
ing units, commonly referred to as multi-core processors [3,4,5]. It has been
postulated that building blocks of future architectures are likely to be simple
processing elements with shallow pipelines, in-order execution, and SIMD ca-
pabilities [6]. It has also been poited out that direct control over the memory
hierarchy may be desired, and software-managed scratchpad memory may be
superior to traditional caches [6].

It can be observed that the Synergistic Processing Element of the CELL pro-
cessor closely matches this description. There is no doubt that future pro-
cessors will differ significantly from the current designs and will reshape the
way of thinking about programming such systems. By the same token, in-
vestigation into micro-kernel development for the SPE may have a broader
impact by providing an important insight into programming future multi-core
architectures.

2.1 Performance Considerations

State of the art numerical linear algebra software utilizes block algorithms in
order to exploit the memory hierarchy of traditional cache-based systems [7,8].
Public domain libraries such as LAPACK [9] and ScaLAPACK [10] are good
examples. These implementations work on square or rectangular submatrices
in their inner loops, where operations are encapsulated in calls to Basic Linear

Algebra Subroutines (BLAS) [11], with emphasis on expressing the computa-
tion as Level 3 BLAS, matriz-matriz type, operations. Frequently, the call is
made directly to the matrix multiplication routine _GEMM. At the same time,
all the other Level 3 BLAS can be defined in terms of . GEMM and a small
amount of Level 1 and Level 2 BLAS [12].

A lot of effort has been invested in optimized BLAS by hardware vendors as
well as academic institutions thorugh projects such as ATLAS [13] and Goto-
BLAS [14]. At the same time, the inefficiencies of the BLAS layer have been
pointed out [15] as well as the shortcomings of its fork-join parallelization
model [16]. Owing to this, the emerging trend in linear algebra is towards the
use of specialized data structures such as Block Data Layout (BDL) [17,18] and
the expression of algorithms directly in terms of specialized inner-kernels [19].
Although application of these techniques is not always straightforward, prob-
lems can be often remedied by novel algorithmic approaches [20,21].

The innovation in CELL software has been progressing faster than elsewhere,
with direct use of inner-kernels, out-of-order execution and Block Data Lay-
out being a common practice [22,23,24]. As a result, performance of algo-
rithms comes much closer to the speed of . GEMM for much smaller problem
sizes [24]. Any improvement to the GEMM routine immediately benefits the
entire algorithm, which makes the optimization of the _GEMM routine yet
more important for the CELL processor.

2.2 Code Size Considerations

In the current implementation of the CELL BE architecture, the SPEs are
equipped with a Local Store of 256 KB. It is a common practice to use tiles of
64 x 64 elements for dense matrix operations in single precision [22,25,26,23,24].
Such tiles occupy a 16 KB buffer in the Local Store. Between six and eight
buffers are necessary to efficiently implement even such a simple operation
as matrix multiplication [22,25,26]. Also, more complex operations, such as
matrix factorizations, commonly allocate eight buffers [23,24], which consume
128 KB of Local Store. In general, it is reasonable to assume that half of
the Local Store is devoted to application data buffers. At the same, time the
program may rely on library frameworks like ALF [27] or MCF [28], and utilize
numerical libraries such as SAL [29], SIMD Math [30] or MASS [31], which
consume extra space for the code. In the development stage, it may also be
desirable to generate execution traces for analysis with tools like TATL™ [32]
or Paraver [33], which require additional storage for event buffers. Finally,
Local Store also houses the SPE stack, starting at the highest LS address and
growing towards lower addresses with no overflow protection.

It should be quite obvious that the Local Store is a scarse resource and any
real-world application is facing the problem of fitting tightly coupled com-
ponents together in the limited space. SPE code can be replaced at runtime
and the mechanism of overlays [34] can be of assistance with dynamic code
management. Nevertheless, the use of kernels of tens of thousands of kilobytes
in size (§3) does not seem adequate for other purposes than to implement
micro-benchmarks.

3 Related Work

Little literature exists about implementing matrix operations using short-vector
SIMD capabilities. Implementation of matrix multiplication C = C' + A x BT
using Intel Streaming SIMD Extensions (SSE) was reported by Aberdeen and
Baxter [35]. Analysis of performance considerations of various computational
kernels for the CELL processor, including the _GEMM kernel, was presented
by Williams et al. [36,37], with results based mostly on simulation. The first
implementation of the matrix multiplication kernel C'= A x B for the CELL
processor was reported by Chen et al. [22]. Performance of 25.01 Gflop/s was
reported on a single SPE with register usage of 69. Presumably, the article
describes the C language implementation publicly distributed with the IBM
CELL SDK. More recently assembly language implementation of the matrix
multiplication C = C' — A x B was reported by Hackenberg[25,26]. Perfor-
mance of 25.40 Gflop/s was reported. Register usage of 71 can be established
by inspection of the publicly available code.

Both codes mentioned above were developed using very aggressive unrolling,
resulting in a single loop with a huge body of straight-line code. Multiplica-
tion of 64 x 64 matrices requires 64 x 64 x 64 = 262144 multiplications and
additions (or subtractions). In single precision, the calculation can be imple-
mented by 262144 /4 = 65536 fused multiply-add (FMA) SIMD operations or
fused multiply-subtract (FNMS) SIMD operations. Both codes place 4096 of
these operations in the body of a loop, which iterates 16 times and results in
the size of the first code of roughly 32 KB and the size of the second one close
to 26 KB. Since the first code is in C, the exact size is compiler dependent.

CELL BLAS library released as part of the SDK 3.0 [38] includes an SPE
SGEMM kernel for multiplication of 64 x 64 martices. The routine is not
available in source form. The size of the object code is over 32 KB.

4 Original Contribution

In this publication, an implementation of the . GEMM kernel C' = C—Ax BT is
reported, which, to the best knowledge of the authors, has not been reported
before. Also, an implementation of the _.GEMM kernel C = C — A x B is
reported, which achieves better performance than the kernels reported before,
and at the same time occupies more than four times less space. It is also shown
that the latter kernel is optimal, in the sense that neither performance can be
further improved nor code size decreased.

It is also the intention of the authors to demystify the topic by clearly explain-
ing the careful analysis behind optimized implementation of computational
micro-kernels exploiting SIMD ILP, VLIW-like, dual-issue and other low-level
architectural features of the computational cores of the CELL processor.

5 Implementation

5.1 SPU Architecture Overview

The core of the SPE is the Synergistic Processing Unit (SPU). The SPU [39,40,41]
is a RISC-style SIMD processor feturing 128 general purpose registers and 32-
bit fixed length instruction encoding. SPU includes instructions that perform
single precision floating point, integer arithmetic, logicals, loads, stores, com-
pares and branches. SPU includes nine execution units organized into two
pipelines, referred to as the odd and even pipeline. Instructions are issued in-
order and two independent instructions can be issued simultaneously if they
belong to different pipelines (Table 1).

SPU executes code form the Local Store and operates on data residing in the
Local Store, which is a fully pipelined, single-ported, 256 KB of Static Random
Access Memory (SRAM). Load and store instructions are performed within
local address space, which is untranslated, unguarded and noncoherent with
respect to the system address space. Loads and stores transfer 16 bytes of
data between the register file and the Local Store, and complete with fixed
six-cycle delay and without exception.

SPU does not perform hardware branch prediction and omits branch his-
tory tables. Instead, the SPU includes a Software Managed Branch Target
Buffer (SMBTB), which holds a single branch target and is loaded by software.
A mispredicted branch flushes the pipelines and costs 18 cycles. A correctly
hinted branch can execute in one cycle. Since both branch hint and branch

Table 1
Selected odd and even pipeline instruction groups and their latencies.

Instructions Pipeline | Latency
Even Odd (cycles)

Single precision floating point | ¥ 6

Immediate loads, X 2
logical operations,
integer add/subtract

Element rotates and shifts X 4

Byte shuffles, ' 4
quadword rotates and shifts

Loads/stores, X 6
branch hints

Branches X 4

instructions belong to the odd pipeline, proper use of SMBTB can result in
zero overhead from branching for a compute-intensive loop dominated by even
pipeline instructions.

5.2 Loop Construction

The main tool in loop construction is the technique of loop unrolling [42]. In
general, the purpose of loop unrolling is to avoid pipeline stalls by separating
dependent instructions by a distance in clock cycles equal to the corresponding
pipeline latencies. It also decreases the overhead associated with advancing
the loop index and branching. On the SPE it serves the additional purpose
of balancing the ratio of instructions in the odd and even pipeline, owing to
register reuse between interations.

In the canonical form, matrix multiplication C,,x, = Anxr X Brxn coinsists
of three nested loops iterating over the three dimensions m, n and k. Loop
tiling [43] is applied to improve the locality of reference and to take advan-
tage of the O(n?)/O(n?) ratio of arithmetic operations to memory accesses.
This way register reuse is maximized and the number of loads and stores is
minimized.

Conceptually, tiling of the three loops creates three more inner loops, which
calculate a product of a submatrix of A and a submatrix of B and updates
a submatrix of C' with the partial result. Practically, the body of these three
inner loops is subject to complete unrolling to a single block of a straight-line
code. The tile size is picked such that the cross-over point between arithmetic

and memory operations is reached, which means that there is more FMA or
FNMS operations to fill the even pipeline than there is load, store and shuffle
operations to fill the odd pipeline.

The resulting structure consists of three outer loops iterating over tiles of A,
B and C'. Inevitably, nested loops induce mispredicted branches, which can be
alleviated by further unrolling. Aggressive unrolling, however, leads quickly to
undesired code bloat. Instead, the three-dimensional problem can be linearized
by replacing the loops with a single loop performing the same traversal of the
iteration space. This is accomplished by traversing tiles of A, B and C in a
predefined order derived as a function of the loop index. A straightforward
row/column ordering can be used and tile pointers for each iteration can be
constructed by simple transformations of the bits of the loop index.

At this point, the loop body still contains auziliary operations that cannot be
overlapped with arithmetic operations. These include initial loads, stores of fi-
nal results, necessary data rearrangement with splats and shuffles, and pointer
advancing operations. This problem is addressed by double-buffering, on the
register level, between two loop iterations. The existing loop body is duplicated
and two separate blocks take care of the even and odd iteration, respectively.
Auxiliary operations of the even iteration are hidden behind arithmetic in-
structions of the odd iteration and vice versa, and disjoint sets of registers
are used where necessary. The resulting loop is preceeded by a small body of
prologue code loading data for the first iteration, and then followed by a small
body of epilogue code, which stores results of the last iteration. Figure 1 shows
the optimization steps leading to a high performance implementation of the
_GEMM inner kernel.

53 C=0C—-A x B trans

The BLAS C = C — A x BT _GEMM is a very common linear algebra oper-
ation. LAPACK relies on this operation for implementation of many matrix
transformations, including Cholesky factorization ((POTRF), LDLT factor-
ization (.SYTRF), QR factorization ((GEQRF - calling GEMM indirectly
through the .LARFB routine), and bidiagonal reduction (.GEBRD). The
C = C — A x BT micro-kernel is also a building block for Level 3 BLAS
routines other than _GEMM, e.g., symmetric rank k update (_SYRK). Specif-
ically, implementation of the Cholesky factorization for the CELL processor,
based on this micro-kernel coded in C, has been reported by the authors of
this publication [24].

Before going into details, it should be noted, that matrix storage follows
C-style row-major format. It is not as much a carefull design decision, as

1 | FOR each element _ =
FOR each element 8 c) @
FOR each element sE 4 | FOR each tile — 3D space < <
C
8 S8
arithmetics & memory N5
T o
2 | FOReachtile s
FOR each tile o
FOR each tile
FOR each element o) .
c FOR each pair of tiles

FOR each element = 3 P S
=
FOR each element arithmetics memory = E,
(even iteration) (odd iteration) €5
a2
o2
arithmetics memory a8
(odd iteration) (even iteration) S

3 FOR each tile — 1D space

FOR each tile — 1D space

FOR each tile — 1D space

unrolling

arithmetics & memory

Fig. 1. Basic steps of . GEMM loop optimization.

compliance with the common practice on the CELL processor. It can be at-
tributed to C compilers being the only ones allowing to exploit short-vector
capabilities of the SPEs through C language SIMD extensions. If compliance
with libraries relying on legacy FORTRAN API is required, a translation op-
eration is necessary. However, translation is required anyway, since implemen-
tations of dense linear algebra routines on the CELL processor rely on Block
Data Layout. Typically, the two conversions are combined in one operation,
which introduces an acceptable overhead [23].

An easy way to picture the C = C' — A x BT operation is to represent it as
the standard matrix vector product C'= C' — A x B, where A is stored using
row-major order and B is stored using column-major order. It can be observed
that in this case a row of A can readily be multiplied with a column of B to
yield a vector containing four partial results, which need to be summed up to
produce one element of C. The vector reduction step introduces superfluous
multiply-add operations. In order to minimize their number, four row-column
products are computed, resulting in four vectors, which need to be internally
reduced. The reduction is performed by first transposing the 4 x 4 element
matrix represented by the four vectors and then applying four vector multiply-
add operations to produce a result vector containing four elements of C'. The
basic scheme is depicted in Figure 2.

The crucial design choice to be made is the right amount of unrolling, which

/ E__E__E__E__E transpose
A 1 <)
ﬂ reduce

cL__ |

Fig. 2. Basic operation of the C' = C' — A x BT matrix multiplication micro-kernel.

is equivalent to deciding the right tile size in terms of the triplet {m,n,k}
(Here sizes express numbers of individual floating-point values, not vectors).
Unrolling is mainly used to minimize the overhead of jumping and advanc-
ing the index variable and associated pointer arithmetic. It has been pointed
out in §5.1 that both jump and jump hint instructions belong to the odd
pipeline and, for compute intensive loops, can be completely hidden behind
even pipeline instructions and thus introduce no overhead. In terms of the
overhead of advancing the index variable and related pointer arithmetic, it
will be shown in §5.5 that all of these operations can be placed in the odd
pipeline as well. In this situation, the only concern is balancing even pipeline,
arithmetic instructions with odd pipeline, data manipulation instructions.

Simple analysis can be done by looking at the number of floating-point oper-
ations versus the number of loads, stores and shuffles, under the assumption
that the size of the register file is not a constraint. The search space for the
{m,n, k} triplet is further truncated by the following criteria: only powers of
two are considered in order to simplify the loop construction; the maximum
possible number of 64 is chosen for £ in order to minimize the number of
extraneous floating-point instructions performing the reduction of partial re-
sults; only multiplies of four are selected for n to allow for efficient reduction
of partial results with eight shuffles per one output vector of C'. Under these
constraints, the entire search space can be easily analyzed.

Table 2 shows how the number of each type of operation is calculated. Ta-
ble 3 shows the number of even pipeline, floating-point instructions including
the reductions of partial results. Table 4 shows the number of even pipeline
instructions minus the number of odd pipeline instructions including loads,
stores and shuffles (not including jumps and pointer arithmetic). In other
words, Table 4 shows the number of spare odd pipeline slots before jumps and
pointer arithmetic are implemented. Finally, Table 5 shows the size of code

Table 2

Numbers of different types of operations in the computation of one tile of the C =
C — A x BT micro-kernel as a function of tile size ({m, n, 64} triplet).

Type of Pipeline Number of
Operation Even Odd Operations
Floating point| ¥ (mxnx64)/4+mxn
Load A '4 mx 64 /4
Load B X 64 xn /4
Load C X mxn /4
Store C X mxn /4
Shuffle X mxn /4x8

Table 3

Number of even pipeline, floating-point operations in the computation of one tile of
the micro-kernel C' = C' — A x BT as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 68 13 272 544 1088

2 13s[N272 544 1088 2176
AR 544 1088 2176 4352

8 544 1088 2176 4352 8704
16 1088 2176 4352 8704 17408
32 2176 4352 8704 17408 34816
64/ 4352 8704 17408 34816 69632

Table 4

Number of spare odd pipeline slots in the computation of one tile of the C' =
C — A x BT micro-kernel as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 22 28 40 64 112

2 20§72 176 384 800
AQELZ 272 608 1280 2624

8 272 672 1472 3072 6272
16 608 1472 3200 6656 13568
32 1280 3072 6656 13824 28160
64 2624 6272 13568 28160 57344

involved in calculations for a single tile. It is important to note here that the
double-buffered loop is twice the size.

It can be seen that the smallest unrolling with a positive number of spare odd
pipeline slots is represented by the triplet {2, 4,64} and produces a loop with
136 floating-point operations. However, this unrolling results in only 20 spare
slots, which would barely fit pointer arithmetic and jump operations. Another
aspect is that the odd pipeline is also used for instruction fetch and near

10

Table 5
The size of code for the computation of one tile of the C = C' — A x BT micro-kernel
as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 12 12 23 45 89
2 100f8 36 70 139
AgBBEl 32 61 120 238
8§ 32 59 113 220 435
16 61 11.3 215 420 830
32 120 220 420 820 1620
64 238 435 830 162.0 320.0

complete filling of the odd pipeline may cause instruction depletion, which in
rare situations can even result in an indefinite stall [44].

The next larger candidates are triplets {4, 4,64} and {2,8, 64}, which produce
loops with 272 floating-point operations, and 104 or 72 spare odd pipeline
slots, respectively. The first one is an obvious choice, giving more room in
the odd pipeline and smaller code. It turns out that the {4,4,64} unrolling
is actually the most optimal of all, in terms of the overall routine footprint,
when the implementation of pointer arithmetic is taken into account, as further
explained in §5.5.

It can be observed that the maximum performance of the routine is ultimately

limited by the extra floating-point operations, which introduce an overhead not
accounted for in the formula for operation count in matrix multiplication: 2 x

mxn x k. For matrices of size 64 x 64, every 64 multiply-add operations require

four more operations to perform the intra-vector reduction. This sets a hard

limit on the maximum achievable performance to 64/(64 + 4) x 25.6 = 24.09 [G flop/s],
which is roughly 94 % of the peak.

54 C=C-AxDB

Perhaps the most important usage of the BLAS C'=C — A x B _GEMM op-
eration is in Gaussian elimination. This operation is employed by LAPACK’s
implementation of LU factorization (. GETRF'), which is also a basis for the
Linpack benchmark [45] used to rank supercomputers on the Top500 list [46].
The C' = C'— A x B micro-kernel is also a building block for Level 3 BLAS
routines other than -GEMM, e.g., triangular solve (_TRSM). Specifically,
implementation of LU factorization for the CELL processor, based on this
micro-kernel coded in C has been reported by Chen et al. [22].

Here, same as before, row major storage is assumed. The key observation is
that multiplication of one element of A with one row of B contributes to one
row of C'. Owing to that, the elementary operation splats an element of A over

11

splat .,

e

-

- _______:‘

ALlLl] = [
C

Fig. 3. Basic operation of the C = C — A x B matrix multiplication micro-kernel.

a vector, multiplies this vector with a vector of B and accumulates the result
in a vector of C' (Figure 3). Unlike for the other kernel, in this case no extra
floating-point operations are involved.

Same as before, the size of unrolling has to be decided in terms of the triplet
{m,n, k}. This time, however, there is no reason to fix any dimension. Never-
theless, similar constraints to the search space apply: all dimensions have to
be powers of two, and additionally only multiplies of four are allowed for n
and k to facilitate efficient vectorization and simple loop construction. Table 6
shows how the number of each type of operation is calculated. Table 7 shows
the number of even pipeline, floating-point instructions. Table 8 shows the
number of even pipeline instructions minus the number of odd pipeline in-
structions including loads, stores and splats (not including jumps and pointer
arithmetic). In other words, Table 8 shows the number of spare odd pipeline
slots before jumps and pointer arithmetic are implemented. Finally, Table 9
shows the size of code involved in calculations for a single tile. It is should be
noted again that the double-buffered loop is twice the size.

It can be seen that the smallest unrolling with a positive number of spare
odd pipeline slots produces a loop with 128 floating-point operations. Five
possibilities exist, with the triplet {4, 16,8} providing the highest number of
24 spare odd pipeline slots. Again, such unrolling would both barely fit pointer
arithmetic and jump operations and be a likely cause of instruction depletion.

The next larger candidates are unrollings producing loops with 256 floating-point
operations. There are 10 such cases, with the triplet {4,32,8} being the ob-
vious choice for the highest number of 88 spare odd pipeline slots and the
smallest code size. It also turns out that this unrolling is actually the most
optimal in terms of the overall routine footprint, when the implementation of
pointer arithmetic is taken into account, as further explained in §5.5.

Unlike for the other routine, the maximum performance is not limited by

any extra floating-point operations, and performance close to the peak of
25.6 G'flop/s should be expected.

12

Table 6
Numbers of different types of operations in the computation of one tile of the C =
C' — A x B micro-kernel as a function of tile size ({m, n, k}).

Type of Pipeline Number of
Operation Even Odd Operations
Floating point| ¥ (mxnxKk)/4
Load A '4 mxk /4
Load B X kxn /4
Load C X mxn /4
Store C X mxn /4

Splat X m x k

Table 7
Number of even pipeline operations in the computation of one tile of the micro-kernel
C = C — A x B as a function of tile size ({m, n, k}).

K MN 4 8 16 32 64
4 1 4 8 16 32 64
4 2 8 16 32 64 128
4 4 16 32 64 128256
4 8 32 64 1281256 512
4 16 64 128256 512 1024
4 32 128 256 512 1024 2048
4 64 256 512 1024 2048 4096
8 1 8 16 32 64 128
8 2 16 32 64 128256
8 4 32 64 1B 512
8 8 64 128256 512 1024
8 16 128256 512 1024 2048
8 32 256 512 1024 2048 4096
8 64 512 1024 2048 4096 8192
16 1 16 32 64 128 256
16 2 32 64 128256 512
16 4 64 128258 512 1024
16 8 128256 512 1024 2048
16 16| 256 512 1024 2048 4096
16 32 512 1024 2048 4096 8192
16 64 1024 2048 4096 8192 16384

5.5 Advancing Tile Pointers

The remaining issue is the one of implementing the arithmetic calculating the
tile pointers for each loop iteration. Due to the size of the input matrices

13

Table 8
Number of spare odd pipeline slots in the computation of one tile of the C' =
C' — A x B micro-kernel as a function of tile size ({m, n, k}).

K M/N 4 8 16 32 64
4 1 -7 -9 -13 -21 -37
4 2 -10 -10 -10 -10 -10
4 4 -16 -12 -4 12
4 8 -28 -16 8 152
4 16 -52 -24 144 368
4 32/ -100 -40 80 320 800
4 64| -196 -72 176 672 1664
8 1 -12 -14 -18 -26 -42
8 2 -16 -12 -4 12
8 4 -24 -8 24 216
8 8 -40 0 240 560
8 16 -72 192 544 1248
4 32 -136 48 416 1152 2624
4 64| -264 112 864 2368 5376
16 1 -22 -24 -28 -36 -52
16 2 -28 -16 8 152
16 4 -40 0 240 560
16 8 -64 224 608 1376
16 16| -112 96 512 1344 3008
16 32 -208 224 1088 2816 6272
16 64/ -400 480 2240 5760 12800

Table 9
The size of code for the computation of one tile of the C' = C' — A x B micro-kernel
as a function of tile size ({m, n, k}).

K M/N 4 8 16 32 64
4 1 0.1 0.1 0.2 0.3 0.6
4 2 0.1 0.2 0.3 0.5 1.0
4 4 0.2 0.3 0.5 1.0
4 8 0.4 0.6 1.0 3.4
4 16 0.7 1.1 3.4 6.6
4 32 1.4 2.2 3.7 6.8 129
4 64 2.8 4.3 73 134 255
8 1 0.1 0.2 0.3 0.6 1.2
8 2 0.2 0.3 0.5 1.0
8 4 0.3 0.5 0.9 3.2
8 8 0.7 1.0 3.1 5.8
8 16 1.3 3.3 59 11.1
4 32 2.5 3.8 64 115 218
4 64 5.0 76 126 228 43.0
16 1 0.2 0.3 0.6 1.1 2.2
16 2 0.4 0.6 1.0 3.4
16 4 0.7 1.0 3.1 5.8
16 8 1.3 3.1 56 10.6
16 16 2.4 3.6 6.0 10.8 20.3
16 32 4.8 71 118 21.0 395
16 64 96 141 233 415 78.0

14

int tile;

vector float *Abase;
vector float *Bbase;
vector float *Cbase;

vector float *Aoffs;
vector float *Boffs;
vector float *Coffs;

Aoffs = Abase + ((tile & ~0x0OF) << 2);

Boffs = Bbase + ((tile & OxOF) << 6);
Coffs = Cbhase + (tile & OxOF)
+ ((tile & ~Ox0F) << 2);

Fig. 4. Sample C language implementation of pointer arithmetic for the kernel
C = C — A x BT with unrolling corresponding to the triplet {4, 4, 64}.

lga $2,tile
lga $3,Abase
andi $4,%$2,-16
andi $2,%$2,15
shli $6,%$4,2
shli $4,%$4,6
shli $5,$2,10
a $2,%2,96
a $4,%4,93
shli $2,$2,4
lga $3,Bbase
stga $4,Aoffs
a $5,%5,93
lga $3,Cbase
stqa $5,Boffs
a $2,$2,%3
stga $2,Coffs

Fig. 5. The result of compiling the code from Figure 4 to assembly language, with
even pipeline instructions in bold.

and the tile sizes being powers of two, this is a straightforward task. The tile
offsets can be calculated from the tile index and the base addresses of the input
matrices using integer arithmetic and bit manipulation instructions (bitwise
logical instructions and shifts). Figure 4 shows a sample implementation of
pointer arithmetic for the kernel C' = C'— A x BT with unrolling corresponding
to the triplet {4, 4,64}. Abase, Bbase and Chase, are base addresses of the input
matrices and the variable tile is the tile index running from 0 to 255; Aoffs,
Boffs and Coffs are the calculated tile offsets.

Figure 5 shows the result of compiling the sample C code from Figure 4 to
assembly code. Although a few variations are possible, the resulting assem-
bly code will always involve a similar combined number of integer and bit
manipulation operations. Unfortunately, all these instructions belong to the
even pipeline and will introduce an overhead, which cannot be hidden behind
floating point operations, like it is done with loads, stores, splats and shuffles.

15

One way of minimizing this overhead is extensive unrolling, which creates
a loop big enough to make the pointer arithmetic negligible. An alternative
is to eliminate the pointer arithmetic operations from the even pipeline and
replace them with odd pipeline operations. With the unrolling chosen in §5.3
and §5.4, the odd pipeline offers empty slots in abundance. It can be observed
that, since the loop boundaries are fixed, all tile offsets can be calculated
in advance. At the same time, the operations available in the odd pipeline
include loads, which makes it a logical solution to precalculate and tabulate
tile offsets for all iterations. It still remains necessary to combine the offsets
with the base addresses, which are not known beforehand. However, under
additional alignment constraints, offsets can be combined with bases using
shuffle instructions, which are also available in the odd pipeline. As will be
further shown, all instructions that are not floating point arithmetic can be
removed from the even pipeline.

The precalculated offsets have to be compactly packed in order to preserve
space consumed by the lookup table. Since tiles are 16 KB in size, offsets
consume 14 bits and can be stored in a 16-bit halfword. Three offsets are
required for each loop iteration. With eight halfwords in a quadword, each
quadword can store offsets for two loop iterations or a single interation of the
pipelined, double-buffered loop. Figure 6 shows the organization of the offset
lookup table.

The last arithmetic operation remaining is the advancement of the itaration
variable. It is typical to decrement the iteration variable instead of increment-
ing it, and branch on non-zero, in order to eliminate the comparison operation,
which is also the case here. This still leaves the decrement operation, which
would have to occupy the even pipeline. In order to annihilate the decrement,
each quadword containing six offsets for one itaration of the double-buffered
loop also contains a seventh entry, which stores the index of the quadword
to be processed next (preceeding in memory). In other words, the iteration
variable, which also serves as the index to the lookup table, is tabulated along
with the offsets and loaded instead of being decremented.

Normally, the tile pointers would have to be calculated as a sum of an 18-bit
base address and a 14-bit offset, which would require the use of integer ad-
dition residing in the even pipeline. With the additional constraint of 16 KB
alignment of the base addresses, 14 less significant bits of the base are zero
and can be simply replaced with the bits of the offset. The replacement could
be implemented with the logical AND operation. This would however, again,
involve an even pipeline instruction. Instead, both the base addresses and the
offsets are initially shifted left by two bits, which puts the borderline between
offsets and bases on a byte boundary. At this point the odd pipeline shuffle
instruction operating at byte granularity can be used to combine the base with
the offset. Finally, the result has to be shifted right by two bits, which can be

16

[Ao [Bo | Co [Ar | B: [Ci[xxx[xxx]

[Av2|Bn2| Cvz|Ans|Bus[Cuns| OXO [N-4 |

[Av | Bv | Cv [Awi]Bwni]Chi]Ox0]N-2]

Fig. 6. Organization of the tile offset lookup table. N is the number of tiles.

Table 10
The overall footprint of the micro-kernel C = C' — A x BT, including the code and
the offset lookup table, as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 92 63 66 100 184
2 6ONE7Z 81 145 280
AN 74 128 243 476
8 74 123 228 441 87.1
16| 128 228 431 841 166.0
32 243 441 841 1640 324.0
64 47.6 87.1 166.0 324.0 640.0

accomplished by a combination of bit and byte quadword rotations, which also
belong to the odd pipeline. Overall, all the operations involved in advancing
the double-buffered loop consume 29 extra odd pipeline slots, which is small,
given that 208 is available in the case of the first kernel and 176 in the case
of the second.

This way, all operations involved in advancing from tile to tile are implemented
in the odd pipeline. At the same time, both the branch instruction and the
branch hint belong to the odd pipeline. Also, a correctly hinted branch does
not cause any stall. As a result, such an implementation produces a continuous
stream of floating-point operations in the even pipeline, without a single cycle
devoted to any other activity.

The last issue to be discussed is the storage overhead of the lookup table.
This size is proportional to the number of iterations of the unrolled loop and
reciprocal to the size of the loop body. Using the presented scheme (Figure 6),
the size of the lookup table in bytes equals N3/(mxnxk)x8. Table 10 presents
the overall footprint of the C = C — A x BT micro-kernel as a function of
the tile size. Table 11 presents the overall footprint of the C' = C — A x B
micro-kernel as a function of the tile size. As can be clearly seen, the chosen
tile sizes result in the lowest possible storage requirements for the routines.

17

Table 11
The overall footprint of the micro-kernel C = C' — A x B, including the code and
the offset lookup table, as a function of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 1281 642 324 167 9.3
2 642 323 166 91 6.1
4 324 166 90 5957
8 167 91 59056 7.8
16 94 62058 79 136
32 68 63 84 140 260
75 96 151 27.0 51.1
1 642 324 166 92 6.3
2 324 166 90 59057
4 167 91 SeER 73
8 93 6OolNS4 71 121
16 66NSI9 75 123 225
32 91 96 138 235 438
64 121 161 258 458 86.1
324 167 92 63 64

ABRNOOWOWO®OWONNMNEADNADNEADNRKR
<D
X

—_
|
-

16 2 16.7 9.1 5.9 5.6 7.8
16 4 9.3 6.0 5.4 71 121
16 8 6.5 5.8 73 11.8 215
16 16 6.9 83 125 21.8 406
16 321 106 148 238 421 79.1

5.6 Results

Both presented SGEMM kernel implementations produce a continuous stream
of floating-point instructions for the duration of the pipelined loop. In both
cases, the loop iterates 128 times, processing two tiles in each iteration. The
C = C — A x BT kernel contains 544 floating-point operations in the loop
body and, on a 3.2 GHz processor, delivers 25.54 Gflop/s (99.77 % of peak)
if actual operations are counted, and 24.04 Gflop/s (93.90 % of peak) if the
standard formula, 2N3, is used for operation count. The C = C — A x B
kernel contains 512 floating-point operations in the loop body and delivers
25.55 Gflop/s (99.80 % of peak). Here, the actual operation count equals 2N3.
At the same time, neither implementation overfills the odd pipeline, which
is 31 % empty for the first case and 17 % empty for the second case. This
guarantees no contention between loads and stores and DMA operations, and
no danger of instruction fetch starvation. Table 12 shows the summary of the
kernels’ properties.

5.7 Conclusions

Computational micro-kernels are architecture specific codes, where no porta-
bility is sought. It has been shown that systematic analysis of the problem

18

Table 12
Summary of the properties of the SPE SIMD SGEMM mikro-kernels.

Characteristic C=C-AxBT C=C-AxB

Performance 24.04 25.55
Gflop/s Gflop/s

Execution time 21.80 us 20.52 us
Fraction of peak 93.90 % 99.80 %
USING THE 2xMxNxK FORMULA
Fraction of peak 99.77 % 99.80%
USING ACTUAL NUMBER
OF FLOATING-POINT INSTRUCTIONS
Dual issue rate 68.75 % 82.81 %
ODD PIPELINE WORKLOAD
Register usage 69 69
Code segment size 4008 3992
Data segment size 2192 2048
Total memory footprint 6200 6040

combined with exploitation of low-level features of the Synergistic Process-
ing Unit of the CELL processor leads to dense matrix multiplication kernels
achieving peak performance without code bloat.

5.8 Code

The code is freely available, under the BSD license and can be downloaded
from the author’s web site http://icl.cs.utk.edu/~alvaro/. A few com-
ments can be useful here. In absence of better tools, the code has been de-
veloped with a help of a spreadsheet, mainly for easy manipulation of two
columns of instructions for the two pipelines of the SPE. Other useful fea-
tures were taken advantage of as well. Specifically, color coding of blocks of
instructions greatly improves the readability of the code. It is the hope of the
authors that such visual representation of code considerably helps the reader’s
understanding of the techniques involved in construction of optimized SIMD
assembly code. Also, the authors put considerable effort in making the software
self-contained, in the sense that all tools involved in construction of the code
are distributed alongside. That includes the lookup table generation code and
the sripts facilitating translation from spreadsheet format to SPE assembly
language.

19

http://icl.cs.utk.edu/~alvaro/

References

[1] IBM Corporation, Cell BE Programming Tutorial (November 2007).

[2] IBM Corporation, Cell Broadband Engine Programming Handbook, Version
1.1 (April 2007).

[3] S. Borkar, Design Challenges of Technology Scaling, IEEE Micro 19 (4) (1999)
23-29.

[4] D. Geer, Industry Trends: Chip Makers Turn to Multicore Processors, Computer
38 (5) (2005) 11-13.

[5] H. Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software, Dr. Dobb’s Journal 30 (3).

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick,
The Landscape of Parallel Computing Research: A View from Berkeley, Tech.
Rep. UCB/EECS-2006-183, Electrical Engineering and Computer Sciences
Department, University of California at Berkeley (2006).

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen, H. A. van der Vorst, Numerical
Linear Algebra for High-Performance Computers, STAM, 1998.

[8] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

[9] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, SIAM, 1992.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C.
Whaley, ScaLAPACK Users’ Guide, SIAM, 1997.

[11] Basic Linear Algebra Technical Forum, Basic Linear Algebra Technical Forum
Standard (August 2001).

[12] B. Kagstrom, P. Ling, C. van Loan, GEMM-Based Level 3 BLAS: High-
Performance Model Implementations and Performance Evaluation Benchmark,
ACM Trans. Math. Soft. 24 (3) (1998) 268-302.

[13] ATLAS, http://math-atlas.sourceforge.net/.
[14] GotoBLAS, http://www.tacc.utexas.edu/resources/software/.

[15] E. Chan, E. S. Quintana-Orti, G. Gregorio Quintana-Orti, R. van de Geijn,
Supermatrix Out-of-Order Scheduling of Matrix Operations for SMP and
Multi-Core Architectures, in: Nineteenth Annual ACM Symposium on Parallel
Algorithms and Architectures SPAA’07, 2007, pp. 116-125.

20

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F
http://dx.doi.org/10.1109/40.782564
http://csdl.computer.org/comp/mags/co/2005/05/r5011.pdf
http://www.ddj.com/184405990
http://www.ddj.com/184405990
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://math-atlas.sourceforge.net/
http://www.tacc.utexas.edu/resources/software/
http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397

[16] J. Kurzak, J. J. Dongarra, LAPACK Working Note 178: Implementing Linear
Algebra Routines on Multi-Core Processors, Tech. Rep. CS-07-581, Electrical
Engineering and Computer Science Department, University of Tennessee (2006).

[17] N. Park, B. Hong, V. K. Prasanna, Analysis of Memory Hierarchy Performance
of Block Data Layout, in: International Conference on Parallel Processing, 2002.

[18] N. Park, B. Hong, V. K. Prasanna, Tiling, Block Data Layout, and Memory
Hierarchy Performance, IEEE Trans. Parallel Distrib. Syst. 14 (7) (2003) 640—
654.

[19] J. R. Herrero, J. J. Navarro, Using Nonlinear Array Layouts in Dense
Matrix Operations, in: Workshop on State-of-the-Art in Scientific and Parallel
Computing PARA’06, 2006.

[20] A. Buttari, J. Langou, J. Kurzak, J. J. Dongarra, LAPACK Working Note 190:
Parallel Tiled QR Factorization for Multicore Architectures, Tech. Rep. CS-07-
598, Electrical Engineering and Computer Science Department, University of
Tennessee (2007).

[21] A. Buttari, J. Langou, J. Kurzak, J. J. Dongarra, LAPACK Working Note
191: A Class of Parallel Tiled Linear Algebra Algorithms for Multicore
Architectures, Tech. Rep. CS-07-600, Electrical Engineering and Computer
Science Department, University of Tennessee (2007).

[22] T. Chen, R. Raghavan, J. Dale, E. Iwata, Cell Broadband Engine architecture
and its first implementation, A performance view, http://www-128.ibm.com/
developerworks/power/library/pa-cellperf/ (November 2005).

[23] J. Kurzak, J. J. Dongarra, Implementation of Mixed Precision in Solving
Systems of Linear Equations on the CELL Processor, Concurrency Computat.:
Pract. Exper. 19 (10) (2007) 1371-1385.

[24] J. Kurzak, A. Buttari, J. J. Dongarra, Solving Systems of Linear Equation on
the CELL Processor Using Cholesky Factorization, Trans. Parallel Distrib. Syst.

[25] D. Hackenberg, Einsatz und Leistungsanalyse der Cell Broadband Engine,
Institut fir Technische Informatik, Fakultit Informatik, Technische Universitat
Dresden, grofier Beleg (February 2007).

[26] D. Hackenberg, Fast matrix
multiplication on CELL systems, http://tu-dresden.de/die_tu_dresden/
zentrale_einrichtungen/zih/forschung/architektur_und_
leistungsanalyse_von_hochleistungsrechnern/cell/ (July 2007).

[27] IBM Corporation, ALF for Cell BE Programmer’s Guide and API Reference
(November 2007).

[28] M. Pepe, Multi-Core Framework (MCF), Version 0.4.4, Mercury Computer
Systems (October 2006).

[29] Mercury Computer Systems, Inc., Scientific Algorithm Library (SAL) Data
Sheet, http://www.mc.com/uploadedfiles/SAL-ds.pdf (2006).

21

http://www.netlib.org/lapack/lawnspdf/lawn178.pdf
http://www.netlib.org/lapack/lawnspdf/lawn178.pdf
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://www.hpc2n.umu.se/para06/papers/paper_251.pdf
http://www.hpc2n.umu.se/para06/papers/paper_251.pdf
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1109/TPDS.2007.70813
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/41838EDB5A15CCCD002573530063D465
http://www.mc.com/uploadedfiles/SAL-ds.pdf

[30] IBM Corporation, SIMD Math Library API Reference Manual (November
2007).

[31] I. Corporation, Mathematical Acceleration Subsystem - product overview,
http://www-306.ibm.com/software/awdtools/mass/ (March 2007).

[32] Mercury Computer Systems, Inc., Trace Analysis Tool and Library (TATL™TM)
Data Sheet, http://www.mc.com/uploadedfiles/tatl-ds.pdf (2006).

[33] European Center for Parallelism of Barcelona, Technical University of
Catalonia, Paraver, Parallel Program Visualization and Analysis Tool Reference
Manual, Version 3.1 (October 2001).

[34] IBM Corporation, Software Development Kit 2.1 Programmer’s Guide, Version
2.1 (March 2007).

[35] D. Aberdeen, J. Baxter, Emmerald: A Fast Matrix-Matrix Multiply Using
Intel’s SSE Instructions, Concurrency Computat.: Pract. Exper. 13 (2) (2001)
103-119.

[36] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, The
Potential of the Cell Processor for Scientific Computing, in: ACM International
Conference on Computing Frontiers, 2006.

[37] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, K. Yelick, Scientific
Computing Kernels on the Cell Processor, Int. J. Parallel Prog. 35 (3) (2007)
263-298.

[38] IBM Corporation, Basic Linear Algebra Subprograms Programmer’s Guide and
API Reference (November 2007).

[39] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, N. Yano, A Streaming Processing Unit for a
CELL Processor, in: IEEE International Solid-State Circuits Conference, 2005,
pp. 134-135.

[40] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais, K. Roy, T. Le,
L. Peichun, J. Leenstra, J. Liberty, B. Michael, O. Hwa-Joon, S. M. Mueller,
O. Takahashi, A. Hatakeyama, Y. Watanabe, N. Yano, D. A. Brokenshire,
M. Peyravian, T. Vandung, E. Iwata, The Microarchitecture of the Synergistic
Processor for a Cell Processor, IEEE J. Solid-State Circuits 41 (1) (2006) 63-70.

[41] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki,
Synergistic Processing in Cell’s Multicore Architecture, IEEE Micro 26 (2)
(2006) 10—24.

[42] J. L. Hennessy, D. A. Patterson, Computer Architecture, Fourth Edition: A
Quantitative Approach, Morgan Kaufmann, 2006.

[43] S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann, 1997.

22

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6DFAEFEDE179041E8725724200782367
http://www-306.ibm.com/software/awdtools/mass/
http://www.mc.com/uploadedfiles/tatl-ds.pdf
http://www.cepba.upc.es/paraver/docs/Paraver_MANUAL.pdf
http://www.cepba.upc.es/paraver/docs/Paraver_MANUAL.pdf
ftp://ftp.software.ibm.com/systems/support/bladecenter/cpbprg00.pdf
ftp://ftp.software.ibm.com/systems/support/bladecenter/cpbprg00.pdf
http://dx.doi.org/10.1002/cpe.549
http://dx.doi.org/10.1002/cpe.549
http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1007/s10766-007-0034-5
http://dx.doi.org/10.1007/s10766-007-0034-5
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F6DF42E93A55E57400257353006480B2
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F6DF42E93A55E57400257353006480B2
http://dx.doi.org/10.1109/isscc.2005.1493905
http://dx.doi.org/10.1109/isscc.2005.1493905
http://dx.doi.org/10.1109/jssc.2005.859332
http://dx.doi.org/10.1109/jssc.2005.859332
http://dx.doi.org/10.1109/MM.2006.41
http://www.amazon.com/exec/obidos/ASIN/0123704901/
http://www.amazon.com/exec/obidos/ASIN/0123704901/
http://www.amazon.com/exec/obidos/ASIN/1558603204/

[44] IBM Corporation, Preventing Synergistic Processor Element Indefinite Stalls
Resulting from Instruction Depletion in the Cell Broadband Engine Processor
for CMOS SOI 90 nm, Applications Note, Version 1.0 (November 2007).

[45] J. J. Dongarra, P. Luszczek, A. Petitet, The LINPACK Benchmark: Past,
Present and Future, Concurrency Computat.: Pract. Exper. 15 (9) (2003) 803
820.

[46] TOP500 Supercomputing Sites, http://www.top500.org/.

23

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://www.top500.org/

	Introduction
	Motivation
	Performance Considerations
	Code Size Considerations

	Related Work
	Original Contribution
	Implementation
	SPU Architecture Overview
	Loop Construction
	C = C -- A B trans
	C = C -- A B
	Advancing Tile Pointers
	Results
	Conclusions
	Code

	References

