
Analytical Modeling and Optimization for Affinity
Based Thread Scheduling on Multicore Systems

Fengguang Song#1, Shirley Moore#2, Jack Dongarra#∗3

EECS Department, University of Tennessee
Knoxville, TN, USA

{1song, 2shirley, 3dongarra}@eecs.utk.edu
∗ Oak Ridge National Laboratory

Oak Ridge, TN, USA

Abstract—This paper proposes an analytical model to esti-
mate the cost of running an affinity-based thread schedule on
multicore systems. The model consists of three submodels to
evaluate the cost of executing a thread schedule: an affinity-graph
submodel, a memory hierarchy submodel, and a cost submodel
that characterize programs, machines, and costs respectively.
We applied the analytical model to both synthetic and real-
world applications. The estimated cost accurately predicts which
schedule will provide better performance. Due to the NP-hardness
of the scheduling problem, we designed an approximation al-
gorithm to compute near-optimal solutions. We have extended
the algorithm to support threads with data dependences. We
conducted experiments with a computational fluid dynamics
(CFD) kernel and Cholesky factorization on both UMA SMP and
NUMA DSM machines. The results show that using the optimized
thread schedule can improve the program performance by 25%
to 400%, demonstrating that our method for determining an
optimized thread schedule for multicore systems is efficient and
practical.

I. I NTRODUCTION

With the emergence of chip multi-processors (CMP) [1],
[2], [3], future DSM systems will have less powerful processor
cores but will have tens of thousands of cores. Performance
asymmetry in multicore platforms is another trend due to
budget issues such as power consumption and area limitation
as well as various degrees of parallelism in applications [4],
[5], [6]. We call such a system “heterogeneous manycore
DSM system” (see Fig. 1). Processor cores belonging to the
same level (e.g., same chip or board) frequently share memory
resources. For instance, cores on the same chip may share an
L2 or L3 cache.

It is critical to improve user programs’ memory access
efficiency to speed up program performance. We run SGI’s
performance monitoring toolpmshub on the SGI Altix 3700
BX2 machine from NCSA. Figure 2 shows that a number
of user programs are experiencing a large amount of remote
memory accesses on the DSM machine.

Our goal is to search for an optimal thread schedule to
improve the memory effectiveness on all levels in the multi-
level memory hierarchy. Threads in our context refer to fine-
grained user level threads that can be as small as a block of
instructions for which a user program can create hundreds of
thousands of such threads.

DSM System

Cabinet

M
em

o
ry

Board

Heterogeneous

Multi-core Chip

Fig. 1. Heterogeneous manycore DSM system under study.

To investigate the affinity-based thread scheduling problem,
we first propose an analytical model to evaluate the cost of a
thread schedule and then tackle it as an optimization problem.
In particular, the analytical model consists of three submodels:

• affinity graph submodelfor describing the affinity rela-
tionship between threads in a user program,

• memory hierarchy submodelfor abstracting the memory
hierarchy of a multicore system, and

• cost submodelfor predicting the cost of a schedule to run
the threads on the multicore system.

Our strategy is to let the affinity graph submodel charac-
terize the user program and the memory hierarchy submodel
characterize the system architecture. Then, in combination
with the third cost submodel, we are able to answer the
question ”Given a multi-threaded programT and a machine
M , what is the cost to use a thread scheduleA to execute

Fig. 2. A screen shot of the performance monitoring toolpmshub on SGI
Altix. The light yellow area reflects how many remote memory accesses have
occurred.

programT on machineM?” Since finding an optimal thread
schedule is NP-hard, we propose a hierarchical graph parti-
tioning algorithm to compute a near-optimal solution.

Our analytical model is supported experimentally. We have
applied the model to two synthetic applications and a real
application and showed that it can accurately measure the
quality of a thread schedule. We have also extended our
previous tool [7] to support DAG scheduling and deployed it
on two real-world applications: a computational fluid dynamics
(CFD) kernel and Cholesky factorization. The performance
results on an Intel Quadcore Clovertown machine and a SGI
Altix machine show that our new thread schedules are able to
improve program performance greatly (by 25% to 42% for the
CFD kernel and 30% to 400% for Cholesky factorization).

To save space, we sketch some of the proofs and provide
the complete proofs in [8]. The paper is organized as follows.
Section II introduces our previous work of a feedback directed
performance tool to determine an optimized thread scheduleas
well as other related work. Section III describes the analytical
model and its three submodels. Section IV describes the
hierarchical graph partitioning algorithm for finding a near-
optimal solution to the optimization problem. The extension
to support threads with data dependences is described briefly
in Section V. Section VI presents our experimental results.
Finally, Section VII gives the conclusion.

II. PREVIOUS AND RELATED WORK

A. Feedback-Directed Optimization Tool

Our previous work developed a feedback-directed trace-
based optimization tool to determine optimized thread sched-
ules for multi-threaded programs [7]. The framework (see
Fig. 3) relies upon a binary instrumentation tool to (i) obtain
and analyze the memory trace of each thread and represent
the nature of memory sharing between threads by an affinity
graph. Next, (ii) we partition the affinity graph into a number
of subgraphs. Based on the partition (one subgraph per proces-
sor), (iii) we use a breadth-first traversal method to compute
an optimized schedule for each processor. Finally, (iv) users
run the program again taking as input the feedback file.

Memory Trace Analysis

Application
Executable

Affinity Graph

Optimized
 Schedule

 Thread
Scheduling

Rerun

feedback

System

Architecture

Fig. 3. Structure of the feedback-directed thread scheduling tool [7].

Although the schedules generated by our previous work
were able to effectively speed up various applications, there
were certain inputs for which the program performance was
nearly unchanged. The analytical model presented in this paper
is intended to provide insight into why some thread schedules
improve performance and others do not, enabling us to ex-
plain the seemingly ad hoc speedups. This paper provides a
theoretical foundation for the affinity-based thread scheduling
problem and proves that the hierarchical partitioning algorithm
is an approximation algorithm. Furthermore, we have extended
our previous feedback-directed optimization method to support
threads with data dependences. The new extension allows us
to determine good schedules for DAG scheduling problems to
optimize the memory access efficiency.

B. Other Related Work

Theaugmented task graphapproach considers both compu-
tation and communication among tasks for distributed-memory
systems [9]. We extend this approach to shared-memory
systems by introducing the “affinity graph” to describe the
data-reuse relationship between different threads (or tasks).
We define the metric of data reuse as the number of words
accessed in common by two threads (or tasks). Our memory
hierarchy submodel is similar to the well-known hierarchical
storage architecture but uses a simple abstract tree to combine
both processors cores and various levels of memories.

Philbin et al. propose a user-level thread library to improve
cache locality using fine-grained threads [10]. Pingali et al.
create locality groups to restructure computations for a variety
of applications but require hand-coded optimizations [11]. We
address the problem of affinity thread scheduling based on a
more generic and abstract shared-memory model and propose
a hierarchical partitioning algorithm to solve the optimization
problem.

Traff applies a hierarchical partitioning technique similar
to ours to solve the MPI process mapping problem [12].
He implemented a framework to compute an optimal MPI

process placement to minimize the message passing cost.
Pichel et al. formulate sparse matrix-vector product as a graph
problem where each row of the sparse matrix represents a
vertex [13], [14]. Their method works effectively on both
SMP and ccNUMA DSM systems, but is limited to the SpMV
application.

III. T HE ANALYTICAL MODEL

Given a set of single-application user-level threads{t1, . . . ,
tm} without data dependences, and a number of heterogeneous
processorsp1, . . . , pn located in a shared-memory hierarchy,
find a good scheduleA to achieve:

(a) maximal data reuse within a processor,
(b) minimal remote memory accesses, and
(c) load balancing.
Note that here we use threads to refer to user-level threads

that can be as small as a block of instructions (e.g., task)
or as large as a kernel-level thread (e.g., pthread). In our
experiments, we create a thread for each fine-grained task
so that there are a large number of threads to schedule.
Our previous work [7] (e.g., section 2.2) introduced several
techniques to process large-size graphs efficiently.

Let scheduleA be an onto function:

A : {1, . . . , m} −→ {1, . . . , n}, m ≥ n.

A(i) = j means put threadti on processorpj . A−1(j)
denotes the subset of threads running on processorpj. We
allow threads to have different workloads and processors to
be heterogeneous with varying computational capabilities.

A. Affinity Graph Submodel

We use the concept of “affinity” to quantify how many
data items are accessed in common by a pair of threads.
Affinity graph builds on this concept and represents the affinity
relationship among a set of threads. Affinity graph was first
introduced in [7]. For completeness, we list it here briefly.

Definition 1 (Affinity Graph). The affinity graph is an undi-
rected weighted graphG = 〈T, E, wt, we〉, where

• T = {ti is a user-level thread| ti is data independent
of tj , ∀i 6= j},

• E={(ti, tj) | ∃ datum x such that bothti and tj access
x},

• wt : T −→ Z+ denotes the amount of computation of
each thread,

• we : E −→ Z+ denotes the affinity strength between two
threads. If(ti, tj) /∈ E, we definewe(ti, tj) = 0.

B. Memory-Hierarchy Submodel

We assume a shared memory system has a hierarchical
memory architecture. For instance, a number of processor
cores may share an L2 or L3 cache. We define such a
hierarchical shared memory system as follows:

Definition 2 (Memory Hierarchy Submodel). A shared-
memory systemR is a tree of the form

R = (r, T),

wherer is a memory node,T is the children ofr and

T = {(ri, Tri
) | Tri

is the children ofri}.

We assume all the leaves are of the same heighth (i.e., on
the hth level), and all the edges on the same levell have
identical weightwl. Specifically, the leaf tree nodes(ri, ∅)
denote processor cores and the interior tree nodes at levels
0 . . . h − 1 denote memories. We also assume each memory
contains a copy of the data in its children.

Figure 4 shows an example of a DSM system. For con-
venience, we define the ancestor memories of a noden by
ancestor(n) = {m : memorym is a node residing on the
path from root to n}.

memory

processor

...

...

...

... ...

...

...

global memory

Fig. 4. A 3-level memory hierarchy on a multicore DSM system.

Definition 3 (Memory Latency). If processor p accesses
datumx that is stored in memorym and its ancestor memories,
we define memory latencylat(p, x) = w(p, m), where

w(p, m) =
∑

edgee∈ path σ from p to m

wlevel(e) .

Lemma 1. Let datumx reside in memorym together with
m’s ancestor memories, if processorp is a descendant ofm
but processorp′ is not, thenlat(p, x) < lat(p′, x).

Proof: Let the lowest common ancestor ofp and p′ be
m2 = lca(p, p′). Since p′ is not under the subtree ofm,
level(m2) < level(m). By Definition 3,

lat(p, x) = w(p, m) = wh−1 + wh−2 + . . . + wlevel(m) ,

lat(p′, x) = w(p, m2) = wh−1 + wh−2 + . . . + wlevel(m2).

Since level(m2) < level(m), we get lat(p′, x) > lat(p, x).

Corollary 1. If two threadsti andtj access the same datumx
stored in memorym, placing them on two processors located
in the subtree ofm minimizeslat(ti, x) + lat(tj , x).

Proof: By Lemma 1, placing threadti on a descen-
dant processorpi of m will minimize lat(ti, x). Similarly,
lat(pj, x) = min∀p lat(p, x) if pj is another descendant
processor ofm. Therefore, placing the two threads on on two
processors in the subtree ofm minimizeslat(ti, x)+lat(tj, x)
since both latencies are minimal.

Corollary 1 implies that the thread placement may affect
the program performance if two threads have an affinity
relationship.

C. Cost Submodel

After knowing the affinity relationship between threads and
the characteristics of the underlying architecture, we arenow
ready to estimate the cost of running a thread schedule.

Definition 4 (Cost Submodel). Given an affinity graphG, a
shared-memory systemM , and a thread scheduleA, we define
the cost to execute scheduleA on systemM as

cost(G, M, A) =
∑

∀pi,pj

cost(A−1(pi), A
−1(pj), M, G),

where

cost(Ti, Tj, M, G) =
∑

ti∈Ti,tj∈Tj

we(ti, tj)lat(pi, mc),

mc is the lowest common ancestor of processorspi and pj .

Lemma 2. Assume a shared-memory systemM has a setP
of processors, and each memorym hask children such thatm
hask subsetsD(m)i of processors (each child has a subtree
and leads to a subset of processors),i = 1 . . . k. Suppose

pair(m) = {(px, py) | px ∈ D(m)i, py ∈ D(m)j , i, j ∈ [1, k]},

then{pair(m) | m ∈M} is a partition for set

P = P × P \ {(pi, pi) | pi ∈ P}.

Proof Sketch: It is easy to show that (1)
⋃

m∈M pair(m) ⊆ P , (2) P ⊆
⋃

m∈M pair(m), and
(3) pair(mi) ∩ pair(mj)) = ∅.

Theorem 1. Suppose a scheduleA runs a set of threads
in affinity graph G on a systemM . Let timel denote
lat(p, p’s ancestor memory at level l) and Ml denote the set
of memories at levell, then

cost(G, M, A) can also be expressed as:

h−1
∑

l=0

∑

m∈Ml

∑

(pi,pj)
∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)× timel.

In other words,

cost(G, M, A) =

h−1
∑

l=0

timel × SharingOnLevell,

whereSharingOnLevell denotes the amount of affinity be-
tween threads that access those memories located on levell.
That is,

SharingOnLevell =
∑

m∈Ml

∑

(pi,pj)
∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty).

Proof Sketch: Suppose processorspi and pj have the
lowest common ancestor memorylca(pi, pj). By definition,

cost(G, M, A) =

∑

pi 6=pj

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)lat(pi, lca(pi, pj))

=
∑

(pi,pj)∈P

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj)).

By Lemma 2,

cost(G, M, A) =

= (
∑

m∈M

∑

(pi,pj)∈pair(m)

)
∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(m)

Since every memorym ∈Ml for a certainl,

cost(G, M, A) =

((

h−1
∑

l=0

∑

m∈Ml

)
∑

(pi,pj)
∈pair(m)

)
∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(m).

By timelevel(m) ∈ {time0, . . . , timeh−1}, and all memo-
ries∈Ml have the sametimel,

cost(G, M, A) =

time0

∑

m∈M0

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)

+time1

∑

m∈M1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)

. . .

+timeh−1

∑

m∈Mh−1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty).

That is,

cost(G, M, A) =

h−1
∑

i=0

timei × SharingOnLeveli.

IV. SOLVING THE OPTIMIZATION PROBLEM

Given an affinity graphG = 〈T, E, wt, we〉 and a shared-
memory systemM , the problem of finding an optimal sched-
ule A∗ such thatcost(G, M, A∗) = min∀A cost(G, M, A) can
be considered as an integer linear programming problem.

A. An Integer Linear Programming Problem

Supposetimei > timei+1 > 0 andM is of heighth. Let

xi = SharingOnLeveli

denote the sum of affinity strength on leveli (0 ≤ i ≤ h− 1),
and xh =

∑

pi

∑

tx,ty∈A−1(pi)
we(tx, ty) denote the sum of

affinity strength within each processor. The ILP problem is
formulated as follows:

1) Minimize
∑h−1

i=0 xi × timei

2) Subject to
x0 + x1 + . . . + xh−1 + xh = w(E),
xi ∈ Z+ for i ∈ [0, h− 1], and
{x0, x1, . . . , xh−1} is derived from a load balanced
thread schedule that distributes the set of threadsT
acrossn processors evenly.

Note that the values ofxi’s are also constrained by load-
balanced thread schedules.

By the following Lemma 3, the classic graph partition-
ing problem can be reduced to the problem of minimizing
cost(G, M, A) if M’s edges have the same weight that is in
turn reducible to the problem of minimizingcost(G, M, A)
for arbitrary M. Since the classic graph partitioning prob-
lem is NP-hard, finding an optimal schedule to minimize
cost(G, M, A) is also NP-hard.

Lemma 3. Given a graph G and a shared-memory machine
M with n processors. Iftime0 = time1 = . . . = timeh−1 on
M, P ∗ is an optimal n-way classic graph partitioning forG
iff A∗ is an optimal thread schedule for M, whereP ∗ andA∗

are of the same family of subsets.

Proof Sketch: First we need to show: ifP ∗ is an
optimal n-way classic graph partitioning, thenA∗ is an optimal
thread schedule. LetP ∗ = {T1, . . . , Tn} be an optimal n-way
partition of graphG, if time0 = . . . = timeh−1 = c, then

∑

Ti,Tj∈P∗

∑

u∈Ti

v∈Tj

we(u, v)c = min
∀P

∑

Ti,Tj∈P

∑

u∈Ti

v∈Tj

we(u, v)c.

Suppose scheduleA∗ has the same partition asP ∗ such that
A∗(Ti) = pj , then

∑

Ti,Tj∈P∗

∑

u∈Ti

v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A∗
−1

(pi)

v∈A∗
−1

(pj)

we(u, v)c.

∀ partition P ,
∑

Ti,Tj∈P

∑

u∈Ti

v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A−1(pi)

v∈A−1(pj)

we(u, v)c,

∑

pi,pj

∑

u∈A∗
−1

(pi)

v∈A∗
−1

(pj)

we(u, v)c = min
∀A

∑

pi,pj

∑

u∈A−1(pi)

v∈A−1(pj)

we(u, v)c

The converse can be proved in a similar manner.

B. Hierarchical Partitioning Approximation Algorithm

Similar to cut in the classic graph partitioning problem,
we useshare to express the affinity strength between two
partitions:

share(Tx, Ty) =
∑

∀u∈Tx,∀v∈Ty

we(u, v),

whereTx andTy are two disjoint thread sets.
If processor cores on a system have different compu-

tational powers, we use apartition distribution vector to
define Unbalanced Graph Partitioning. Given affinity graph
G = 〈T, E, wt, we〉 andW = wt(T), the partition distribution
vector〈d1, d2, . . . , dn〉 defines a partition{Pi} whose weight
wt(Pi) = di×W and

∑

i di = 1. A more powerful processor
core will be assigned a larger portion of the computational
tasks accordingly. The graph partitioning algorithm uses the
partition distribution vector to guarantee that the workload on
each core is load balanced.

There are two optimization goals in our partitioning process:
conforming to the partition distribution vector and minimizing
the sharing between partitions. We propose a hierarchical
partitioning algorithm to divide the affinity graph according
to the partition distribution vector. The goal is to minimize
the sharing between partitions in the order of level0 to level
h− 1 in a top-down fashion.

Lemma 4. Let n be the number of partitions,G be a
graph, and the systemM has a heighth. AssumeP ∗ is an
optimal n-way classic graph partitioning. The hierarchical
graph partitioning algorithm can find a(2, n)-way graph
partition P such that

cost(P)

cost(P ∗)
≤ h, where

cost(P) =
∑

Ti,Tj∈P

share(Ti, Tj).

Proof: The conclusion can be drawn directly from The-
orem 5.2 presented in paper [15].

Theorem 2. Suppose an optimal thread scheduleA∗ has
cost(G, M, A∗). Then the hierarchical graph partitioning al-
gorithm can find a scheduleA such that

cost(G, M, A)

cost(G, M, A∗)
≤ h

time0

timeh−1
.

Proof Sketch: Firstly we prove

cost(G, M, A)

cos(G, M, A∗)
≤

time0

∑h−1
i=0 SharingOnLeveli

timeh−1

∑h−1
i=0 SharingOnLevel∗i

.

By Lemma 4,

cost(G, M, A)

cos(G, M, A∗)
≤ h

time0

timeh−1
.

V. EXTENSION TO SUPPORTDAG SCHEDULING

Our previous hierarchical partitioning algorithm described
in [7] assumed threads have no data dependence. When threads
are dependent on each other and hence form a DAG, we
need to extend the algorithm to deal with DAG scheduling.
In the extension, given DAGG, we divideG into a number
of levels (horizontally), each of which consists of a subsetof
independent threads. This step can be achieved by analyzing
G and determining the longest path from the root to each
node. The total number of levels is equal to the length of the
critical path. Within each level, we use the the hierarchical
graph partitioning algorithm to determine a good schedule to
run the threads. Due to data dependences, no thread in level
i + 1 can start until all threads in leveli complete. We call
this simple approach ”greedy multi-level thread scheduling”.
Figure 5 depicts how to divide a DAG into four levels.

...

Depth D
...

Fig. 5. An example of greedy multi-level thread scheduling.The DAG is
divided into four levels. The level index of each node is equal to the length
of the longest path from the root to that node.

Lemma 5. Suppose a DAG hasD levels and the total amount
of computation isW . If each threadti computes an amount
w(ti) of work, wherew(ti) ∈ [0, 1], then the greedy multi-level
thread scheduler forp processors takes at mostW−D

p
+D time.

Proof: Let si denote the amount of work on level i, where
i ∈ [1, D].

T ime =
D

∑

i=1

⌈
si

p
⌉ ≤

D
∑

i=1

(
si

p
+ (1 −

1

p
))

=
W

p
+ D −

D

p
=

W −D

p
+ D

Theorem 3. The greedy multi-level thread scheduling method
has an approximation ratio of1 + D

(W
p

)
.

Proof: Let C andC∗ represent the actual execution time
and the optimal execution time, respectively. It is easy to show
that all the execution time is at leastmax(W/p, T∞).

By C ≤
W −D

p
+ D andC∗ ≥

W

p
,

C

C∗
≤

(W −D)/p + D

C∗
≤

(W −D)/p + D

(W
p

)

t0

t1

t2

t3

Fig. 6. Four threads access a contiguous memory of size 128MB. Each
thread occupies 32MB and their locations are arbitrary.

= 1 +
(1− 1/p)D

(W
p

)
< 1 +

D

(W
p

)

Based on Theorem 3, ifW/D > p, the greedy multi-level
scheduling method takes time at most twice the optimal time.
Programs with fine-grain threads often satisfyW/D > p
and are commonly found in scientific applications such as
Cholesky, LU, andQR factorizations. Section VI-C2 shows the
experimental results for Cholesky factorization. Since the new
thread schedule improves both load balance and data locality,
its efficiency is high.

VI. EXPERIMENTAL EVALUATION

This section describes how we evaluate the analytical model,
and reports the performance of two scientific applications to
which we apply optimized thread schedules. The optimized
schedules are computed by the hierarchical partitioning algo-
rithm.

A. Evaluating the Analytical Model

To evaluate whether or not the analytical model could
correctly estimate the cost of a thread schedule, we conducted
three experiments on a DSM machine (SGI Altix) that has
two compute nodes, each of which has two processors. In
the experiments, we ran four threads on four processors. In
terms of complexity, the three experiments range from simple
to synthetic to real-world applications.

For the first two synthetic experiments, we allocate a
contiguous memory block of size 128M bytes. Each thread
only accesses1/4 of the 128MB memory. The thread first
initializes the memory with some values and then computes
the sum of the square of each element. The location of the
memory segment could be anywhere as long as it is within the
range of the 128MB memory. The affinity strength between
two threads is equal to the size of the overlapping area between
their footprints. Figure 6 illustrates how four threads could
access a block of 128MB memory.

The first experiment is the simplest one where the memory
segments of the four threads are disjoint initially (i.e., evenly
distributed and affinity=0). Then we gradually move threadt1
towards threadt0 so that the overlapping area oft0 and t1
becomes bigger and bigger. Since there is no affinity change
among the four threads except for the pair oft0 and t1,
we only compare two thread placements: placingt0 and t1

0

5

10

15

20

25

30

35

40

"0" "1/20" "2/20" "3/20" "4/20" "5/20"

Joint Footprint Size (between t0 and t1)

actual perf of (t0,t2)(t1,t3)
actual perf of (t0,t1)(t2,t3)
predicted cost of (t0,t2)(t1,t3)
predicted cost of (t0,t1)(t2,t3)

A
c
tu

a
l
P

e
rf

o
r

(s
e
c
o
n
d
s
)

Fig. 7. Compare the predicted cost to the actual execution time for two
schedules:(t0,t1)(t2,t3) and(t0,t2)(t1,t3).

together on the same node (i.e.,(t0,t1)(t2,t3)), and
placing them separately (i.e.,(t0,t2)(t1,t3)).

Figure 7 shows that the actual performance (i.e., execution
time in seconds) of the placement(t0,t2)(t1,t3) be-
comes worse and worse with the increment of the overlapping
footprint. The cost estimated by the analytical model has the
same trend as the actual performance. Note that the cost model
is not intended to predict the execution time. Rather, it is used
to measure the quality of a thread schedule, and a ranking
is sufficient to find the best thread schedule. The estimated
cost is able to reflect how much data reuse a thread schedule
has. But it is not the total execution time because estimating
execution time also requires we predict the cache miss rates
on the machine and measure the parameter oftimei on each
memory leveli.

In the second experiment as shown in Fig. 8, we performed
ten program runs each of which had a different footprint
pattern. All the footprint patterns were generated randomly.
To generate a pattern, we used a random number generator to
create a starting positionaddri for each threadti such that
ti accesses addresses in the range of[addri, addri +32MB).
Given 4 threads on two SMP nodes each with2 processors,
there are totally

(

4
2

)

/2! = 3 thread schedules. We denote them
as(t0, t1), (t0, t2), and(t0,t3), respectively. For
each of the ten footprint patterns, we ran the same program
three times each with a different thread schedule. We also
estimated the cost of every run and compared it to the actual
performance.

From Fig. 8, we can see that the cost of the three schedules
consistently reflects the ranking of their actual program perfor-
mance. In other words, given any footprint pattern, if schedule
A has a cost higher than schedule B, the actual performance
of the program using schedule A is worse than that using
schedule B.

As another example, we applied the analytical model to
an important kernel in many scientific applications: sparse
matrix vector product (SpMV). The sparse matrices were
downloaded from the UF Sparse Matrix Collection [16]. For

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Footprint Pattern Number

actual perf of (t0,t1)
actual perf of (t0,t2)
actual perf of (t0,t3)
predicted cost of (t0,t1)
predicted cost of (t0,t2)
predicted cost of (t0,t3)A

c
tu

a
l
P

e
rf

o
r

(s
e
c
o
n
d
s
)

Fig. 8. Compare the predicted cost to the actual execution time for three
thread schedules on ten randomly generated memory footprint patterns.

many matrices, we can improve the program performance by
15% to 25%. For a few other matrices, the program using the
new thread schedule instead runs 1% slower than the original
program. The complete experimental result can be found in
our previous work [7].

We used the analytical model to analyze this phenomenon
and investigate the differences between the old and the new
thread schedules. We picked two cases from our experiments.
One experiment multiplies the sparse matrixmsc01440 and
improves the performance by 23%. The other one multi-
plies the sparse matrixcircuit_1 but is slower than the
original program by 1%. Tables I and II list the values
of SharingOnLeveli (see Theorem 1) for the original and
new schedules, respectively. Assuming the remote memory
access time istime0 and the local memory access time is
time1, we can computecost(G, M, A) by addingtime0 ×
SharingOnLevel0 and time1 × ShareingOnLevel1. As
shown in Table I, the new schedule reduces the remote memory
access cost by68.5% and thus improves program performance.
However, based on Table II, there is only a small reduction by
using the new schedule (4.4% in remote memory accesses).
Due to the overhead of executing the new schedule, the
actual performance shows a1% slowdown instead of a small
speedup.

TABLE I
APPLYING THE ANALYTICAL MODEL TO STUDY WHY SpMV WAS

IMPROVED WITH INPUTmsc01440.

Affinity on Original New Reduction

diff. levels schedule schedule

Remote memory 54,175 17,043 68.5%

Local memory 107,765 13,964 87.0%

B. Applications

We applied the hierarchical graph partitioning algorithm to
two applications to find optimized thread schedules to improve
the program performance.

TABLE II
APPLYING THE ANALYTICAL MODEL TO STUDY WHY SpMV WAS NOT

IMPROVED WITH INPUTcircuit_1.

Affinity on Original New Reduction

diff. levels schedule schedule

Remote memory 127,620 121,973 4.4%

Local memory 230,759 206,076 10.7%

1) Computational Fluid Dynamics (CFD) Kernel:The
CFD kernel implements an iterative irregular-mesh partialdif-
ferential equation (PDE) solver abstracted from computational
fluid dynamics applications [11]. The irregular meshes are
used to model physical structures and consist ofnv vertices
and ne edges, denoted by〈nv, ne〉. The kernel iterates over
the edges of the mesh, computing the forces between both
end points of each edge. It then modifies the values on the
vertices. Our previous work also did experiments on the CFD
kernel but used only four processors on a single platform [7].
The parallel version of the kernel has the structure shown in
Fig. 9. Each edge corresponds to a user-level thread during
the execution.

1 for iter = 1, NUM_ITER
2 #pragma omp parallel for
3 for i = 1, num_edges
4 v1 = left[i];
5 v2 = right[i];
6 force = f(x[v1],x[v2]);
7 y[v1] += force;
8 y[v2] -= force;
9 end for
10end for

Fig. 9. Parallel version of the CFD kernel.

2) Cholesky Factorization:Given an n × n symmetric
positive definite matrixA, Cholesky factorization computes
A = LLT whereL is an n × n lower triangular matrix. For
efficiency, we implemented a right-looking blocked algorithm
so that we can apply Level-3 BLAS directly to a block of
matrixA. The blocked Cholesky factorization algorithm works
as follows:

Given A =

(

A1:b,1:b A1:b,b+1,n

Ab+1:n,1:b Ab+1:n,b+1:n

)

,

We computeL =

(

L1:b,1:b 0
Lb+1:n,1:b Lb+1:n,b+1:n

)

by calling:
(i) level-3 BLAS POTRF to solveL1:b,1:b,

A1:b,1:b = L1:b,1:bL
T
1:b,1:b

(ii) level-3 BLAS TRSM to solve a linear equation system for
Lb+1:n,1:b in parallel,

Lb+1:n,1:bL
T
1:b,1:b = Ab+1:n,1:b

(iii) level-3 BLAS GEMM to compute a rank-r update on the
trailing matrix Ab+1:n,b+1:n in parallel,

A′
b+1:n,b+1:n ← Ab+1:n,b+1:n− = Lb+1:n,1:bL

T
b+1:n,1:b

We apply the above 3 steps repeatedly toA′
b+1:n,b+1:n until

A′ consists of a singleb× b block. The code is shown in Fig.
10. VariableA_ij refers to a block which is located in theith
row andjth column in terms of blocks. Given ann×n matrix
and a block of sizeb, nblocks = n/b. To use the multilevel
algorithm described in Section V, we must know the program’s
task graph. Each task in the DAG corresponds to a Level-
3 BLAS operation. Figure 11 shows the corresponding task
graph for a 4 block by 4 block matrix and its level division.
The figure displays only one iteration of the outer loop.

1 for k = 1, nblocks
2 dpotf2(A_kk);
3 #pragma omp parallel for
4 for j = k+1, nblocks
5 dtrsm(A_kk, A_jk);
6 end for
7 for i = k+1, nblocks
8 #pragma omp parallel for
9 for j = k+1, i
10 dgemm(A_ik, A_jk, A_ij);
11 end for
12 end for
13end for

Fig. 10. Parallel tiled Cholesky factorization.

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

3,1 3,31,1

2,1

4,2

3,1 4,1

2,2 3,2 3,3 4,3 4,4

Fig. 11. DAG for Cholesky factorization (one iteration).

C. Experimental Results

We conducted all the experiments on two platforms. One
platform is a single SMP machine consisting of two sockets,
each of which has a quad-core 2.66 GHZ Intel Clovertown
chip. Since the set of two cores on each chip share an L2
cache, the corresponding memory hierarchy has two levels:
the main memory on the machine and the L2 caches on each
chip. The other platform is an SGI Altix 3700 BX2 system
with 256 compute nodes. Each node has two 1.6 GHZ Intel
Itanium processors. The system has a ccNUMA Distributed
Shared Memory (DSM) that is physically distributed across
different nodes. Every processor can access any memory
location through the SGI NUMAlink 4 interconnect. The

memory access time depends on the distance between the
processor and the node where the physical memory is located.
The corresponding memory hierarchy also has two levels: the
virtual global memory and memories on each compute node.

For each program of the CFD kernel and Cholesky factor-
ization, we always compare the performance of the program
using the optimized thread schedule to that of the program
built by compiler optimizations. Since the SMP machine has
a fixed number of eight cores, we vary the input size to run
experiments. On the DSM machine, we chose to vary the
number of processors to compare the program performance.

1) CFD Kernel Performance:Over a number of irregular
meshes, we compare the total execution time of the new
program using the new thread schedule to that of the original
program. For our examples, a mesh always has 10 times more
edges than vertices. Figure 12 shows that using the optimized
thread schedule reduces the execution time by 25% to 35%
on the Intel Clovertown SMP machine.

0

2

4

6

8

10

12

14

16

1k 2k 4k 8k 16k 32k

original
new

Fig. 12. CFD kernel on Intel Clovertown.

On the SGI DSM machine, the program always takes as
input a mesh of40, 000 vertices and400, 000 edges. For
various numbers of processors (i.e., 4, 8, 16, and 32), our
method reduces the execution time by 32% to 42%, as depicted
in Fig. 13.

0

10

20

30

40

50

60

70

80

4 8 16 32

original
new

Fig. 13. CFD kernel on SGI Altix.

2) Cholesky Factorization Performance:Unlike the CFD
kernel program with independent threads, Cholesky factoriza-
tion has threads with data dependences. The greedy multilevel

thread scheduling method is used to determine an optimized
schedule for the corresponding DAG level by level. Compared
to the original schedule that allocates threads to processors
in a block distribution way, the new schedule improves not
only data locality but also load balance. The related numerical
results have been verified.

For comparison, Fig. 14 also displays the Intel MKL 9.1 per-
formance. On the Intel Clovertown machine, we can see that
the new program is 60% to 200% faster than the original one,
while the MKL library always provides better performance
than the original one. On the SGI machine, we conducted
experiments using different numbers of processors (4, 8, 16)
and compared the performance with that of MKL 7.2. Each
experiment takes as input matrices with different sizes. Figures
15, 16, and 17 demonstrate that the new program is faster than
the original program by 30% to 400% for different number of
processors. The speedup on SGI Altix is greater than that on
Intel Clovertown is because the optimized schedule on Altix
not only reduces the number of cache misses, but also reduces
the number of expensive remote memory accesses due to the
NUMA architecture.

0

10

20

30

40

50

60

2000 4000 6000 8000 12000 16000
Matrix Size

G
F

L
O

P
S

mkl
original
optimized

Fig. 14. Cholesky factorization on Intel Clovertown.

VII. C ONCLUSION

Improving memory effectiveness is an important technique
to achieve high program performance. While there exist tools
and runtime systems to schedule threads efficiently, little
is known about what would be an optimal affinity thread
schedule to maximize the memory effectiveness and why
it is optimal. We present an analytical model to evaluate
the performance of a thread schedule. The model has three
submodels: an affinity graph submodel to describe the affinity
relationship between threads, a memory hierarchy submodelto
characterize the underlying shared-memory architecture,and a
cost submodel to estimate the cost of a certain thread schedule.
The experimental results show that the analytical model can
accurately estimate the cost of a thread schedule. We also
propose a hierarchical graph partitioning algorithm to find
near-optimal solutions. We applied the hierarchial partitioning
algorithm that has been extended to support DAGs to two

applications: computational fluid dynamics (CFD) kernel and
Cholesky factorization. Experiments on both SMP and DSM
machines show that using the optimized schedule is able to
improve program performance by 25% to 400%, demonstrat-
ing that our model and algorithms are practical and efficient.

ACKNOWLEDGMENT

This work has been partially supported by the Department
of Energy Office of Science under grant No. DE-FC02-
06ER25761, and by Microsoft Research.

REFERENCES

[1] R. Golla, “Niagara2: A highly threaded server-on-a-chip,” 2007.
[2] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: a many-core X86 architecture for
visual computing,”ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008.

[3] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM Power6
microarchitecture,”IBM J. Res. Dev., vol. 51, no. 6, pp. 639–662, 2007.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. K. Lai, “The impact of
performance asymmetry in emerging multicore architectures.” in ISCA.
IEEE Computer Society, 2005, pp. 506–517.

[5] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimiza-
tion for heterogeneous chip multiprocessors.” inPACT, E. R. Altman,
K. Skadron, and B. G. Zorn, Eds. ACM, 2006, pp. 23–32.

[6] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, andK. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance.” inISCA. IEEE Computer Society, 2004, pp.
64–75.

[7] F. Song, S. Moore, and J. Dongarra, “Feedback-directed thread schedul-
ing with memory considerations,” inHPDC ’07: Proceedings of the 16th
international symposium on High performance distributed computing,
2007, pp. 97–106.

[8] F. Song, S. Moore, and J. Dongarra, “Analytical modelingfor affinity-
based thread scheduling on multicore platforms,” University of Ten-
nessee, Computer Science Tech. Rep. UT-CS-08-626, 2008.

[9] H. El-Rewini, T. G. Lewis, and H. H. Ali,Task scheduling in parallel
and distributed systems. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1994.

[10] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and K. Li, “Thread
scheduling for cache locality.” inASPLOS, 1996, pp. 60–71.

[11] V. K. Pingali, S. A. McKee, W. C. Hsieh, and J. B. Carter, “Restructuring
computations for temporal data cache locality.”International Journal of
Parallel Programming, vol. 31, no. 4, pp. 305–338, 2003.

[12] J. L. Träff, “Implementing the MPI process topology mechanism,” in
Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing. Los Alamitos, CA, USA: IEEE Computer Society
Press, 2002, pp. 1–14.

[13] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, “Improving
the locality of the sparse matrix-vector product on shared memory
multiprocessors.” inPDP. IEEE Computer Society, 2004, pp. 66–71.

[14] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera, “A new
technique to reduce false sharing in parallel irregular codes based on
distance functions,” inISPAN. IEEE Computer Society, 2005, pp. 306–
311.

[15] H. D. Simon and S.-H. Teng, “How good is recursive bisection?” SIAM
J. Sci. Comput., vol. 18, no. 5, pp. 1436–1445, 1997.

[16] T. Davis, “University of Florida sparse matrix collection.” [Online].
Available: http://www.cise.ufl.edu/research/sparse

0

5

10

15

20

25

2000 4000 6000 8000 12000

Maxtrix Size

G
F

L
O

P
S

mkl
orignial
optimized

Fig. 15. Cholesky factorization on SGI Altix with 4 processors.

0

5

10

15

20

25

30

35

40

2000 4000 6000 8000 12000

Matrix Size

G
F

L
O

P
S mkl
original
optimized

Fig. 16. Cholesky factorization on SGI Altix with 8 processors.

0

10

20

30

40

50

60

70

2000 4000 6000 8000 12000
Matrix Size

G
F

L
O

P
S

mkl
original
optimized

Fig. 17. Cholesky factorization on SGI Altix with 16 processors.

