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multicore systems. The model consists of three submodels to
evaluate the cost of executing a thread schedule: an affinitgraph
submodel, a memory hierarchy submodel, and a cost submodel
that characterize programs, machines, and costs respecly.
We applied the analytical model to both synthetic and real-
world applications. The estimated cost accurately predia which
schedule will provide better performance. Due to the NP-haginess
of the scheduling problem, we designed an approximation al-
gorithm to compute near-optimal solutions. We have extend#®
the algorithm to support threads with data dependences. We
conducted experiments with a computational fluid dynamics
(CFD) kernel and Cholesky factorization on both UMA SMP and
NUMA DSM machines. The results show that using the optimized
thread schedule can improve the program performance by 25%
to 400%, demonstrating that our method for determining an
optimized thread schedule for multicore systems is efficignand

practical. D D D

Ooooooooo
I. INTRODUCTION Heterogeneous
Ooooooodnb  Multi-core Chip

With the emergence of chip multi-processors (CMP) [1], D D D
[2], [3], future DSM systems will have less powerful proamss
cores but will have tens of thousands of cores. Performance
asymmetry in multicore platforms is another trend due to Fig. 1. Heterogeneous manycore DSM system under study.
budget issues such as power consumption and area limitation
as well as various degrees of parallelism in applicatios [4

[3], [6]. We "caII such a system “heterogeneous manycorery jnyestigate the affinity-based thread scheduling prable
DSM system” (see Fig. 1). Processor cores belonging to thg first propose an analytical model to evaluate the cost of a
same level (e.g., same chip or board) frequently share memg{reaq schedule and then tackle it as an optimization proble

rLezsourfgs. F(r)]r instance, cores on the same chip may sharggfhriicular, the analytical model consists of three suthete
or L3 cache.

It is critical to improve user programs’ memory access °®
efficiency to speed up program performance. We run SGl’s
performance monitoring tog@dnshub on the SGI Altix 3700
BX2 machine from NCSA. Figure 2 shows that a number
of user programs are experiencing a large amount of remote®
memory accesses on the DSM machine.

Our goal is to search for an optimal thread schedule toOur strategy is to let the affinity graph submodel charac-
improve the memory effectiveness on all levels in the multterize the user program and the memory hierarchy submodel
level memory hierarchy. Threads in our context refer to fineharacterize the system architecture. Then, in combimatio
grained user level threads that can be as small as a blockwith the third cost submodel, we are able to answer the
instructions for which a user program can create hundredsmfestion "Given a multi-threaded prografhand a machine
thousands of such threads. M, what is the cost to use a thread scheddleo execute

Abstract—This paper proposes an analytical model to esti- DSM Svstem
mate the cost of running an affinity-based thread schedule on Y
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affinity graph submodefor describing the affinity rela-
tionship between threads in a user program,

o memory hierarchy submodé&r abstracting the memory
hierarchy of a multicore system, and

cost submodébr predicting the cost of a schedule to run
the threads on the multicore system.
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Fig. 2. A screen shot of the performance monitoring teoshub on SGI

Altix. The light yellow area reflects how many remote memorgesses have Optimized
occurred. Schedule

program7’ on machineM ?” Since finding an optimal thread a3 Struct  the feedback.directed thread schedliol 17
schedule is NP-hard, we propose a hierarchical graph parti- lg. 3. Structure of the feedback-directed thread schegubol [7].
tioning algorithm to compute a near-optimal solution.

Our analytical model is supported experimentally. We haveAIthough the schedules generated by our previous work

applied the model to two synthetic applications and a reglre aple to effectively speed up various applicationsyethe
application and showed that it can accurately measure {j& e certain inputs for which the program performance was
quality of a thread schedule. We have also extended Qiry ynchanged. The analytical model presented in tigispa

previous tool [7] to support DAG scheduling and deployed j§ jntended to provide insight into why some thread scheiule
on two real-world applications: a computational fluid dyriesn improve performance and others do not, enabling us to ex-

(CFD) kernel and Cholesky factorization. The performancg. i, the seemingly ad hoc speedups. This paper provides a

results on an Intel Quadcore Clovertown machine and a Sfgletical foundation for the affinity-based thread scfiied
Altlx machine show that our new thread schedules are ablep}ﬂ)blem and proves that the hierarchical partitioning atgm
improve program performance greatly (by 25% to 42% for the 5, approximation algorithm. Furthermore, we have exteind
CFD kernel and 30% to 400% for Cholesky factorization). . previous feedback-directed optimization method tqsup

To save space, we sketch some of the proofs and proviieaads with data dependences. The new extension allows us

the complete proofs in [8]. The paper is organized as followg, getermine good schedules for DAG scheduling problems to
Section Il introduces our previous work of a feedback dedct optimize the memory access efficiency.

performance tool to determine an optimized thread schexkule
well as other related work. Section Il describes the aizyt B. Other Related Work

model and its three submodels. Section IV describes theTheaugmented task grapipproach considers both compu-
hierarchical graph partitioning algorithm for finding a nea ation and communication among tasks for distributed-rmgmo
optimal solution to the optimization problem. The extensiogysiems [9]. We extend this approach to shared-memory
to support threads with data dependences is describedybrigfistems by introducing the “affinity graph” to describe the
in Section V. Section VI presents our experimental result§gia-reuse relationship between different threads (dts)as

Finally, Section VII gives the conclusion. We define the metric of data reuse as the number of words
accessed in common by two threads (or tasks). Our memory
Il. PREVIOUS AND RELATED WORK hierarchy submodel is similar to the well-known hierarehic

storage architecture but uses a simple abstract tree toicemb
both processors cores and various levels of memories.

Our previous work developed a feedback-directed trace-Philbin et al. propose a user-level thread library to imgrov
based optimization tool to determine optimized thread dehecache locality using fine-grained threads [10]. Pingali let a
ules for multi-threaded programs [7]. The framework (se&eate locality groups to restructure computations forréetya
Fig. 3) relies upon a binary instrumentation tool to (i) ebta of applications but require hand-coded optimizations [V
and analyze the memory trace of each thread and represmdress the problem of affinity thread scheduling based on a
the nature of memory sharing between threads by an affinityore generic and abstract shared-memory model and propose
graph. Next, (ii) we partition the affinity graph into a numbea hierarchical partitioning algorithm to solve the optiatinn
of subgraphs. Based on the partition (one subgraph per progaroblem.
sor), (iii) we use a breadth-first traversal method to comput Traff applies a hierarchical partitioning technique samil
an optimized schedule for each processor. Finally, (ivysiséo ours to solve the MPI process mapping problem [12].
run the program again taking as input the feedback file. He implemented a framework to compute an optimal MPI

A. Feedback-Directed Optimization Tool



process placement to minimize the message passing cesdterer is a memory nod€l is the children ofr and
Pichel et al. formulate sparse matrix-vector product asaplyr T = {(r:,T,,) | Ty, is the children ofr;}.

problem where each row of the sparse matrix represents a _
vertex [13], [14]. Their method works effectively on both/Ve assume all the leaves are of the same hefiglite., on

SMP and ccNUMA DSM systems, but is limited to the SpM\the hth level), and all the edges on the same levédlave
application. identical weightw!. Specifically, the leaf tree nodes;, §)

denote processor cores and the interior tree nodes at levels
HI. THE ANALYTICAL MODEL 0...h — 1 denote memories. We also assume each memory
Given a set of single-application user-level threqtis ..., contains a copy of the data in its children.
t., } without data dependences, and a number of heterogeneo
processorgy, ..., p, located in a shared-memory hierarchy,
find a good schedulel to achieve: v
(&) maximal data reuse within a processor,
(b) minimal remote memory accesses, and
(c) load balancing. global memory
Note that here we use threads to refer to user-level threads
that can be as small as a block of instructions (e.g., task) / \
or as large as a kernel-level thread (e.g., pthread). In our

ul§igure 4 shows an example of a DSM system. For con-
enience, we define the ancestor memories of a nodxy
ancestor(n) = {m : memorym is a node residing on the
path from root to .

experiments, we create a thread for each fine-grained task / /.
so that there are a large number of threads to schedule.
Our previous work [7] (e.g., section 2.2) introduced selvera memory
techniques to process large-size graphs efficiently. processor
Let scheduled be an onto function:
A:A{1,....m} —{1,....n},m>n. Fig. 4. A 3-level memory hierarchy on a multicore DSM system.
A(i) = j means put thread; on processormp;. A~!(j

denotes the subset of threads running on processokwe Definition 3 (Memory Latency) If processorp accesses
allow threads to have different workloads and processors 48tume thatis stored in memony: and its ancestor memories,
be heterogeneous with varying computational capabiliies We define memory latenéyi(p, x) = w(p, m), where

A. Affinity Graph Submodel w(p,m) = Z whevel(e)

We use the concept of “affinity” to quantify how many edgeec path o from p to m _
data items are accessed in common by a pair of threah§Mma 1. Let datumz reside in memoryn together with

Affinity graph builds on this concept and represents the affin 'S ancestor rl11¢mories, if processpris a d/escendant ofy
relationship among a set of threads. Affinity graph was fir§it pProcessop’ is not, thenlat(p, z) < lat(p’, z).

introduced in [7]. For completeness, we list it here briefly. Proof: Let the lowest common ancestor pfand p’ be

Definition 1 (Affinity Graph). The affinity graph is an undi- 72 = lca(p,p'). Sincep’ is not under the subtree of,
rected weighted grapt¥ = (T, E, w;, w.), where level(m?2) < level(m). By Definition 3,
« T = {t; is a user-level thread| ¢; is data independent lat(p,z) = w(p,m) = w" ™' + w2 + .. 4+ wlevelm),

of t,V’L 7§ ]}, / _ _ ,.h—1 h—2 level(m?2)

. E:f(ti,tj) | 3 datum x such that both; andt; access lat(p, @) = wip,m2) = w" w4 w '
a}, Sincelevel(m2) < level(m), we getlat(p’,xz) > lat(p, x).

e wy : T — Z7T denotes the amount of computation of u
each thread, - Corollary 1. If two threadst; andt; access the same datum

e we: E— 77 denotes the affinity strength between tWgiared in memoryn, placing them on two processors located
threads. If(t;, ;) ¢ E, we definew, (¢;,t;) = 0. in the subtree ofn minimizesiat(t;, z) + lat(t;, ).

B. Memory-Hierarchy Submodel Proof: By Lemma 1, placing thread; on a descen-
We assume a shared memory system has a hierarchitaht processop; of m will minimize lat(t;,z). Similarly,
memory architecture. For instance, a number of processat(p,,z) = miny,lat(p,z) if p; is another descendant
cores may share an L2 or L3 cache. We define suchpeocessor ofn. Therefore, placing the two threads on on two
hierarchical shared memory system as follows: processors in the subtreemf minimizeslat(t;, z)+lat(t;, )

since both latencies are minimal. [ |

Definition 2 (Memory Hierarchy Submodel)A shared-

memory systenR is a tree of the form Corollary 1 implies that the thread placement may affect

the program performance if two threads have an affinity
R=(rT), relationship.



C. Cost Submodel Z Z We (b3, ty)lat(pi, lca(pi, p;j))

After knowing the affinity relationship between threads and PiFP to €A™ (pi)
the characteristics of the underlying architecture, werans ty €A™ (ps)
ready to estimate the cost of running a thread schedule.

Definition 4 (Cost Submodel)Given an affinity graphG, a = > 2 We (e, by )timeicuelica(p: ;)
shared-memory systeftt, and a thread scheduld, we define (pi-pj)€P jmgj,lg;’%g
the cost to execute scheduleon systemV/ as ! !

COSt(G,M, A) = Z COSt(Ail(pi),Ail(pj),M, G), By Lemma 2,
Vpi,p; cost(G, M, A) =

= ( Z Z ) Z we(t$7ty)timelevel(m)
COSt(Tia Tja M, G) = Z We (tia tj)lat(pi, mc)a meM (p;,p;)€Epair(m) tIEAfl(pi)
t;€T;,t; €Ty tyEAil(pj)

where

m. is the lowest common ancestor of processarandp;.  gjnce every memoryn € M, for a certain/

Lemma 2. Assume a shared-memory systdémhas a setP

of processors, and each memanyhask children such thatn cost(G, M, A) =
hask subsetsD(m), of processors (each child has a subtree

and leads to a subset of processors}; 1. .. k. Suppose

h—1
pair(m) = {(ps,py) | P« € D(m)i, py € D(m);,i,j € [1, K]}, Q2 D) D) D weltasty)timercperm)-

. . 1=0 meM, 05)  tae A (ps
then{pair(m) | m € M} is a partition for set e eiflif{%) zygﬁqg;;

P =P x P\ {(pi,pi) | pi € P}. By timesmn, € {timeo..... timen_a)}, and all memo-
Proof Sketch: It is easy to show that (1) riese€ M, have the sameéime,
Umenrpair(m) < P, (2) P < U, pair(m), and

() pair(m;) N pair(m;)) = 0. n cost(G, M, A) =
Theorem 1. Suppose a scheduld runs a set of threads ]
in affinity graph G on a systemM. Let time; denote timeg Z Z Z We(ta, ty)
lat(p, p's ancestor memory at level bnd M; denote the set me&Mo (pi,p;)€pair(m) tmeAj(pi)
of memories at levdl, then ty €A™ (p;)
cost(G, M, A) can also be expressed as: Ftimey Z Z Z (b t,)

meMi (pi,p;)€Epair(m) t,c A~ (p;)

h—1
Z Z Z Z We (tg, ty) X timey. ty €A™ (p;)

1=0 meMi (pi,p;) t, €A™ (p;)
€pair(m) ¢, e A~ (p;)

In other words, +timen 1 Z Z Z We(ta, ty).
meMpn_1 (pi,p;)Epair(m) t,c A~ (p;)
hot tyGAil(Pj)
cost(G, M, A) = Z time; x SharingOnLevel;,
1=0 That is,
where SharingOnLevel; denotes the amount of affinity be- he1
tween threads that access those memories located onllevel cost(G, M, A) = Ztime» x SharingOnLevel;
. ) ) - (2 (A
That is, i=0
SharingOnLevel; =
[ ]
Do X weltety)
meMy (pi,pj) to€A™(ps) IV. SOLVING THE OPTIMIZATION PROBLEM

Epair(m) 1,4~ (n;)

Given an affinity graphG = (T, E, w;, w.) and a shared-
memory system\/, the problem of finding an optimal sched-
ule A* such thatost(G, M, A*) = miny 4 cost(G, M, A) can
cost(G, M, A) = be considered as an integer linear programming problem.

Proof Sketch: Suppose processogs and p; have the
lowest common ancestor memal(p;, p;). By definition,



A. An Integer Linear Programming Problem B. Hierarchical Partitioning Approximation Algorithm

Supposéime; > time;+1 > 0 and M is of heighth. Let Similar to cut in the classic graph partitioning problem,
_ we useshare to express the affinity strength between two
x; = SharingOnLevel; partitions:

denote the sum of affinity strength on levdl0 < i < h—1),
andxy, = 32, > 1 ca-1(p) We(lz; ty) denote the sum of
affinity strength within each processor. The ILP problem is

share(T,,T,) = Z we (U, V),
VuETy, VoeT,

formulated as follows: whereT), and T, are two disjoint thread sets.

1) Minimize Z?:_ol x; X time; If processor cores on a system have different compu-

2) Subject to tational powers, we use partition distribution vectorto
o+ 314 ...+ Tho1 + a2 = w(E), define Unbalanced Graph Partitioning. Given affinity graph
z; € Z+ forie[0,h— 1], and G = (T, E,w,w.) andW = w(T), the partition distribution
{xo,21,...,25_1} is derived from a load balancedvector(di,ds,...,dy) defines a partitiod F;} whose weight
thread schedule that distributes the set of thre@ds w:(F%) = di x W and}_; d; = 1. A more powerful processor
acrossn processors evenly. core will be assigned a larger portion of the computational

Note that the values of;’s are also constrained by Ioad-taSk_s_ accc_)rd!ngl_y. The graph partitioning algorithm uses t
balanced thread schedules partition distribution vector to guarantee that the woadan
i each core is load balanced.

By the following Lemma 3, the classic graph partition- Th " timizafi i itioni
ing problem can be reduced to the problem of minimizin ere are wo optimization goais In our partiioning praces

cost(G, M, A) if M's edges have the same weight that is irgonforming to the partition distribution vector and minking
turn re’duéible to the problem of minimizingpst(G, M, A) the _s_ha_ring betvyeen part_it?ons. we propose a hierarc_hical
for arbitrary M. Since the classic graph partitioning prob':—Ja1rtltlon|ng algorithm 1o divide the affinity graph accagi

lem is NP-hard, finding an optimal schedule to minimiz&ﬁ the partition distribution vector. The goal is to minimiz
cost(G, M, A) is ’also NP-hard the sharing between partitions in the order of leveb level

h —1 in a top-down fashion.

Lemma 3. Given a graph G and a shared-memory machine .
M with n processors. Itimeq — time, — ... — timey,_; on Lemma 4. Let n be the number of partitionsG be a

M, P* is an optimal n-way classic graph partitioning f@¥ graph, and the system/ has a heighﬁ. AssumeR* Is an
iff A* is an optimal thread schedule for M, wheRs and A* optimal n-way classic graph partitioning. The hierarchica

are of the same family of subsets. graph partitioning algorithm can find &2,n)-way graph
partition P such that

cost(P)
cost(P*)

Proof Sketch: First we need to show: ifP* is an
optimal n-way classic graph partitioning, thdr is an optimal
thread schedule. Le®* = {T1,...,T,,} be an optimal n-way
partition of graphG, if timey = ... = time,_1 = ¢, then

< h, where

cost(P) = Z share(T;, Tj).

Z Z we (U, v)c = Ig%)n Z Z we (U, v)c. T, T;€P

Toner el Toner el Proof: The conclusion can be drawn directly from The-
. orem 5.2 presented in paper [15]. ]
Suppose scheduld* has the same partition a@* such that P paper [15]
A*(T;) = pj, then Theorem 2. Suppose an optimal thread scheduleé has
cost(G, M, A*). Then the hierarchical graph partitioning al-
Z Z We(u,v)c = Z Z we(u, v)c. gorithm can find a scheduld such that
T;,T; €P* weT; i»Dj e
veET; pop “ej*fl(pl) cost(G, M, A) <h timeg
e vs) cost(G, M, A*) — timep_1

V partition P,

Proof Sketch: Firstly we prove

Z Z we (u, v)c = Z Z we(u, v)e, cost(G, M, A)

timeg Z?:_J SharingOnLevel;

T;, T;EP ug;@ PisPj ue A (p;) - < — h—1 - ‘
Vel veA™Y(p;) cos(G, M, A*) timen—1y,_, SharingOnLevel}
Z Z we(u, U)C = Hvlixn Z Z ’LUe(’U,, U)C By Lemma 4,
PiPi e a ™ (po) Pispj uEA:ll(pi) cost(G, M, A) <h timeg
veA* " (py) veAT (p)) cos(G, M, A*) — timep_1

The converse can be proved in a similar manner. [ ] [ ]



V. EXTENSION TO SUPPORTDAG SCHEDULING

| |

| |

Our previous hierarchical partitioning algorithm desedb | |

in [7] assumed threads have no data dependence. When threads ' - !
t0 t2

are dependent on each other and hence form a DAG, we : _ _ :

need to extend the algorithm to deal with DAG scheduling. Contiguous Memory

In the extension, given DAG~, we divide G into a number

of levels (horizontally), each of which consists of a sulifet _ _

independent threads. This step can be achieved by analy{”?gad ocgf&g‘gﬁ; ;ﬁgiﬁziflgfﬁfn“so:fe”;f&‘t?;'y_"f size 12884Bh

G and determining the longest path from the root to each

node. The total number of levels is equal to the length of the

critical path. Within each level, we use the the hierardhica 14 (1-1/p)D <14 D

graph partitioning algorithm to determine a good schedale t (%) (%)

run the threads. Due to data dependences, no thread in level

i+ 1 can start until all threads in leveélcomplete. We call u

this simple approach "greedy multi-level thread schedyilin ~Based on Theorem 3, #//D > p, the greedy multi-level
Figure 5 depicts how to divide a DAG into four levels. scheduling method takes time at most twice the optimal time.

Programs with fine-grain threads often satisfy/D > p
and are commonly found in scientific applications such as
CholeskyLU, andQRfactorizations. Section VI-C2 shows the
experimental results for Cholesky factorization. Sinae rilew
thread schedule improves both load balance and data lgcalit
Depth D its efficiency is high.

VI. EXPERIMENTAL EVALUATION

This section describes how we evaluate the analytical model
) , _ _and reports the performance of two scientific applicatians t
Fig. 5. An example of greedy multi-level thread scheduliiipe DAG is hich | timized th d hedul Th timized
divided into four levels. The level index of each node is édaahe length which we apply optmize rea : sche _u es. e o_p Imize
of the longest path from the root to that node. schedules are computed by the hierarchical partitionigg-al
rithm.

Lemma 5. Suppose a DAG haB levels and the total amount Evaluating the Analytical Model
of computation isiW. If each threadt; computes an amount )
w(t;) of work, wherew(t;) € [0, 1], then the greedy multi-level To evalua_te whether or not the analytical model could
thread scheduler fop processors takes at mo%=2+ D time. correctly estllmate the cost of a threaql schedule, we coaduct
P three experiments on a DSM machine (SGI Altix) that has
Proof: Let s; denote the amount of work on level i, wherawo compute nodes, each of which has two processors. In
€[1,D]. the experiments, we ran four threads on four processors. In
D terms of complexity, the three experiments range from smpl
Time — Z Z 5_ _ ) to synthetic Fo real-world apphcatlons:
P - P For the first two synthetic experiments, we allocate a
contiguous memory block of size 128M bytes. Each thread
_ K +D— 2 _ W-D +D only accessed /4 of the 128MB memory. The thread first
D D D initializes the memory with some values and then computes
m the sum of the square of each element. The location of the
memory segment could be anywhere as long as it is within the
Theorem 3. The greedy multi- Ievel thread scheduling metho,cbnge of the 128MB memory. The affinity strength between
has an approximation ratio of + ( ) two threads is equal to the size of the overlapping area lestwe
’ their footprints. Figure 6 illustrates how four threads Idou
access a block of 128MB memory.
The first experiment is the simplest one where the memory
segments of the four threads are disjoint initially (i.eemy
W —D W distributed and affinity6). Then we gradually move thread
By €'< +DandC™ > P’ towards thread0 so that the overlapping area ¢ and¢1
becomes bigger and bigger. Since there is no affinity change
W-_D)p+D _ (W-D)/p+D among the four threads except for the pair tof and ¢1,
C* - (%) we only compare two thread placements: placifigand ¢t1

Proof: Let C andC* represent the actual execution time
and the optimal execution time, respectively. It is easyhtos
that all the execution time is at leastax(W/p, Too).

C
— <
c* —
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Fig. 7. Compare the predicted cost to the actual executioe fior two Fig. 8. Compare the predicted cost to the actual executioe for three
schedules(t0,t1) (t2,t3) and(t0,t2)(t1,t3). thread schedules on ten randomly generated memory fobfatterns.

together on the same node (i.¢40,t1) (t2,t3)), and many matrices, we can improve the program performance by
placing them separately (i.g.1 0,t2) (t1,t3)). 15% to 25%. For a few other matrices, the program using the
Figure 7 shows that the actual performance (i.e., executiogw thread schedule instead runs 1% slower than the original
time in seconds) of the placeme(t0,t2) (t1,t3) be- program. The complete experimental result can be found in
comes worse and worse with the increment of the overlappiagr previous work [7].
footprint. The cost estimated by the analytical model has th We used the analytical model to analyze this phenomenon
same trend as the actual performance. Note that the cost m@wl investigate the differences between the old and the new
is not intended to predict the execution time. Rather, itsecu thread schedules. We picked two cases from our experiments.
to measure the quality of a thread schedule, and a rankidge experiment multiplies the sparse matrxc01440 and
is sufficient to find the best thread schedule. The estimatigaproves the performance by 23%. The other one multi-
cost is able to reflect how much data reuse a thread schedulies the sparse matrigi rcui t _1 but is slower than the
has. But it is not the total execution time because estimatiariginal program by 1%. Tables | and Il list the values
execution time also requires we predict the cache miss ra@sSharingOnLevel; (see Theorem 1) for the original and
on the machine and measure the parameteiat; on each new schedules, respectively. Assuming the remote memory
memory leveli. access time igimey and the local memory access time is
In the second experiment as shown in Fig. 8, we performé&dne1, we can computeost(G, M, A) by addingtimey x
ten program runs each of which had a different footprintharingOnLevely and time; x ShareingOnLevel;. As
pattern. All the footprint patterns were generated rangomphown in Table I, the new schedule reduces the remote memory
To generate a pattern, we used a random number generatc?agess cost b§8.5% and thus improves program performance.
create a starting positioaddr; for each thread; such that However, based on Table Il, there is only a small reduction by
t; accesses addresses in the ranggédr;, addr; +32M B). using the new schedulel.{% in remote memory accesses).
Given 4 threads on two SMP nodes each witlprocessors, Due to the overhead of executing the new schedule, the
there are totally(3) /2! = 3 thread schedules. We denote theractual performance showsi& slowdown instead of a small
as(t0, t1),(t0, t2),and(tO0,t3), respectively. For speedup.
each of the ten footprint patterns, we ran the same program
) . i TABLE |
three times each with a different thread schedule. We alsO appiyinG THE ANALYTICAL MODEL TO STUDY WHY SpM/ WAS

estimated the cost of every run and compared it to the actual IMPROVED WITH INPUTBC01440.
performance.

From Fig. 8, we can see that the cost of the three schedules ~ Affinity on Original ~ New Reduction
consistently reflects the ranking of their actual programfqre diff. levels schedule  schedule
mance. In other words, given any footprint pattern, if sched Remote memory 54,175 17,043  68.5%
A has a cost higher than schedule B, the actual performance Local memory 107,765 13,964 87.0%
of the program using schedule A is worse than that using
schedule B.

As another example, we applied the analytical model 8 Applications
an important kernel in many scientific applications: sparseWe applied the hierarchical graph partitioning algoritton t
matrix vector product $pMV). The sparse matrices weretwo applications to find optimized thread schedules to imero
downloaded from the UF Sparse Matrix Collection [16]. Fothe program performance.



TABLE I
APPLYING THE ANALYTICAL MODEL TO STUDY WHY SpMV WAS NOT
IMPROVED WITH INPUTCi rcui t _1.

(iii) level-3 BLAS GEMMto compute a rank-r update on the
trailing matrix Ayt 1.0 5+1:» in parallel,

/ _ T
Affinity on Original  New Reduction b+1:n,b+1:n Ab+1:n,b+1:n_ = Lb+l:n,1:bLb+1:n,1:b
diff. levels schedule  schedule We apply the above 3 steps repeatedlyAp, ;.,, ,, 1., until
Remote memory 127,620 121,973  4.4% A’ consists of a singlé x b block. The code is shown in Fig.
Local memory 230,759 206,076  10.7% 10. VariableA i j refers to a block which is located in thih

row andjth column in terms of blocks. Given anx n matrix
and a block of sizé, nbl ocks = n/b. To use the multilevel

1) Computational Fluid Dynamics (CFD) KernelThe @algorithm described in Section V, we must know the program’s
CFD kernel implements an iterative irregular-mesh padial @Sk graph. Each task in the DAG corresponds to a Level-
ferential equation (PDE) solver abstracted from comporati 3 BLAS operation. Figure 11 shows the corresponding task
fluid dynamics applications [11]. The irregular meshes affaph for a 4 block by 4 block matrix and its level division.
used to model physical structures and consishpfvertices 1he figure displays only one iteration of the outer loop.
and n. edges, denoted byn,,n.). The kernel iterates over

. 1 for k = 1, nblocks
the edges of the mesh, computing the forces between both 5 = gnotf2(A Kk):
end points of each edge. It then modifies the values on the 3  #pragnma onp parallel for
vertices. Our previous work also did experiments onthe CFD 4  for j = k+1, nblocks
kernel but used only four processors on a single platform [7] g gt fr sn(A_kk, Ajk);
The parallel version of the kernel has the structure shown in 7 fgr i or: k+1  nbl ocks
Fig. 9. Each edge corresponds to a user-level thread during g #pr agma oﬁp paral l el for
the execution. 9 for j = k+1, i
10 dgemm(A ik, Ajk, Alij);
1 for iter = 1, NUMITER 11 end for
2 #pragnma onp parallel for 12 end for
3 for i = 1, num edges 13end for
4 vl = left[i];
5 v2 = right[i]; Fig. 10. Parallel tiled Cholesky factorization.
6 force = f(x[vl],x[v2]);
7 y[vl] += force;
8 y[v2] -= force;
9 end for
10end for
2,1(2,2
Fig. 9. Parallel version of the CFD kernel. k 31/3.2[3.3
4,1(4,2(4,3|4,4

2) Cholesky Factorization:Given ann x n symmetric
positive definite matrix4, Cholesky factorization computes
A = LLT whereL is ann x n lower triangular matrix. For
efficiency, we implemented a right-looking blocked algtomit
so that we can apply Level-3 BLAS directly to a block of
matrix A. The blocked Cholesky factorization algorithm works

Fig. 11. DAG for Cholesky factorization (one iteration).
as follows:
Given A — ( Arbn Arpin C. Experimental Results
Ab+1:n,1:b Ab+1:n,b+1:n .
We conducted all the experiments on two platforms. One
Lip 1 0 platform is a single SMP machine consisting of two sockets,
We computel = Lyitmit Losimprin each of which has a quad-core 2.66 GHZ Intel Clovertown

chip. Since the set of two cores on each chip share an L2
cache, the corresponding memory hierarchy has two levels:
the main memory on the machine and the L2 caches on each
chip. The other platform is an SGI Altix 3700 BX2 system
with 256 compute nodes. Each node has two 1.6 GHZ Intel
(ii) level-3 BLAS TRSMto solve a linear equation system foftanium processors. The system has a ccNUMA Distributed
Liys1m1: in parallel, Shared Memory (DSM) that is physically distributed across
different nodes. Every processor can access any memory
location through the SGI NUMAIink 4 interconnect. The

by calling:
(i) level-3 BLAS POTRF to solve L. 1.0,

T
Arp1b = Lipawlig 1

T
Lb-ﬁ—l:n,l:bLl;bJ;b = Ab+1:n,l:b



memory access time depends on the distance between ttiread scheduling method is used to determine an optimized
processor and the node where the physical memory is locatechedule for the corresponding DAG level by level. Compared
The corresponding memory hierarchy also has two levels: ttee the original schedule that allocates threads to procgsso
virtual global memory and memories on each compute noda. a block distribution way, the new schedule improves not
For each program of the CFD kernel and Cholesky factopnly data locality but also load balance. The related nucaeéri
ization, we always compare the performance of the prograesults have been verified.
using the optimized thread schedule to that of the programFor comparison, Fig. 14 also displays the Intel MKL 9.1 per-
built by compiler optimizations. Since the SMP machine hdsrmance. On the Intel Clovertown machine, we can see that
a fixed number of eight cores, we vary the input size to rihe new program is 60% to 200% faster than the original one,
experiments. On the DSM machine, we chose to vary thehile the MKL library always provides better performance
number of processors to compare the program performancihan the original one. On the SGI machine, we conducted
1) CFD Kernel PerformanceOver a number of irregular experiments using different numbers of processors (4, B, 16
meshes, we compare the total execution time of the newd compared the performance with that of MKL 7.2. Each
program using the new thread schedule to that of the origiredperiment takes as input matrices with different sizegufes
program. For our examples, a mesh always has 10 times mbfe 16, and 17 demonstrate that the new program is faster than
edges than vertices. Figure 12 shows that using the opfimizbe original program by 30% to 400% for different number of
thread schedule reduces the execution time by 25% to 3$¥cessors. The speedup on SGI Altix is greater than that on

on the Intel Clovertown SMP machine. Intel Clovertown is because the optimized schedule on Altix
not only reduces the number of cache misses, but also reduces
! aoriginal the number of expensive remote memory accesses due to the
14 e NUMA architecture.
12
60
,210
Es 50|
6
) gm
e
? 5]
o 1k 2k 4k 8k 16k 32k 20l
Mesh Size (number of vertices) *ml_(l_
-=-original
Fig. 12. CFD kernel on Intel Clovertown. 10, -4-optimized
On the SGI DSM machine, the program always takes as 0 2000 4000 6000 8000 12000 16000
input a mesh of40,000 vertices and400,000 edges. For Matrix Size
various numbers of processors (i.e., 4, 8, 16, and 32), our ] o
method reduces the execution time by 32% to 42%, as depicted ~ 19- 14 Cholesky factorization on Intel Clovertown.
in Fig. 13.
50 VII. CONCLUSION
70l - Improving memory effectiveness is an important technique
o ke to achieve high program performance. While there existstool
and runtime systems to schedule threads efficiently, little
S is known about what would be an optimal affinity thread
20 schedule to maximize the memory effectiveness and why
a0 it is optimal. We present an analytical model to evaluate
20l the performance of a thread schedule. The model has three
ol submodels: an affinity graph submodel to describe the affinit
. relationship between threads, a memory hierarchy subntodel
4 Niber of Processas 32 characterize the undgrlylng shared-memory grchnecanda,a
cost submodel to estimate the cost of a certain thread stshedu
Fig. 13. CFD kernel on SGI Altix. The experimental results show that the analytical model can

accurately estimate the cost of a thread schedule. We also
2) Cholesky Factorization PerformanceJnlike the CFD propose a hierarchical graph partitioning algorithm to find
kernel program with independent threads, Cholesky faxderi near-optimal solutions. We applied the hierarchial parinhg
tion has threads with data dependences. The greedy maltilesigorithm that has been extended to support DAGs to two



applications: computational fluid dynamics (CFD) kernedl an
Cholesky factorization. Experiments on both SMP and DSM
machines show that using the optimized schedule is able to
improve program performance by 25% to 400%, demonstrat-$
ing that our model and algorithms are practical and efficient 915
L
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