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ABSTRACT: This paper describes the performance evaluation and analysis of a set of open source petascale
quantum simulation tools for nanotechnology applications. The tools of interest are based on the existing real-
space multigrid (RMG) method. In this work we take a reference set of these tools and evaluate their performance
with the help of performance evaluation libraries and tools such as TAU and PAPI. The goal is to develop an
in-depth understanding of their performance on Teraflop leadership platforms, and moreover identify possible
bottlenecks and give suggestions for their removal. The measurements are being done on ORNL’s Cray XT4
system (Jaguar) based on quad-core 2.1 GHz AMD Opteron processors. Profiling is being used to identify
possible performance bottlenecks and tracing is being used to try to determine the exact locations and causes of
those bottlenecks. The results so far indicate that the methodology followed can be used to easily produce and
analyze performance data, and that this ability has the potential to aid our overall efforts on developing efficient
quantum simulation tools for petascale systems.
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1 Introduction

Computational science is firmly established as a pil-
lar of scientific discovery promising unprecedented ca-
pability. In particular, computational advances in the
area of nanoscale and molecular sciences are expected
to enable the development of materials and systems
with radically new properties, relevant to virtually ev-
ery sector of the economy, including energy, telecom-
munications and computers, medicine, and areas of
national interest such as homeland security. The ad-
vances that would enable this progress critically de-
pend on the development of petascale-level quan-
tum simulation tools and their adaptation to the
currently available petascale computing systems. How-
ever, this tool development and adaptation is a highly
non-trivial task that requires a truly interdisciplinary
team, and cannot be accomplished by scientists work-
ing in a single discipline. This is due to the following
challenges, which require expertise in several areas:

– Quantum simulation methods, while by now well-
established, provide various ”levels” of accuracy
at very different cost. The most accurate methods
are prohibitively expensive for large systems and
scale poorly with system size (up to O(N7)). Disci-
plinary expertise is required to develop multiscale
methods that will provide sufficient accuracy at
acceptable cost, while performing well for grand-
challenge-size problems at the petascale level.

– Existing codes and algorithms perform well on
current terascale systems, but need major perfor-
mance tuning and adaptation for petascale sys-
tems (based for example on emerging multi/many-
core and hybrid architectures). This requires sub-
stantial computer science expertise, use of ad-
vanced profiling and optimization tools, and addi-
tional development of these tools to adapt them
to different petascale architectures, with differ-
ent memory hierarchies, latencies and bandwidths.
The profiling may also identify algorithmic bottle-
necks that inhibit petaflop performance.

– New or improved algorithms can greatly decrease
time to solution and thus enhance the impact
of petascale hardware. Very large problems of-
ten exhibit ”slow down” of convergence, requiring
”coarse-level” accelerators adapted to the partic-
ular algorithm. Algorithmic changes to decrease
bandwidth or latency requirements may also be
necessary. In time-dependent simulations, sophis-
ticated variable time-stepping and implicit meth-
ods can greatly increase the ”physical time” of the
simulation, enabling the discovery of new phenom-
ena.

This work is a step towards solving some of the com-
puter science problems related to the adaptation of ex-
isting codes and algorithms to petascale systems based
on multicore processors. In particular, we take a ref-



erence set of quantum simulation tools that we are
currently developing [4, 5], and show the main steps in
evaluating their performance, analyzing it to identify
possible performance bottlenecks, and determining the
exact locations and causes of those bottlenecks. Based
on this, we also give recommendations for possible per-
formance optimizations. We use state-of-the-art per-
formance evaluation libraries and tools including TAU
(Tuning and Analysis Utilities [6]) and PAPI (Perfor-
mance Application Programming Interface [2, 1]). The
measurements are being done on Jaguar, a Cray XT4
system at ORNL based on quad-core 2.1 GHz AMD
Opteron processors. The results so far indicate that
the main steps that we have followed (and described)
can be viewed/used as a methodology to not only eas-
ily produce and analyze performance data, but also
to aid the development of algorithms, and in particu-
lar petascale quantum simulation tools, that effectively
use the underlying hardware.

2 Performance evaluation

Here we describe the performance evaluation tech-
niques that we found most useful for this study. We
also give a performance evaluation for two methodolo-
gies that we have implemented so far in our codes. One
is global grid method, in which the wave functions are
represented in the real space uniform grids [5]. The re-
sults show that the most time-consuming part in this
method is the orthogonalization and subspace di-
agonalization. The code is massively paralleled and
it can reach a very good flops performance. Unfortu-
nately, it scales in O(N3) with system size, which will
be prohibitive for large system applications. The other
one is the optimally localized orbital method [4], in
which the basis set is optimized variationally and it
scales in nearly O(N) with system size. This O(N)
method has some computational challenges in paral-
lel and strong scaling with the number of processors.
In this contribution, we profile (below) and analyze
(Section 3) the code using different tools, find the bot-
tlenecks and optimize the performance (Section 4).

2.1 Profiling

An efficient way to quickly get familiar with large soft-
ware packages and identify possible performance bot-
tlenecks is to use TAU’s profiling capabilities. For ex-
ample, we use it to first get familiar with the general
code structure of the quantum simulation tools of in-
terest (Section 2.2), second to get performance pro-
files (Section 2.3) revealing the main function candi-
dates for performance optimization, and finally to pro-

file in various hardware configuration scenarios to an-
alyze the code and identify possible performance bot-
tlenecks.

2.2 Code structure

Code structure can be easily studied by generating
call-path data profiles. For example TAU is compiled
with the -PROFILECALLPATH option and the run
time variable TAU CALLPATH DEPTH can be set to
limit the depth of profiled functions. Figure 1 shows

Fig. 1. Callpath data.

a view of the call-path data (of the optimally local-
ized orbital method code) using the paraprof tool,
by selecting from the pool-down menu consecutively
Windows, Thread, Statistics Table (if finally Call
Graph is selected one can see a graphical representa-
tion/graph of the call path). For example, shown are
what are the functions in main, their inclusive exe-
cution times (the exclusive execution times are min-
imized for this snapshot), how many times are the
functions called, and how many child functions are
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Fig. 2. Callpath data.

called from them. In this case, function run is the
most time consuming and left-mouse clicking on it
reveals similar information for its children. This is
shown on Figure 2, where from run we get to quench,
and next to scf (obviously called in an outer loop
20 times), get new rho (again called 20 times), and
density orbit X orbit (called 56, 343 times for this
run) as the most time consuming functions. Starting
from here, and revealed furthermore by consequent
profiling and tracing, we can say that as most of the
work is done in density orbit X orbit (further de-
noted by DOxO), the most probable improvements in
performance will come from optimizing it. The op-
timization though, as expected, is coupled with the
function’s relation to load balancing and patterns of
computation and MPI communication, which is the
subject of the finer performance studies below. The
considerable time spent in MPI Wait hints to further
look for possible load dis-balance or different ways of
organizing/mixing computation and communication.

2.3 Performance Profiles

Figure 3 shows a TAU profile using paraprof. On
the top we have a display of the most time con-
suming functions (from left to right) along with in-
dication for their execution time for the different
threads of execution used for this run. At the bot-
tom we see a legend giving the correspondence of
color-to-function name, and its execution time as
a percentage from the total execution time (in this
case taken for the mean). This indicates at a glance

Fig. 3. Code profile.

the main function candidates for performance opti-
mization. Namely, as already determined, this is func-
tion DOxO. Moreover, it is obvious that there is some
load dis-balance between two groups of execution
threads, namely the ones from 0-to-55 and from 56-
to-63, or that the two groups have different algorithm-
specific functionalities. In either case, the time spent
on MPI Wait seems to be excessive.

Similar profiles can be easily generated for various
performance counters. For example, Figure 4 shows
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Fig. 4. Floating point instructions.

profiles for the floating point instructions counter
PAPI FP INS from PAPI. This shows for example that
the most time consuming function is not the one per-
forming most of the Flops (actually, it is third in terms
of Flops performed) further underscoring the need to
look for its possible optimization. Moreover, the Flops
in the second thread group are approximately twice
less, requiring a check for load dis-balance, or in the
case of different functionality, further analysis on how
this 2-way splitting influences the scalability.

2.4 Performance evaluation results

The results shown so far are for the purpose of illustra-
tion. Both codes were profiled for larger problems and
using larger number of processing elements (up to 1024
was enough for the purpose of this study). As men-
tioned at the beginning of this section, the most time-
consuming part in the real space uniform grids method
is the orthogonalization and subspace diagonal-
ization. Figure 5, Top shows the profile for the most
time consuming functions on a run using 1024 cores.

Fig. 5. Code profiles for large problems on 1024 cores.

Figure 5, Bottom shows the profile for the most time
consuming functions on the optimally localized orbital
method, again for 1024 cores. The first code runs at an
overall 670 MFlop/s per core vs 114 MFlop/s per core
for the second code (in both cases using all 4 core in
the nodes). Both codes are based on domain decompo-
sition and have good weak scalability. The optimally
localized orbital method has some computational chal-
lenges in parallel and strong scaling with the number
of processors. The basis set in this method is optimized
variationally which makes it “richer” on sparse opera-
tions and MPI communications (compared to the first
code).

3 Performance analysis

There are 3 main techniques that we found useful in
analyzing the performance. These are tracing (and in
particular comparing traces of various runs), scalabil-
ity studies, and experimenting for multicore use, which
are all described briefly as follows.

3.1 Tracing

Tracing in general is being used to try to determine
the exact locations and causes of bottlenecks. We used
TAU to generate trace files and analyzed them using
Jumpshot [8] and tools like KOJAK [7]. The codes
that we analyze are well written - in the sense that
communications are already blocked, asynchronous,
and intermixed (and hence overlapped) with compu-
tation to a certain degree. We found that in our case,
when domain decomposition guarantees to a degree
weak scalability, to improve performance we have to
concentrate mainly on the efficient use of the multi-
cores within a node. Related to using the tracing tools
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and MPI, we discovered that it may help if we in-
crease the degree of posting early MPI Irecvs. This
is again related to the efficient use of multicores and
MPI and is further discussed in our recommendations
for performance improvements. We also found it use-
ful to compare traces of various runs - and thus study
the effect of various code changes on the performance.
Using traces, one can also easily generate profile-type
statistics for various parts of the code, which we found
very helpful in understanding the performance.

Fig. 6. Scalability using 4, 8, and 16 quad-core nodes.

3.2 Scalability

We studied both strong and weak scalability of our
codes. The results were briefly summarized in sub-
section 2.4. Here we give a brief illustration on some

strong scalability results using, as before, the small size
problems with the optimally localized orbital method.
Figure 6 shows the inclusive (top) and exclusive (bot-
tom) execution time comparison when using 16 quad-
core nodes (in blue), 8 (red), and 4 nodes (green). We
note that the top 3 compute intensive functions from
Figure 4 scale well (see Figure 6 bottom). This is im-
portant, since there was the concern of load dis-balance
for a group of threads, as explained earlier. This result
shows that the balance is properly maintained and that
the 2 groups of threads observed before have different
functionality (and their load also gets proportionally
split). The less than perfect overall scaling (see inclu-
sive time on top) may be due to the fact that the mea-
surement here is for strong scalability, i.e. the problem
size has been kept fixed and the cost of communica-
tion has not become yet small enough, compared to
computation, due to surface to volume effects that we
have due to domain decomposition techniques that we
employ. Improvements though are possible, as will be
discussed further.

3.3 Multicore use

To understand how efficient the code is in using mul-
ticore architectures, we perform measurements in dif-
ferent hardware configurations. Namely, we compare
runs using 4, 2, and single core of the quad-core nodes.
In all cases we vary the number of nodes used so that
the total number of execution threads (one per core)
is 64. Figure 7 shows results for comparing the inclu-
sive (top) and exclusive (bottom) execution times.
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Fig. 7. Comparison using 4, 2, and 1 cores.

Note that DOxO, the most time consuming function,
efficiently uses multicores as the time for 2 (given in
red) and 4 cores (in blue) is the same as that for a sin-
gle core (green). The same is not true though for the
other most time consuming functions. For example,
comparing single and quad-core exclusive run times
for the next 5 most time consuming functions (from
Figure 3), we see that the quad-core based runs are
correspondingly 23, 51, 58, 49, and 36% slower, which
results in an overall slow down of about 28% (as seen
from the inclusive times for main).

These results are not surprising as multicore use is
almost always of concern. In our case, a general rea-
son that can explain the slowdown is that execution
threads are taken as separate MPI processes that do
not take advantage of the fact that locally, within a
node, we have shared memory and can avoid MPI com-
munications. The fact is that the local MPI commu-
nications (within a multicore), even if invoked as non-
blocking, would end up getting executed as a copy that
is blocking, and therefore there would be no overlap of
communication and computation, contributing to the
increase of MPI Wait time. But besides slowdown due
to local (within a multicore) communication, there is
more load on the communications coming to and from
a node. These bottlenecks have to be addressed: copies
should be avoided within the nodes and the inter-nodes
communications related to the cores of a single node
should be blocked whenever possible to avoid latencies
associated with multiple instances of communication.

As mentioned above, multicores are efficiently
used for our most time consuming function, and not
that well used for the communication related func-
tions. Looking at the compute intensive functions,
namely dot product dot orbit and theta phi new

(from Figure 4), we see they slow down with multi-
core use significantly more than even MPI Wait: cor-
respondingly 51 and 49% when comparing single vs
quad-core, as already mentioned above. Understanding
this, especially in relation to why the third compute in-
tensive function DOxO (and also most time consuming)
is fine under multicores, requires further measurements
and analysis, as done next.

Figure 8 shows a performance comparison when

Fig. 8. Performance using 4, 2, and 1 cores.

using the 4, 2, and single core regimes, i.e. this is a
combination of the time (as in Figure 3) and Flops
measurements (as in Figure 4). The numbers give
MFlop/s ratios. This shows for example that the code
runs at an overall speed of about 110 MFlop/s per
core when using quad-cores and 152 MFlop/s when
using a single core per node. We note that the max-
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imum performance is 8.4 GFlop/s per core and the
main memory bandwidth is 10.6 GB/s. These are just
two numbers to keep in mind in evaluating maximum
possible speedups depending on the operations be-
ing performed. In our case, it looks like DOxO uses
very irregular memory accesses, so performance is very
poor (about 53 MFlop/s which is about 9 and 7
times less than the two most compute intensive func-
tions, correspondingly dot product dot orbit and
theta phi new. Moreover, the accesses are so irregu-
lar that the bottleneck is not in bandwidth (otherwise
performance would have degraded with multicore use)
but in latencies. Consideration should be given here to
see if the computation can be reorganized to have more
locality of reference. The same should be done for the
other two flops reach functions, which although have
better performance, their performance degrade drasti-
cally with the use of multicores, as shown on Figure
8, bottom. It must be determined if this is due to a
bandwidth bottleneck, in which case certain types of
blocking may help.

4 Bottlenecks

Based on our performance analysis, the biggest per-
formance increase of the current codes can come from
more efficient use of the multicores. We described the
bottleneck in subsection 3.3. Namely, the cores of a
node are taken as separate MPI processes, which fur-
ther increases the load (without need) of the shared
between the cores memory bus. This causes, for ex-
ample, extra copies (in an otherwise shared memory
environment) and no overlap of communication and
computation (locally). Not to have additional load on
the multicores memory bus is important because our
type of computation involves some sparse linear alge-
bra (especially the 1st code) which are notorious for
running much below the machine’s peaks, especially
for the case of multicore architectures.

Another example on overloading the multicores’
memory bus (which is happening in our current codes)
are posting MPI Irecv late, in particular after commu-
nication data has already started to arrive. This also
results in extra copy as MPI would start putting the
data in temporary buffers, and later copy it to the user
specified buffers.

When looking for performance optimization oppor-
tunities, it is also important to keep in mind what are
roughly the limits for improvement based on machine
and algorithmic requirements. One can get close to
machine peak performance only for operations of high
enough ratio of Flops vs data needed. For example
Level 3 BLAS can achieve it for large enough matrix

size (e.g. approximately at least 200 on current ar-
chitectures). Otherwise, in most cases, memory band-
width and latencies are limits for the maximum perfor-
mance. Jaguar, in particular, has quad-core Opterons
at 2.1GHz with theoretical maximum performance of
8.4 GFlop/s per core (about 32 GFlop/s per quad-core
node) and memory bandwidth of 10.6 GB/s (shared
between the 4 cores). With these characteristics, if an
application requires for example streaming (copy), one
can expect about 10GB/s and 1 core will saturate the
buss, dot product is ≈ 1GFlop/s (again one core sat-
urates the bus), FFT is ≈ 0.7 GFlop/s for 2 cores and
1.3GFlop/s for 4 cores, random sparse are ≈ 0.035
GFlop/s for 2 cores and 0.052 GFlop/s for 4 cores, etc.
The point here is that if certain performance is not sat-
isfactory, we may have to look for ways to change the
algorithm itself (some suggestions given below).

Here is a list of suggestions for performance im-
provement:
– Try some standard optimization techniques on the

most compute intensive functions;
– Change the current all-MPI implementation to a

multicore-aware implementation where MPI com-
munications are performed only between nodes
(and not within them);

– Try different strategies/patterns of intermixing
communication and computation. For example,
the current pattern in get new rho is to have
a queue of 2 MPI Irecvs (and corresponding
MPI Isends) where there is an MPI Wait associ-
ated with the first MPI Irecv of the queue, ensur-
ing the data needed has been received, followed by
the computation associated with that data. This
pattern insures some overlapping of communica-
tion and computation but it is worth investigat-
ing larger sets of MPI Irecvs combined for ex-
ample with MPI Waitsome. The idea is to first
have enough MPI Irecvs posted to avoid a case
of data arriving (from some MPI Isend) before a
corresponding MPI Irecv is posted (in which case
there would be a copy overhead). Second, we want
to start immediately the computation associated
with the communication that has first completed;

– Consider changing the algorithms if performance
is still not satisfactory.

Related to item one, we can give an example with
function DOxO, which was the most time consuming
function for most of the small runs used also as illus-
trations in this paper. We managed to accelerate it
approximately 2.6× which brought about 28% over-
all improvement (as DOxO was running 29% of the
total time). The techniques used here are given on
Figure 9. The candidates for this type of optimiza-
tion are determined. We note that the opportunity
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Fig. 9. Code optimization.

for speedup here may be better for the second code,
because it has more sparse operations. A difficulty is
that there is not a single function to optimize - Fig-
ure 5 shows the profiles for the two codes as run on
large problems of interest. Note that the first code has
a single most time consuming function, but speedup
here would most probably come from algorithmic in-
novations.

The optimizations related to items 2 and 3
are work in progress. Finally, for item 4, we con-
sider for example certain new algorithms, designed
for example to avoid/minimize communication [3],
and in general new linear algebra developments
for multicores and emerging hybrid architectures.

Fig. 10. Hybrid GPU-accelerated Hessenberg reduc-
tion in double precision.

For example, related to accelerating the subspace
diagonalization problem, Figure 10 shows a perfor-
mance acceleration of the reduction to upper Hessen-
berg form using hybrid GPU-accelerated computation
- the improvement is 16× from the current implemen-
tation, obviously a bottleneck.

5 Conclusions

We profiled and analyzed two petascale quantum simu-
lation tools for nanotechnology applications. We used

different tools to help in understanding their perfor-
mance on Teraflop leadership platforms. We identi-
fied bottlenecks and gave suggestions for their removal.
The results so far indicate that the main steps that we
have followed (and described) can be viewed/used as
a methodology to not only easily produce and analyze
performance data, but also to aid the development of
algorithms, and in particular petascale quantum sim-
ulation tools, that effectively use the underlying hard-
ware.
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