
Analytical Modeling for Affinity-Based Thread Scheduling
on Multicore Platforms ∗

Fengguang Song
University of Tennessee

EECS Department
Knoxville, TN

song@eecs.utk.edu

Shirley Moore
University of Tennessee

EECS Department
Knoxville, TN

shirley@eecs.utk.edu

Jack Dongarra
University of Tennessee

EECS Department
Knoxville, TN

dongarra@eecs.utk.edu

ABSTRACT
This paper proposes an analytical model to estimate the
cost of running an affinity-based thread schedule on multi-
core shared-memory systems. This model considers a mem-
ory architecture as a generic tree structure and allows for a
portable, architecture-aware optimization framework to find
an optimized schedule for multi-threaded programs. It con-
sists of three submodels in order to measure the cost of exe-
cuting a thread schedule: affinity graph model, memory hi-
erarchy model, and a cost model that characterize machines,
programs, and costs respectively. With the aid of the model,
we formalize the problem of finding the best thread sched-
ule as an optimization problem. Due to the NP-hardness of
the problem, we designed a hierarchical graph partitioning
algorithm to compute an approximate solution. We then
extended the algorithm to support threads with data de-
pendencies (i.e., DAGs). The algorithm has been imple-
mented in a feedback-directed optimization framework and
applied to two real-world scientific applications: a Compu-
tational Fluid Dynamics (CFD) kernel and Cholesky factor-
ization. We conducted our experiments on both SMP and
DSM machines. The results show that our analytical model
is accurate enough, and using the optimized thread sched-
ule improves the program performance by 25% to 4 times,
demonstrating that our method is efficient and practical.

1. INTRODUCTION
The shared-memory programming paradigm has been widely
accepted and used for a long time. It surely makes the de-
velopment work much easier. Modern large scale shared-
memory machines often have a global address space that is
distributed across hundreds of compute nodes. With the
emergence of chip multi-processors (CMP) [3, 9, 15], the
future DSM system will become smaller and has tens of
thousands of processor cores. Performance asymmetry in
multicore platforms is clearly another trend due to budget
issues such as power consumption and area limitation as well

∗This version includes the complete proofs of our theorems.

as various degree of parallelism in applications [1, 4, 5, 6].
We call such a system ”heterogeneous manycore DSM sys-
tem” (in Figure 1). Processor cores belonging to the same
level (e.g., same chip or board) share a certain amount of
memory. For instance, a couple of cores on the same chip
may share an L2 or L3 cache.

DSM System

Cabinet

M
em

o
ry

Board

Heterogeneous

Multi-core Chip

Figure 1: Heterogeneous manycore DSM system un-
der study.

In this paper we investigate how to improve the memory ef-
fectiveness and maximize data reuse through affinity-based
thread scheduling on the manycore shared memory plat-
forms. While working on a large-scale DSM machine for a
couple of years, we observed that it is critical for us to find a
method to improve user programs’ memory access efficiency.
Figure 2 demonstrates that some applications are experienc-
ing a large amount of remote memory accesses. The light
yellow area indicates the number of remote memory accesses.

Therefore, we attempt to search for an optimal thread sched-
ule to improve the memory effectiveness on all levels in the
multi-level memory hierarchy. To investigate the affinity-
based thread scheduling, we first propose an analytical model
to estimate the cost of a thread schedule and then tackle it
as an optimization problem. In particular, the analytical
model consists of three submodels:

1

Figure 2: A screen shot of a performance monitoring
tool on SGI Altix. The light yellow area reflects
how many number of remote memory accesses have
occurred.

• affinity graph model for describing the affinity relation-
ship between the threads in a user program,

• memory hierarchy model for abstracting the memory
hierarchy of a multicore system, and

• cost model for estimating the cost of a thread schedule
to run the threads on the multicore system.

Our strategy is to let the affinity graph model characterize
the user program and the memory hierarchy model charac-
terize the machine architecture. Finally in combination of
the cost model, we are able to answer the question ”given
a multi-threaded program T and a machine M , what is the
cost to use a thread schedule A to execute program T on
machine M?” Since finding an optimal thread schedule is
NP-hard, we propose a hierarchical graph partitioning algo-
rithm to compute an approximate solution. Furthermore, an
extension to support threads with data dependencies (DAG
scheduling) is also developed.

The analytical model is supported experimentally. We ap-
plied the model to two synthetic experiments and a real
application and show that it can accurately measure the
quality of a thread schedule. We also implemented a tool
to compute an optimized thread schedule based on the hi-
erarchical graph partitioning algorithm. We deployed the
tool to two real-world applications: a Computational Fluid
Dynamics (CFD) kernel and Cholesky factorization. The
performance results on an Intel Quadcore Clovertown ma-
chine and a SGI Altix machine show that our method is
able to improve the program performance greatly (by 25%
to 42% for the CFD kernel and 30% to 400% for Cholesky
factorization).

The paper is organized as follows. Section 2 describes the
analytical model and the three submodels in sequence. Sec-
tion 3 proposes a hierarchical graph partitioning algorithm
to find an approximate solution to the optimization prob-
lem. An extension to support threads with data depen-
dencies and a framework to implement the algorithms are
briefly described in Sections 4 and 5. Section 6 presents the
experimental results. Section 7 introduces the related work.
Finally, Section 8 concludes our work.

2. THE ANALYTICAL MODEL
2.1 Affinity-Based Thread Scheduling Problem
Given a set of single-application user-level threads {t1, . . . ,
tm} without data dependencies, and a number of hetero-
geneous processors p1, . . . , pn located in a shared-memory
hierarchy, find a good schedule A to achieve:

(a) maximal data reuse within a processor,

(b) minimal remote memory accesses, and

(c) load balancing.

Let schedule A be an onto function:

A : {1, . . . , m} −→ {1, . . . , n}, m ≥ n.

A(i) = j means put thread ti on processor pj . A−1(j) de-
notes the subset of threads running on processor pj . We
allow each thread to have different workload and each pro-
cessor to be heterogeneous with various computational ca-
pability.

2.2 Affinity Graph Model
In order to decide on which processors to place two threads,
it is critical to know whether there exist data accessed in
common by the two threads. If none of these data exist, we
can place the threads freely regardless of data reuse. There-
fore, we introduce the concept of ”affinity” to quantify how
many data are accessed in common by each pair of threads.

Definition 1 (Affinity). When two threads ti, tj ac-
cess a number n of data {x1, x2, . . . , xn} in common, we
say there is an affinity relationship between ti and tj, and
affinity(ti, tj) = n is the strength of affinity.

Since a user program has a set of threads, we introduce the
concept of affinity graph to model the affinity relationship
between the set of threads.

Definition 2 (Affinity Graph). Affinity graph is an
undirected weighted graph G = 〈T, E, wt, we〉, where

• T = {ti is a user-level thread | ti is data independent
of tj , ∀i 6= j},

• E = {(ti, tj) | ∃ data x such that both ti and tj access x},
• wt : T −→ Z+ denotes the amount of computation of

each thread,

• we : E −→ Z+ denotes the affinity strength between
two threads. If (ti, tj) /∈ E, we define we(ti, tj) = 0.

Given an affinity graph G = 〈T, E, wt, we〉, if Ti ⊂ T , we
extend the definition of wt and we to represent the weight
of the subgraph for Ti. That is, wt(Ti) =

∑
t∈Ti

wt(t) and

we(Ti) =
∑

ti,tj∈Ti
we(ti, tj).

Figure 3 shows an example of multiplying two 200×200 ma-
trices. A and C are dense matrices. Matrix B has a special

2

structure where the top right and bottom left blocks are all
zeros. We run four threads T0-T3 to compute the matrix
multiplication. T0-T3 compute the result for submatrices of
C11, C12, C21, and C22 concurrently. The corresponding
affinity graph is shown on the right hand side in Figure 3.

T0 T1

T2 T3

C

A B

= x

0

0

0

1

3

2

10003

3

33

10003

3

Figure 3: Parallel matrix multiplication using four
threads and its corresponding affinity graph. Each
thread of T0-T3 computes one block of matrix C.

We compare the performance of putting threads T0 and T2
on the same SMP node to that of putting T0 and T1 together
(an intuitive way) for a system with two dual-CPU SMP
nodes. Figure 4 shows the wallclock execution time of the
two thread schedules. The optimized schedule is better than
the original one by 20%. This example demonstrates that
different thread schedules can result in great performance
difference.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000 2000 3000 4000 5000

T
im

e
 (

se
co

n
d

s)

Matrix Size

optimized
original

Figure 4: Comparison of two different thread sched-
ules. The revealed affinity relationship (stronger
affinity between T0 and T2) in Figure 3 helps im-
prove the performance of the parallel matrix multi-
plication.

2.3 Memory-Hierarchy Model
We assume a shared memory system has a hierarchical mem-
ory architecture. For instance, a number of processor cores
may share an L2 or L3 cache. The data stored in the L2 and
L3 caches are duplicated in the local main memory. Also the

global address space includes all the data stored in the lo-
cal memories. We define such a hierarchical shared memory
system as follows:

Definition 3 (Shared-Memory System). A shared-
memory system R is a tree of the form

R = (r, T),

where r is a memory node, T is the children of r and

T = {(ri, Tri) | Tri is the children of ri}.
We assume all the leaves are of the same height h (i.e., on
the hth level), and all the edges on the same level l have
identical weight wl. Specifically, the leaf tree nodes (ri, ∅)
denote processor cores and the interior tree nodes at levels
0 . . . h− 1 denote memories. We also assume each memory
contains a copy of the data in its children.

Figure 5 shows an example of a DSM system.

memory

processor

...

...

...

... ...

...

...

global memory

Figure 5: A 3-level memory hierarchy on a multicore
DSM system.

For convenience, we define the ancestor memories of a node
n by ancestor(n) = {m : memory m is a node residing on
the path from root to n}.

Definition 4 (Memory Latency). If processor p ac-
cesses datum x that is stored in memory m and its ancestor
memories, we define memory latency lat(p, x) = w(p, m),
where

w(p, m) =
∑

edge e∈ path σ from p to m

wlevel(e).

Lemma 1. Let datum x reside in memory m and its an-
cestor memories, if processor p is a descendant of m but
processor p′ is not, then lat(p, x) < lat(p′, x).

Proof. Let the lowest common ancestor of p and p′ be
m2 = lca(p, p′). Since p′ is not under the subtree of m,
level(m2) < level(m). By Definition 4,

lat(p, x) = w(p, m) = wh−1 + wh−2 + . . . + wlevel(m),

lat(p′, x) = w(p, m2) = wh−1 + wh−2 + . . . + wlevel(m2).

And by level(m2) < level(m), we get lat(p′, x) > lat(p, x).

3

Corollary 1. If two threads ti and tj access the same
datum x stored in memory m and its ancestor memories,
placing them on two processors located in the subtree of m
minimizes lat(ti, x) + lat(tj , x).

Proof. By Lemma 1, placing thread ti on a descendant
processor pi of m will minimize lat(ti, x). Similarly, lat(pj , x) =
min∀p lat(p, x) if pj is another descendant processor of m.
Therefore, placing the two threads on on two processors in
the subtree of m minimizes lat(ti, x) + lat(tj , x) since both
latencies are minimal.

Corollary 1 shows that the thread placement may affect a
program’s performance if the threads have an affinity rela-
tionship.

2.4 Cost Model
After knowing the affinity relationship between threads and
the characteristics of the underlying architecture, we are now
able to estimate the cost of running a thread schedule.

Definition 5 (Cost Model). Given an affinity graph
G, a shared-memory system M , and a thread schedule A, we
define the cost to execute schedule A on system M as

cost(G, M, A) =
∑

∀pi,pj

cost(A−1(pi), A
−1(pj), M, G),where

cost(Ti, Tj , M, G) =
∑

ti∈Ti,tj∈Tj

we(ti, tj)lat(pi, mc),

mc is the lowest common ancestor of processors pi and pj.

Lemma 2. Assume a shared-memory system M has a set
P of processors, and each memory m has k children such
that m has k subsets D(m)i of processors (each child has
a subtree and leads to a subset of processors), i = 1 . . . k.
Suppose

pair(m) = {(px, py) | px ∈ D(m)i, py ∈ D(m)j , i, j ∈ [1, k]},
then {pair(m) | m ∈ M} is a partition of set

P = P × P \ {(pi, pi) | pi ∈ P}.

Proof. We want to show (1)
⋃

m∈M pair(m) = P, and
(2) pair(mi) ∩ pair(mj)) = ∅.

(1.1) To prove
⋃

m∈M pair(m) ⊆ P.

Let {px, py} ∈ pair(mi) for a certain mi ∈ M . By definition
of pair(mi), we know px ∈ D(mi)k1 and py ∈ D(mi)k2 .
Sine M is a tree, px 6= py. Therefore, (px, py) ∈ P, such
that

⋃
m∈M pair(m) ⊆ P.

(1.2) To prove P ⊆ ⋃
m∈M pair(m).

Let {px, py} ∈ P and mc be the lowest common ancestor of
px and py. Assume mc has k subsets D(mc)i of processors
that are derived from its k children (or branches), then px

and py must belong to different branches of mc (since oth-
erwise mc won’t be the lowest common ancestor). WLOG,

let px ∈ D(mc)k1 and py ∈ D(mc)k2 , k1 6= k2. Therefore,
(px, py) ∈ pair(mc), such that P ⊆ ⋃

m∈M pair(m).

(2) To prove pair(mi) ∩ pair(mj) = ∅ if mi 6= mj .

Suppose ∃(px, py) ∈ pair(mi) ∩ pair(mj) and mi 6= mj . By
definition of pair, mi is the lowest common ancestor of px

and py. Similarly, mj is also the lowest common ancestor of
px and py. Since px and py have a unique lowest common
ancestor, thus mi = mj , contradicting the assumption of
mi 6= mj .

Theorem 1. Suppose a thread schedule A places the set
of threads of affinity graph G to a system M . Let timel

denote lat(p, p’s ancestor memory at level l) and Ml denote
the set of memories at level l, then

cost(G, M, A) can also be expressed as:

h−1∑

l=0

∑
m∈Ml

∑

(pi,pj)

∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)× timel.

In another word,

cost(G, M, A) =

h−1∑

l=0

timel × SharingOnLevell, where

SharingOnLevell denotes the amount of affinity between
threads that access memories on level l. That is,

SharingOnLevell =
∑

m∈Ml

∑

(pi,pj)

∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty).

Proof. Suppose processors pi and pj have the lowest
common ancestor memory lca(pi, pj). By definition,

cost(G, M, A) =

∑

pi 6=pj

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)lat(pi, lca(pi, pj))

=
∑

pi 6=pj

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj))

=
∑

(pi,pj)∈P

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj)).

By Lemma 2, {pair(m)} partitions P, then
∑

(pi,pj)∈P

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(lca(pi,pj))

= (
∑

m∈M

∑

(pi,pj)∈pair(m)

)
∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(m)

4

Since every memory m ∈ Ml for a certain l,

= ((

h−1∑

l=0

∑
m∈Ml

)
∑

(pi,pj)

∈pair(m)

)
∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)timelevel(m).

We know timelevel(m) ∈ {time0, time1, . . . , timeh−1} and all
memories ∈ Ml have the same timel,

cost(G, M, A) = time0

∑
m∈M0

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)

+time1

∑
m∈M1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty)

. . .

+timeh−1

∑
m∈Mh−1

∑

(pi,pj)∈pair(m)

∑

tx∈A−1(pi)

ty∈A−1(pj)

we(tx, ty).

That is,

cost(G, M, A) = time0 × SharingOnLevel0+

time1 × SharingOnLevel1 + . . .

+timeh−1 × SharingOnLevelh−1.

3. SOLVING THE PROBLEM
Given an affinity graph G = 〈T, E, wt, we〉 and a shared-
memory system M , the problem of finding an optimal sched-
ule A∗ such that cost(G, M, A∗) = min∀A cost(G, M, A) can
be considered as an integer linear programming problem.

Suppose timei > timei+1 > 0 and M is of height h. Let

xi = SharingOnLeveli

denote the sum of affinity strength on level i (0 ≤ i ≤ h−1),
and xh =

∑
pi

∑
tx,ty∈A−1(pi)

we(tx, ty) denote the sum of

affinity strength within each processor. The ILP problem is
formulated as follows:

1. Minimize
∑h−1

i=0 xi × timei

2. Subject to
x0 + x1 + . . . + xh−1 + xh = w(E),
xi ∈ Z+ for i ∈ [0, h− 1], and
{x0, x1, . . . , xh−1} is derived from a load balanced thread
schedule that distribute the set of threads T across n
processors evenly.

Note that the values of xi’s are also constrained by certain
thread schedules.

By the following Lemma 3, the classic graph partitioning
problem can be reducible to the problem of minimizing cost(G, M, A)
if M’s edges have the same weight that is also reducible to
the problem of minimizing cost(G, M, A) for arbitrary M’s.
Since the classic graph partitioning problem is NP-hard,
finding an optimal schedule to minimize cost(G, M, A) is
also NP-hard.

Lemma 3. Given a graph G and a shared-memory system
M with n processors. If time0 = time1 = . . . = timeh−1 on
M, an optimal n-way classic graph partitioning P ∗ of G also
minimizes cost(G,M,A) if schedule A uses the same partition
as P ∗.

Proof. Let P ∗ = {T1, T2, . . . , Tn} be an optimal n-way
partition to graph G, then

∑
Ti,Tj∈P∗

∑
u∈Ti,v∈Tj

we(u, v) = min
∀P

∑
Ti,Tj∈P

∑
u∈Ti,v∈Tj

we(u, v)

Suppose time0 = time1 = . . . = timeh−1 = c,
∑

Ti,Tj∈P∗

∑

u∈Ti,v∈Tj

we(u, v)c = min
∀P

∑

Ti,Tj∈P

∑

u∈Ti,v∈Tj

we(u, v)c (1)

Since

cost(G, M, A) =
∑
pi,pj

∑

u∈A−1(pi),v∈A−1(pj)

we(u, v)c

and for partition P = {T1, T2, . . . , Tn}, we can construct a
schedule A that has the same partition P such that A(Ti) =
pj , thus

∑

Ti,Tj∈P∗

∑

u∈Ti,v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A∗−1
(pi),v∈A∗−1

(pj)

we(u, v)c

and
∑

Ti,Tj∈P

∑

u∈Ti,v∈Tj

we(u, v)c =
∑

pi,pj

∑

u∈A−1(pi),v∈A−1(pj)

we(u, v)c

By Equation 1,
∑
pi,pj

∑

u∈A∗−1
(pi),v∈A∗−1

(pj)

we(u, v)c =

min
∀A

∑
pi,pj

∑

u∈A−1(pi),v∈A−1(pj)

we(u, v)c

That is,

cost(G, M, A∗) = min
∀A

cost(G, M, A), where

A∗
−1

has the same partition as P ∗.

3.1 A Hierarchical Partitioning Algorithm
Similar to cut in the classic graph partitioning problem, we
use share to express the affinity strength between two par-
titions:

share(Tx, Ty) =
∑

∀u∈Tx,∀v∈Ty

we(u, v),

where Tx and Ty are two disjoint thread sets .

Processors on a system may have different computational
powers, hence we use a partition distribution vector to define
unbalanced graph partitioning. Given affinity graph G =
〈T, E, wt, we〉 and W = wt(T), the partition distribution
vector 〈d1, d2, . . . , dn〉 defines a partition {Pi} whose weight
wt(Pi) = di ×W and

∑
i di = 1.

We propose a greedy hierarchical partitioning algorithm to
divide the affinity graph according to a partition distribu-
tion vector. The optimization goal is to minimize the sharing

5

between partitions in an order from level 0 to level h − 1.
Assume a parallel system n compute nodes each of which
has p processors. (a) We divide the threads into n sets
N1, N2, . . . , Nn by minimizing

∑

1≤i,j≤n

share(Ni, Nj), i 6= j.

Now each Ni has been assigned a set of threads. Since each
compute node also has p processors, (b) we further partition
Ni to p sets P1, P2, . . . , Pp. Similarly, this is achieved by
minimizing the sharing between two processors:

∑

1≤i,j≤p

share(Pi, Pj), i 6= j.

Lemma 4. Let n be the number of partitions, G be a graph,
and the system M has a height h. Assume P ∗ is an opti-
mal n-way classic graph partitioning. The hierarchical graph
partitioning algorithm can find a (2, n)-way graph partition
P such that

cost(P)

cost(P ∗)
≤ h, where

cost(P) =
∑

Ti,Tj∈P

share(Ti, Tj).

Proof. The conclusion can be drawn directly from The-
orem 5.2 presented in paper [14].

Theorem 2. Suppose an optimal thread schedule A∗ has
cost(G, M, A∗), then the hierarchical graph partitioning al-
gorithm can find a schedule A such that

cost(G, M, A)

cost(G, M, A∗)
≤ h

time0

timeh−1
.

Proof. By definition of cost(G, M, A),

cost(G, M, A)

cos(G, M, A∗)
=

∑h−1
i=0 SharingOnLeveli × timei∑h−1
i=0 SharingOnLevel∗i × timei

≤ time0

∑h−1
i=0 SharingOnLeveli

timeh−1

∑h−1
i=0 SharingOnLevel∗i

Since cost(P) =

h−1∑
i=0

SharingOnLeveli if A−1 has the same

partition as P , by Lemma 4,

cost(G, M, A)

cos(G, M, A∗)
≤ h

time0

timeh−1

4. EXTENSION FOR DAG SCHEDULING
The previous hierarchical graph partitioning algorithm is
able to find a good schedule for threads without data de-
pendencies. However when threads are dependent on each
other and hence form a DAG, we must extend the algorithm
to deal with DAG scheduling. In our method, given a DAG

G, we divide G into a number of levels (horizontally), each of
which consists of a subset of independent threads. This step
can be achieved by analyzing G and determining the longest
path from the root to each node itself. The total number of
levels is equal to the length of the critical path of G. Within
each level, we use the the hierarchical graph partitioning al-
gorithm to determine a good schedule to run the threads
on that level. Due to data dependencies, threads in level
i + 1 cannot start until threads in level i complete. We call
this simple approach ”greedy multi-level thread scheduling”.
Figure 6 depicts how to divide a DAG into four levels.

...

Depth D
...

Figure 6: An example of greedy multi-level thread
scheduling. The DAG is divided into four levels.
The level index of each node is equal to the length
of the longest path from root to itself.

Lemma 5. Suppose a DAG has D levels and the total
amount of computation is W . If each thread ti computes an
amount w(ti) of work, where w(ti) ∈ [0, 1], then the greedy
multi-level thread scheduler for p processors takes at most
W−D

p
+ D time.

Proof. Let si denote the amount of work on level i,
where i ∈ [1, D].

T ime =

D∑
i=1

dsi

p
e ≤

D∑
i=1

(
si

p
+ (1− 1

p
))

=
W

p
+ D − D

p
=

W −D

p
+ D

Theorem 3. The greedy multi-level thread scheduling method
has an approximation ratio of 1 + D

(W
p

)
.

Proof. Let C and C∗ represent the actual execution time
and the optimal execution time, respectively. It is easy to
show that all the execution time is at least max(W/p, T∞).

By C ≤ W −D

p
+ D and C∗ ≥ W

p
,

C

C∗
≤ (W −D)/p + D

C∗
≤ (W −D)/p + D

(W
p

)

= 1 +
(1− 1/p)D

(W
p

)
< 1 +

D

(W
p

)

6

Based on Theorem 3, if W/D > p, the greedy multi-level
scheduling method takes time at most twice the optimal
time. Programs with fine-grain threads often satisfy W/D >
p and are commonly found in scientific applications such as
Cholesky, LU, and QR factorizations. Section 6.3.2 shows
the performance result of our experiment on Cholesky fac-
torization. Since the new schedule improves both load bal-
ance and data locality, its efficiency is high.

5. A FEEDBACK-DIRECTED OPTIMIZATION
FRAMEWORK

We have designed a feedback-directed optimization tool based
upon the analytical model and the hierarchical graph parti-
tioning algorithm to schedule multi-threaded programs [16].
The tool uses a trace-based method and is able to deter-
mine a good schedule without writing to any file. The trace
analysis cost is cheap (less than 100 seconds for our largest
experiments).

The framework relies upon a binary instrumentation tool to
(i) obtain and analyze the memory trace of each thread and
represent the nature of memory sharing between threads by
an affinity graph. This step is performed in memory and
there is no disk IO involved. Next, (ii) we partition the
affinity graph into a number of subgraphs at different lev-
els corresponding to the system architecture. Based on the
partitions (one subset of threads per processor), (iii) we use
a breadth-first traversal method to compute a ”good” sched-
ule for each processor. The schedules are written in a file
which will be later used as a feedback to the future execu-
tions. Finally, (iv) users run the program again taking as
input the feedback file. For more details, interested readers
can refer to [16]. Figure 7 illustrates the overall structure of
the above process.

Memory Trace Analysis

Application

Executable

Affinity Graph

Optimized

 Schedule

 Thread

Scheduling

Rerun

feedback

System

Architecture

Figure 7: Overall structure of the feedback-directed
affinity thread scheduling tool.

6. EXPERIMENTAL EVALUATION
This section reports how to evaluate our analytical model
and the performance of two scientific applications to which

we apply optimized thread schedules. The optimized sched-
ules are computed by the hierarchical partitioning algorithm.

6.1 Evaluate The Analytical Model
To evaluate whether or not the analytical model could cor-
rectly estimate the cost of a thread schedule, we conducted
three experiments on a DSM machine (SGI Altix) that has
two compute nodes each of which has two processors. In
the experiments, we ran four threads on four processors. In
terms of complexity, the three experiments are ranging from
simple, synthetic to real-world applications.

For the first two synthetic experiments, we allocate a con-
tiguous memory of size 128M bytes. Each thread only ac-
cesses 1/4 portion of the 128MB memory. The thread first
initializes the memory with some values and then computes
the sum of the square of each element. The location of the
memory segment could be anywhere as long as it is within
the range of the 128MB memory. The affinity strength be-
tween two threads is equal to the size of the overlapping
area between their footprints. Figure 8 illustrates how four
threads could access a block of 128MB memory.

t0

t1

t2

t3

Figure 8: Four threads are accessing a contiguous
memory of size 128MB. Each thread occupies 1/4 of
it and their locations are arbitrary.

The first experiment is the simplest one where the mem-
ory segment of the four threads are disjoint (i.e., evenly dis-
tributed and affinity=0). Then we gradually move thread t1
towards thread t0 so that the overlapping area of t0 and t1
becomes bigger and bigger. Since there is no affinity change
between the four threads except for the pair of t0 and t1,
we only compare two thread placements: placing t0 and
t1 together on the same node (i.e., (t0,t1)(t2,t3)), and
placing them separately (i.e., (t0,t2)(t1,t3)). From Fig-
ure 9, we can see that the performance of the placement
(t0,t2)(t1,t3) becomes worse and worse with the incre-
ment of the overlapping footprint. On the other hand, the
cost estimated by the analytical model has the same trend
as the actual performance. Note that the cost model is not
intended to predict the execution time, but used to measure
the quality of a thread schedule and a ranking is sufficient
to find the best thread schedule.

In the second experiment, we performed ten program runs
each of which has a different footprint pattern. All the foot-
print patterns were generated randomly. To generate a pat-
tern, we use a random generator to create a starting position
addri for each thread ti so that ti accesses addresses in the
range of [addri, addri +32MB). Given 4 threads and 2 SMP
nodes each with 2 processors, there are totally

(
4
2

)
/2! = 3

thread schedules. We denote them as (t0, t1), (t0, t2),

7

0

5

10

15

20

25

30

35

40

"0" "1/20" "2/20" "3/20" "4/20" "5/20"

actual (t0,t2)(t1,t3)
actual (t0,t1)(t2,t3)
cost of (t0,t2)(t1,t3)
cost of (t0,t1)(t2,t3)

Figure 9: Compare the estimated cost to the execu-
tion time for two thread schedules: (t0,t1)(t2,t3)

and (t0,t2)(t1,t3).

and (t0,t3), respectively. For each of the ten footprint pat-
terns, we ran the same program three times each with a dif-
ferent thread schedule. We also compute the cost for every
run and compare it to the actual performance. From Figure
10, we find that the cost of the three schedules consistently
reflects the ranking of their actual program performance. In
another word, given any footprint pattern, if schedule A has
a cost bigger than schedule B, the actual performance of
the program using schedule A will be slower than that using
schedule B.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

actual (t0,t1)
actual (t0,t2)
actual (t0,t3)
cost of (t0,t1)
cost of (t0,t2)
cost of (t0,t3)

Figure 10: Compare the estimated cost to the ac-
tual performance of three thread schedules on ten
randomly generated memory footprint patterns.

Finally, we applied the analytical model to a real-world ap-
plication: sparse matrix vector product (SpMV). The sparse
matrices were downloaded from the UF Sparse Matrix Col-
lection [2]. For many matrices, we can improve the pro-
gram performance by 15% to 25%. For a few other ma-
trices, the program using the new thread schedule instead
runs 1% slower than the original program. The complete
experimental results can be found in our previous work [16].
Now we want to use the analytical model to analyze this
phenomenon and investigate what is going on with the old
and the new thread schedules.

We picked two cases from our experiments. One experiment
multiplies the sparse matrix of msc01440 and improves the
performance by 23%. The other one multiplies the sparse
matrix of circuit_1 but is slower than the original program
by 1%. Tables 1 and 2 list the values of SharingOnLeveli
(see Theorem 1) for the original and new schedules, respec-
tively. Assume the remote memory access time is time0

and the local memory access time is time1, we can com-
pute cost(G, M, A) by adding time0×SharingOnLevel0 and
time1 × ShareingOnLevel1. As shown in Table 1, the new
schedule reduces the remote memory access cost greatly by
68.5% and thus improves the program performance. How-
ever, based on Table 2, there is only a small reduction by
using the new schedule (4.4% in remote memory accesses).
Due to the overhead of executing the new schedule, the ac-
tual performance shows a 1% slowdown instead of a small
speedup.

Table 1: Applying the analytical model to study why
SpMV was improved with input msc01440.

Affinity on Original New Reduction

diff. levels schedule schedule

Remote memory 54,175 17,043 68.5%

Local memory 107,765 13,964 87.0%

Table 2: Applying the analytical model to study why
SpMV was not improved with input circuit_1.

Affinity on Original New Reduction

diff. levels schedule schedule

Remote memory 127,620 121,973 4.4%

Local memory 230,759 206,076 10.7%

6.2 The Applications
We applied the hierarchical graph partitioning algorithm to
two applications to find improved thread schedules.

6.2.1 Computational Fluid Dynamics (CFD) Kernel
The CFD kernel implements an iterative irregular-mesh par-
tial differential equation (PDE) solver abstracted from com-
putational fluid dynamics applications [13]. The irregular
meshes are used to model physical structures and consist of
nv vertices and ne edges, denoted by 〈nv, ne〉. The kernel
iterates over the edges of the mesh, computing the forces
between both end points of each edge. It then modifies the
values on the vertices. The parallel version of the kernel has
the following structure as shown in Figure 11.

Each edge is a user-level thread. We partition the threads
(or edges) into p sets (for p processors) to maximize data
reuse by grouping together the threads accessing the same
vertices. In addition, for each of the p sets, we reorder its
threads by means of the breadth-first traversal on the set’s
corresponding subgraph.

6.2.2 Cholesky Factorization
Given an n×n symmetric positive definite matrix A, Cholesky
factorization computes A = LLT and L is an n × n lower

8

1 for iter = 1, NUM_ITER
2 #pragma omp parallel for
3 for i = 1, num_edges
4 v1 = left[i];
5 v2 = right[i];
6 force = f(x[v1],x[v2]);
7 y[v1] += force;
8 y[v2] -= force;
9 end for
10end for

Figure 11: Parallel version of the CFD kernel.

triangular matrix. For efficiency, we implemented a right-
looking blocked algorithm so that we can apply Level-3 BLAS
directly to a block of matrix A. The blocked Cholesky fac-
torization algorithm works as follows:

Given A =

(
A1:b,1:b A1:b,b+1,n

Ab+1:n,1:b Ab+1:n,b+1:n

)
,

we compute L =

(
L1:b,1:b 0
Lb+1:n,1:b Lb+1:n,b+1:n

)
by calling:

1) level-3 BLAS POTRF to solve L1:b,1:b,

A1:b,1:b = L1:b,1:bL
T
1:b,1:b

2) level-3 BLAS TRSM to solve a linear equation system to
get Lb+1:n,1:b,

Lb+1:n,1:bL
T
1:b,1:b = Ab+1:n,1:b

3) level-3 BLAS GEMM to compute a rank-r update on the
trailing matrix Ab+1:n,b+1:n,

A′b+1:n,b+1:n = Ab+1:n,b+1:n− = Lb+1:n,1:bL
T
b+1:n,1:b

We apply the above 3 steps repeatedly to A′b+1:n,b+1:n until
A′ consists of a single b× b block:

A′b+1,n:b+1:n = Lb+1:n,b+1:nLT
b+1:n,b+1:n.

The code is shown in Figure 12. Variable A_ij refers to
a block which is located in the ith row and jth column in
terms of blocks. Given an n× n matrix and a block of size
b, nblocks = n/b.

1 for k = 1, nblocks
2 dpotf2(A_kk);
3 #pragma omp parallel for
4 for j = k+1, nblocks
5 dtrsm(A_kk, A_jk);
6 end for
7 for i = k+1, nblocks
8 #pragma omp parallel for
9 for j = k+1, i
10 dgemm(A_ik, A_jk, A_ij);
11 end for
12 end for
13end for

Figure 12: Parallel Cholesky factorization.

In order to use the greedy multilevel algorithm described
in Section 4, we need to know what its task graph looks
like. Each task in the DAG corresponds to a Level-3 BLAS
operation. Figure 13 shows an example of the DAG for a
4 block by 4 block matrix and its level division. The figure
displays only one iteration of the outer loop. The other
iterations have a similar structure and are not shown here.

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

3,1 3,31,1

2,1

4,2

3,1 4,1

2,2 3,2 3,3 4,3 4,4

Figure 13: DAG for Cholesky factorization (one it-
eration).

6.3 Application Measurements
We conducted all the experiments on two platforms, respec-
tively. One platform is a single SMP machine consisting
of two sockets, each of which has a quad-core 2.66 GHZ
Intel Clovertown chip. Since the set of two cores on each
chip share an L2 cache, the corresponding memory hierar-
chy has two levels: the main memory on the machine and
the L2 caches on each chip. The other one is an SGI Al-
tix BX2 system with 256 compute nodes. Each node has
two 1.6 GHZ Intel Itanium processors. The system has a
ccNUMA Distributed Shared Memory (DSM) that is phys-
ically distributed across different nodes. Every processor
can access any memory location through the SGI NUMA-
link 4 interconnect. The memory access time depends on
the distance between the processor and the node where the
physical memory is located. The corresponding memory hi-
erarchy also has two levels: the virtual global memory and
memories on each compute node.

6.3.1 CFD Kernel
Over a number of irregular meshes, we compare the total
execution time of the new program using the new thread
schedule to that of the original program. For our examples, a
mesh always has 10 times number of edges than the number
of vertices. Figure 14 shows that using the optimized thread
schedule reduces the execution time by 25% to 35% on the
Intel Clovertown SMP machine.

On the SGI DSM machine, the program always takes as
input a mesh of 40, 000 vertices and 400, 000 edges. For
various number of processors (i.e., 4, 8, 16, and 32), our
method reduces the execution time by 32% to 42% depicted
in Figure 15.

6.3.2 Cholesky Factorization
Unlike the CFD kernel program with independent threads,
Cholesky factorization owns threads with data dependen-
cies. The greedy multilevel thread scheduling method is

9

0

2

4

6

8

10

12

14

16

1k 2k 4k 8k 16k 32k

original
new

Figure 14: Performance of the CFD kernel on Intel
Clovertown with various meshes.

0

10

20

30

40

50

60

70

80

4 8 16 32

original

new

Figure 15: Performance of the CFD kernel on SGI
Altix with an input mesh of size <40000, 400000>.

used to determine an optimized schedule for the correspond-
ing DAG level by level. Compared to the original schedule
that allocates threads to processors in a block distribution
way, the new schedule improves not only data locality but
also load balance greatly.

For comparison, Figure 16 also lists the performance of Intel
MKL 9.1 library. On the Intel Clovertown machine, we can
see that the new program is 60% to 200% faster than the
original one, while the MKL library always provides a better
performance than the original one. On the SGI machine, we
conducted experiments using different number of processors
(4, 8, and 16) and compared them with Intel MKL 7.2. Each
experiment takes as input matrices with different sizes. Fig-
ure 17 demonstrates that the new program is faster than the
original program by 30% to 4 times.

7. RELATED WORK
Over the past decade, a lot of research work has proposed
ways of reorganizing data structures and altering programs
to improve the memory access efficiency. Philbin et al. [10]
describe a user-level thread library to improve cache locality
using fine-grained threads. When a thread is created, a hint
of the starting addresses of the accessed arrays is provided.
Yan et al. [18] also developed a runtime system to maxi-
mize data reuse. Yan’s approach is more generic and can be
applied to parallel programs on SMP machines. Pingali et

0

10

20

30

40

50

60

2000 4000 6000 8000 12000 16000

Matrix Size

G
F

L
O

P
S

mkl
original
optimized

Figure 16: Performance of Cholesky factorization on
Intel Clovertown given various matrix sizes.

al. [13] create locality groups to restructure computations
for a variety of applications but require hand-coded opti-
mizations. In contrast, we investigate the problem of affin-
ity thread scheduling based on a more generic and abstract
shared-memory model and propose a hierarchical partition-
ing algorithm to solve the optimization problem.

Traff applied a hierarchical partitioning technique similar
to ours to solve the MPI process mapping problem [17].
He implemented a framework to compute an optimal MPI
process placement to minimize the message passing cost.
Pichel et al. [11, 12] formulate sparse matrix-vector prod-
uct as a graph problem where each row of the sparse ma-
trix represents a vertex. It works effectively on both SMP
and ccNUMA DSM systems, but is not so generic as our
affinity graph model and limited to the SpMV application.
The widely used affinity loop scheduling method minimizes
cache miss rate by allocating loop iterations to the processor
whose cache already contains the necessary data [8]. Unlike
the method, we attempt to reorder the inner loop iterations
before assigning them to processors. Furthermore, we use
threads as the scheduling unit (instead of loop iterations)
and is not restricted to the particular two-level loop nest.

Marathe et al. investigated how to place pages on a cc-
NUMA DSM system using a hardware profile-guided method
[7]. They run a truncated version of a user application to
decide a good page placement through a hardware monitor.
Differently, we use a binary instrumentation tool to analyze
the memory trace to determine how to place threads and we
do not rely on hardware facilities.

8. CONCLUSIONS
With more cores on a single chip and deeper levels in mem-
ory hierarchies, it is more difficult to run shared-memory
multi-threaded programs efficiently. We present an analyt-
ical model to evaluate the performance of a thread sched-
ule. The model has three components: affinity graph model
to describe the affinity relationship between threads, mem-
ory hierarchy model to characterize the underlying shared-
memory architecture, and cost model to estimate the cost
for a certain thread schedule. We also propose a hierar-
chical graph partitioning algorithm to find an approximate

10

0

5

10

15

20

25

2000 4000 6000 8000 12000

mkl
orignial
optimized

(1) 2 Nodes, 4 CPUs

0

5

10

15

20

25

30

35

40

2000 4000 6000 8000 12000

mkl
original
optimized

(2) 4 Nodes, 8 CPUs

0

10

20

30

40

50

60

70

2000 4000 6000 8000 12000

mkl
original
optimized

(3) 8 Nodes, 16 CPUs

Figure 17: Performance of Cholesky factorization on SGI Altix with 4, 8, 16 processors, respectively. We
compare the performance of the original multi-threaded program to that of the program using the optimized
thread schedule. The performance of Intel MKL 7.2 library is also displayed here.

solution. The experimental results show that the analytical
model can accurately estimate the cost of a thread sched-
ule for two synthetic programs and a real-world application.
Based on the model and the hierarchial partitioning algo-
rithm, we developed a tool to determine an optimized thread
schedule. We applied the tool to two applications. The ex-
periments on both SMP and DSM machines show that using
the optimized schedule is able to improve the CFD kernel
and Cholesky factorization greatly.

9. REFERENCES
[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. K. Lai.

The impact of performance asymmetry in emerging
multicore architectures. In ISCA, pages 506–517.
IEEE Computer Society, 2005.

[2] T. Davis. University of Florida sparse matrix
collection. In http://www.cise.ufl.edu/research/sparse,
1997.

[3] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded sparc processor. IEEE Micro,
25(2):21–29, 2005.

[4] R. Kumar, K. I. Farkas, N. P. Jouppi,
P. Ranganathan, and D. M. Tullsen. Single-ISA
heterogeneous multi-core architectures: The potential
for processor power reduction. In MICRO, pages
81–92. ACM/IEEE, 2003.

[5] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core
architecture optimization for heterogeneous chip
multiprocessors. In E. R. Altman, K. Skadron, and
B. G. Zorn, editors, PACT, pages 23–32. ACM, 2006.

[6] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-ISA heterogeneous
multi-core architectures for multithreaded workload
performance. In ISCA, pages 64–75. IEEE Computer
Society, 2004.

[7] J. Marathe and F. Mueller. Hardware profile-guided
automatic page placement for ccNUMA systems. In
J. Torrellas and S. Chatterjee, editors, PPOPP, pages
90–99. ACM, 2006.

[8] E. P. Markatos and T. J. LeBlanc. Using processor
affinity in loop scheduling on shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
5(4):379–400, 1994.

[9] C. McNairy and R. Bhatia. Montecito: A dual-core,

dual-thread itanium processor. IEEE Micro,
25(2):10–20, 2005.

[10] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and
K. Li. Thread scheduling for cache locality. In
ASPLOS, pages 60–71, 1996.

[11] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F.
Rivera. Improving the locality of the sparse
matrix-vector product on shared memory
multiprocessors. In PDP, pages 66–71. IEEE
Computer Society, 2004.

[12] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F.
Rivera. A new technique to reduce false sharing in
parallel irregular codes based on distance functions. In
International Symposium on Parallel
Architectures,Algorithms and Networks, 2005 (ISPAN
2005)., 2005.

[13] V. K. Pingali, S. A. McKee, W. C. Hsieh, and J. B.
Carter. Restructuring computations for temporal data
cache locality. International Journal of Parallel
Programming, 31(4):305–338, 2003.

[14] H. D. Simon and S.-H. Teng. How good is recursive
bisection? SIAM J. Sci. Comput., 18(5):1436–1445,
1997.

[15] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and
J. Joyner. Power5 system microarchitecture. IBM
Journal of Research and Development,
49(4/5):505–521, 2005.

[16] F. Song, S. Moore, and J. Dongarra.
Feedback-directed thread scheduling with memory
considerations. In HPDC ’07: Proceedings of the 16th
international symposium on High performance
distributed computing, pages 97–106, 2007.

[17] J. L. Träff. Implementing the mpi process topology
mechanism. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing,
pages 1–14, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[18] Y. Yan, X. Zhang, and Z. Zhang. Cacheminer: A
runtime approach to exploit cache locality on SMP.
IEEE Trans. Parallel Distrib. Syst., 11(4):357–374,
2000.

11

