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1. INTRODUCTION

Benchmarking analysis and architectural descriptions reveal that on many
commodity processors the performance of 32-bit floating point arithmetic (sin-
gle precision computations) may be significantly higher than 64-bit floating
point arithmetic (double precision computations). This is due to a number of
factors. First, many processors have vector instructions such as the SSE2 in-
struction set on the Intel IA-32 and IA-64 and AMD Opteron family of proces-
sors or the AltiVec unit on the IBM PowerPC architecture. In the SSE2 case, a
vector unit can complete four single precision operations every clock cycle but
can complete only two in double precision. (For the AltiVec, single precision can
complete eight floating point operations per cycle as opposed to four floating
point operations in double precision.) Another reason lies in the fact that sin-
gle precision data can be moved at a faster rate through the memory hierarchy
as a result of a reduced amount of data to be transferred. Finally, the fact that
single precision data occupies less memory than double precision data means
that more single precision values can be held in cache than the double precision
counterpart, which results in a lower rate of cache misses (the same reasoning
can be applied to translation look-aside buffers (TLBs)). A combination of these
factors can lead to significant enhancements in performance for sparse matrix
computations as we will show in the following sections. A remarkable example
is the IBM Cell BE processor where the peak performance using single preci-
sion floating point arithmetic is more than an order of magnitude higher than
that of double precision (204.8GFlop/s vs 14.6GFlop/s for the 3.2GHz version of
the chip). The performance of some linear algebra operations can be improved
based on the consideration that the most computationally expensive tasks can
be performed by exploiting single precision operations and only resorting to
double precision at critical stages while attempting to provide the full double
precision accuracy. This technique is supported by the well-known theory of it-
erative refinement [Demmel 1997; Higham 2002], which has been successfully
applied to the solution of dense linear systems [Langou et al. 2006]. This work
is an extension of the work by Langou et al. [2006] for the case of sparse linear
systems, covering both direct and iterative solvers.
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Algorithm 1 PCG ( b , xo , Etol, . . . )

1: r0 = b − Ax0

2: for i = 1, 2, ... do

3: zi−1 = Mri−1

4: ρi−1 = rT
i−1zi−1

5: if i = 1 then

6: d1 = z0

7: else

8: β = ρi−1/ρi−2

9: di = zi−1 + βdi−1

10: end if

11: qi = Adi

12: α = ρi−1/di
Tqi

13: xi = xi−1 + αidi

14: ri = ri−1 − αiqi

15: check convergence and exit if done
16: end for

2. SPARSE DIRECT AND ITERATIVE SOLVERS

Most sparse direct methods for solving linear systems of equations are variants
of either multifrontal [Duff and Reid 1983] or supernodal [Ashcraft et al. 1987]
factorization approaches. There are a number of freely available packages that
implement these methods. We have chosen for our tests the software package
MUMPS [Amestoy et al. 2000; 2001; 2006] as the representative of the mul-
tifrontal approach and SuperLU [Li and Demmel 2003; Demmel et al. 1999a;
1999b; Li 1996] for the supernodal approach. Our main reason for selecting
these two software packages is that they are implemented in both single and
double precision, which is not the case for other freely available solvers such
as UMFPACK [Duff 1997; Davis 1999; 2004].

Fill-ins, and the associated memory requirements, are inherent for di-
rect sparse methods. And although there are various reordering techniques
designed to minimize the amount of these fill-ins, for problems of increasing
size, there is a point where the memory requirements become prohibitively
high and direct sparse methods are no longer feasible. Iterative methods are
a remedy because only a few working vectors and the primary data are re-
quired [Barrett et al. 1994; Saad 2003].

Two popular iterative solvers on which we will illustrate the techniques
addressed in this article are the Conjugate Gradient (CG) method (for sym-
metric and positive definite matrices) and the Generalized Minimal Residual
(GMRES) method for nonsymmetric matrices [Saad and Schultz 1986]. The
preconditioned versions of the two algorithms are given correspondingly in
Algorithms 1 and 2 with the descriptions that follow the standard nota-
tion [Barrett et al. 1994; Saad 2003].

The preconditioners, denoted in both cases as M, are operators intended
to improve the robustness and the efficiency of the iterative algorithms. In
particular, we will use left preconditioning, where instead of

Ax = b ,
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Algorithm 2 GMRES ( b , xo, Etol, m, . . . )

1: for i = 0, 1, ... do

2: r = b − Axi

3: β = h1,0 = ||r||2
4: check convergence and exit if done
5: for k = 1,2, ...,m do

6: vk = r / hk,k−1

7: r = A M vk

8: for j = 1 to k do

9: hj,k = rTv j

10: r = r− hj,k v j

11: end for

12: hk+1,k = ||r||2
13: if hk+1,k is small enough then break

14: end for

15: // Define Vk = [v1, . . . , vk], Hk = {hi, j}1≤i≤k+1,1≤ j≤k

16: Find wk, a k-dim column vector, that minimizes ||b − A(xi + M Vk wk)||2
17: // note: or equivalently, find wk that minimizes ||βe1 − Hk wk||2
18: xi+1 = xi + M Vk wk

19: end for

we solve MAx = Mb , and right preconditioning, where the problem is trans-
formed to A Mu = b , x = Mu. Intuitively, to serve its purpose, M needs to be
easy to compute, apply, and store, as well as to approximate A−1.

The basic idea of our approach is to use faster but lower precision compu-
tations whenever possible. As we show in the rest of the article, this idea
can be used to design the preconditioner M that has the two requirements
mentioned previously. And since our basic idea can be exploited (in iterative
solvers) through proper preconditioning, the applicability of the approach is
far-reaching and not limited to either the preconditioners or the solvers, each
of which are used to demonstrate our idea.

3. MIXED-PRECISION ITERATIVE REFINEMENT

The iterative refinement technique is a well-known method that has been ex-
tensively studied and applied in the past. A fully detailed description of this
method can be found elsewhere [Demmel 1997; Higham 2002; Stewart 2001;
Wilkinson 1965; Björck 1990]. The iterative refinement approach has been
used in the past to improve the accuracy of linear systems’ solutions and it is
shown in Algorithm 3.

Once the system is solved at step 1, the solution can be refined through an
iterative procedure where, at each iteration, the residual is computed based on
the solution at the previous iteration (step 4), a correction is computed as in
step 5, and finally this correction is applied as in step 6. While the common
usage of iterative refinement [Higham 2002; Anderson et al 1999] consists of
performing all the arithmetic operations with the same precision (either sin-
gle or double), we have investigated the application of mixed-precision iter-
ative refinement where the most expensive steps, 1 and 5, are performed in
single precision, and steps 4 and 6 are performed in double precision. Work
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Algorithm 3 The iterative refinement method for the solution of linear systems

1: x0 ← A−1b

2: k = 1
3: for k = 1,2, ... do

4: rk ← b − Axk−1

5: zk ← A−1rk

6: xk ← xk−1 + zk

7: k← k + 1
8: check convergence and exit if done
9: end for

by others [Strzodka and Göddeke 2006a, 2006b; Göddeke et al. 2005] that is
somehow related to this main idea does not use exactly our approach. The er-
ror analysis for the mixed-precision iterative refinement, explained in Moler
[1967], Forsythe and Moler [1967], Golub and Loan [1989], shows that by us-
ing this approach, it is possible to achieve the same accuracy as if the system
was solved in full double precision arithmetic provided that the matrix is not
too badly conditioned. From a performance point of view, the potential of this
method lies in the fact that the most computationally expensive steps, 1 and 5,
can be performed very fast in single precision arithmetic, while the only tasks
that require double precision accuracy are steps 4 and 6 whose cost can be
considered much lower.

We will refer in the following to single precision (SP) as 32-bit and to double
precision (DP) as 64-bit floating point arithmetic and also lower and higher
precision arithmetic will be correspondingly associated with SP and DP.

3.1 Mixed-Precision Iterative Refinement for Sparse Direct Solvers

Using the MUMPS package for solving systems of linear equations can be de-
scribed in three distinct steps.

(1) System Analysis. In this phase the system sparsity structure is analyzed
in order to estimate the fill-in which provides an estimate of the memory
requirement that will be allocated in the following steps. Also, pivoting is
performed based on the structure of A + AT , ignoring numerical values.
Only integer operations are performed at this step.

(2) Matrix Factorization. In this phase, the PQ A QT = LU factorization is
performed, where P is a row permutation matrix and Q is the reordering
matrix from step 1. This is the computationally most expensive step of the
system solution.

(3) System Solution. The system is solved in three steps: Ly = PQb , Uz = y,
and x = QTz.

Once steps 1 and 2 are performed, each iteration of the refinement loop
needs only to perform the system solution (i.e., step 3) whose cost can be up to
two orders of magnitude lower than the cost of the system factorization. The
implementation of the mixed-precision iterative refinement method with the
MUMPS package is shown in Algorithm 4.
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Algorithm 4 Mixed-precision Iterative Refinement with the MUMPS package

1: system analysis
2: LU← PQ A QT (SP)
3: solve Ly = PQb (SP)
4: solve Uz = y (SP)
5: x0 = QT z (SP)
6: for k = 1, 2, ... do:
7: rk ← b − Axk−1 (DP)
8: solve Ly = PQrk (SP)
9: solve Uz = y (SP)
10: zk = QT z (SP)
11: xk ← xk−1 + zk (DP)
12: check convergence and exit if done
13: end for

At the end of each line of the algorithm, we indicate the precision used to
perform the corresponding operation. Based on backward stability analysis,
we consider that the solution x is of double precision quality when

‖b − Ax‖2 ≤ ‖x‖2 · ‖A‖ fro · ǫd,

where ‖ · ‖ fro is the Frobenius norm and ǫd is the system precision for 64-bit
arithmetics. This provides a stopping criterion. If some maximum number of
iterations is reached, then the algorithm should signal failure to converge. All
the control parameters for the MUMPS solver have been set to their default
values, which means that the matrix scaling and permuting and pivoting order
strategies are determined at runtime based on the matrix properties.

3.2 Mixed-Precision Iterative Refinement for Sparse Iterative Solvers

The general framework of mixed-precision iterative refinement given at the
beginning of this section can be easily extended to sparse iterative solvers.
Indeed, the mixed-precision iterative refinement can be interpreted as a pre-
conditioned Richardson iteration with the preconditioner computed and ap-
plied (during the iterations) in single precision [Turner and Walker 1992].
This interpretation can be further extended from Richardson to other precon-
ditioned iterative methods. And, in general, as long as the iterative method
at hand is backward stable and converges, one can apply similar reasoning as
in Langou et al. [2006] to show that the solution obtained would be accurate in
higher precision. The feasibility of using mixed precision in computing and/or
applying a preconditioner depends first on whether there is a potential to intro-
duce speedups in the computation and second on how the method’s robustness
would change.

A simple example of a mixed precision preconditioner is when the storage
of data used in the preconditioner is in single precision. The potential ben-
efit here is that accessing SP data is faster (vs DP data) due to less mem-
ory traffic. The success of this approach regarding speed depends on what
percentage of the overall computation is spent on the preconditioner (and in
particular accessing preconditioner SP data). For example, a simple diagonal
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preconditioner may benefit little from it, while a domain decomposition-based
[Quarteroni and Valli 1999] block diagonal preconditioner or a multigrid
V-cycle [Hackbusch 1985] may benefit significantly. Also, multigrid-based
solvers may benefit both in speed (as the bulk of the computation is in their
V/W-cycles) and memory requirements. An example of successful application
of this type of approach in CFD [Gropp et al. 2000; 2001] was done in a PETSc
solver [Balay et al. 2001], which was accelerated with a Schwartz precon-
ditioner using block-incomplete factorizations over the separate subdomains
that are stored in single precision. Regarding robustness, there are various
algorithmic issues to consider, including ways to automatically determine lim-
itations of the approach at runtime. This brings up another possible idea to
explore, which is the use of lower precision arithmetic for only parts of the
preconditioner. Examples here may come from adaptive methods that auto-
matically locate the singularities of the sought solution, and hence the corre-
sponding parts of the matrix responsible for resolving them. This information
may be used in combination with the solver and preconditioner (e.g., hierarchi-
cal multigrid) to achieve both speedup and robustness of the method.

Another interesting example is when not only the higher precision storage,
but also the higher precision arithmetic are replaced with lower precision. This
is the case that would allow one to apply the technique not only to conventional
processors, but also to FPGAs, GPUs, the Cell BE processor, etc.

The focus of the current work is to enable the efficient use of lower precision
arithmetic to sparse iterative methods in general when no preconditioner, or
when just a simple and computationally inexpensive (relative to the rest of the
computation) preconditioner, is available. The idea of accomplishing this is to
use the preconditioned version of the iterative method at hand and also replace
the preconditioner M by an iterative method but one implemented in reduced
precision arithmetic. Thus, by controlling the accuracy of this iterative inner
solver, more computations can be done in reduced precision and less work is
needed in the full precision arithmetic.

The robustness of variations of this nesting of iterative methods, also known
in the literature as inner-outer iteration, has been studied before, both theo-
retically and computationally [Golub and Ye 2000; Saad 1991; Simoncini and
Szyld 2002b; Axelsson and Vassilevski 1991; Notay 2000; Vuik 1995; van den
Eshof et al. 2003]. The general appeal of these methods is that computational
speedup is possible when the inner solver uses an approximation to the orig-
inal matrix that is also faster to apply. Moreover, even if no faster matrix-
vector product is available, speedup can often be observed due to improved
convergence (e.g., see restarted GMRES vs GMRES-FGMRES [Simoncini and
Szyld 2002b] and Section 4.3). To our knowledge, using mixed-precision for
performance enhancement has not been done in the framework suggested
in this article. In the sections that follow, we show a way to do it for CG
and GMRES.

3.2.1 CG-Based Inner-Outer Iteration Methods. We suggest the PCG-PCG
inner-outer Algorithm 5. It is given as a modification to the reference PCG Al-
gorithm 1, and therefore only the lines that change are written out (i.e., line 3).
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Algorithm 5 PCG PCG ( b , xo, Etol, . . . )

. . .

3: PCG single ( ri−1, zi−1, NumIters, . . . )
. . .

Algorithm 6 PCG single ( b , x, NumIters, . . . )

1: r0 = b ; x0 = 0
2: for i = 1 to NumIters do

. . .

15: [check SP convergence and exit if done]
16: end for

The inner PCG, denoted by PCG single, is in SP and is described by Algorithm
7 again as a modification of the reference PCG. The preconditioner available for
the reference PCG is used in SP in the inner PCG. Note that our initial guess
in the inner loop is always taken to be 0, and we perform a fixed number of
iterations (step 15 is in brackets since practically we want to avoid exiting due
to a small residual unless it is on the order of the machine’s single precision).
The number of inner iterations is fixed and depends on the particular problem
at hand. We take it to be the number of iterations it takes PCG single to do a
fixed (e.g., 0.3) relative reduction for the initial residual r0. Work on criteria to
compute the (variable) number of inner iterations guaranteeing convergence
can be found in Simoncini and Szyld [2002a].

If a preconditioner is not available, we can similarly define a CG-PCG al-
gorithm where the inner loop is just a CG in SP. Furthermore, other iterative
solvers can be used for the inner loop as long as they result in symmetric and
positive definite (SPD) operators. For example, stationary methods like Jacobi,
Gauss-Seidel (combination of one backward and one forward to result in SPD
operator), and SSOR can be used. Note that with these methods, a constant
number of iterations and initial guess 0 result in a constant preconditioner.
The use of a Krylov space method in the inner iteration, as in the currently
considered algorithm, results in a nonconstant preconditioner. Although there
is convergence theory for these cases [Simoncini and Szyld 2002b], how to set
the stopping criteria still remains to be resolved as do variations in the al-
gorithms, etc. [Golub and Ye 2000; Notay 2000] in order to obtain optimal
results. For example, Golub and Ye [2000] consider the inexact PCG (β is
taken as (ri−1−ri−2)·zi−1

ri−2·zi−2
), which allows certain local orthogonality relations to be

preserved from the standard PCG, which provides grounds for theoretically
studied aspects of the algorithm. We tried this approach as well and, although
our numerical results were similar to Golub and Ye [2000], overall the algo-
rithm described here gave better results. In general, nonconstant precondi-
tioning deteriorates the CG convergence, often resulting in convergence that
is characteristic of the Steepest Descent algorithm. Still, shifting the compu-
tational load to the inner PCG reduces this effect and gives convergence that
is comparable to the convergence of a reference PCG algorithm. We note that
nonconstant preconditioning can be better accommodated in GMRES (see the
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Algorithm 7 GMRES FGMRES ( b , xo, Etol, min, mout, . . . )

. . .

5: for k = 1 to mout do

. . .

7: GMRES single( rk, zk, 1, min, . . . )
r = Azk

. . .

15: // Define Z k = [z1, . . . , zk], Hk = {hi, j}1≤i≤k+1,1≤ j≤k

16: Find wk, a k-dim column vector, that minimizes ||b − A(xi + Z k wk)||2
. . .

18: xi+1 = xi + Z kwk

19: end for

Algorithm 8 GMRES single ( b , x, NumIters, m, . . . )

1: x0 = 0
for i = 1 to NumIters do

. . .

4: [check SP convergence and exit if done]
. . .

next section). See also Simoncini and Szyld [2005] for a way to interpret and
theoretically study the effects of nonconstant preconditioning.

3.2.2 GMRES-Based Inner-Outer Iteration Methods. For our outer loop, we
take the flexible GMRES (FGMRES [Saad 1991, 2003]) which is a minor mod-
ification to Algorithm 2 meant to accommodate nonconstant preconditioners.
The price is m additional storage vectors. Algorithm 7 gives our inner-outer
GMRES-FGMRES (the additional vectors are introduced at line 7: zk = Mvk

where M is replaced with the GMRES single solver in Algorithm 8).
As with PCG-PCG, the algorithm is given as a modification to the refer-

ence GMRES(m) algorithm from Algorithm 2 and, therefore, only the lines that
change are written out. The inner GMRES single is in SP. The preconditioner
available for the reference GMRES is used in SP in the inner GMRES single.
Note that again our initial guess in the inner loop is always taken to be 0, and
we perform a fixed number of cycles/restarts (in this case, just 1; step 4 is in
brackets since we want to avoid exiting due to a small residual unless it is of
the order of the machine’s single precision).

The potential benefits of FGMRES compared to GMRES are becoming bet-
ter understood [Simoncini and Szyld 2002b]. Numerical experiments, as we
also show, confirm cases of improvements in speed, robustness, and sometime
memory requirements for these methods. For example, we show a maximum
speedup of close to 12× on a problem of size 602, 091 (see Section 4). The
memory requirements for the method are the matrix in compressed row stor-
age (CRS) format [Barrett et al. 1994], the nonzero matrix coefficients in SP,
twice the outer restart size number of vectors in DP, and inner restart size
number of vectors in SP.
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Table I. Properties of a Subset of the Tested Matrices (The condition number estimates were
computed on the Opteron 246 architecture by means of MUMPS subroutines.)

Matrix No. Matrix name Size Nonzeros Cond. num. est.

1 G64 7000 82918 O(104)

2 Si10H16 17077 875923 O(103)
3 c-71 76638 859554 O(10)
4 cage11 39082 559722 O(1)

5 dawson5 51537 1010777 O(104)

6 nasasrb 54870 2677324 O(107)

7 poisson3Db 85623 2374949 O(103)
8 rma10 46835 2374001 O(10)

9 s3rmt3m1 5489 112505 O(109)

10 wang4 26068 177196 O(103)

Table II. Properties of the Matrices Used With the Iterative Sparse Solvers

Level Size Nonzeros Cond. num. est.

1 11,142 442,225 O(103)

2 25,980 1,061,542 O(104)

3 79,275 3,374,736 O(104)

4 230,793 9,991,028 O(105)

5 602,091 26,411,323 O(105)

The Generalized Conjugate Residuals (GCR) method [Vuik 1995; van der
Vorst and Vuik 1994] is comparable to the FGMRES and can replace it suc-
cessfully as the outer iterative solver.

4. NUMERICAL EXPERIMENTS

4.1 The Test Collection for Mixed-Precision Sparse-Direct and Iterative Solvers

We tested our implementation of a mixed-precision sparse-direct solver on a
test suite of 41 matrices taken from the University of Florida’s Sparse Matrix
Collection (http://cise.ufl.edu/research/sparse/matrices/). The matrices were
selected randomly from the collection since there is no information available
about their condition number. A smaller subset of ten matrices (described in
Table I) will be discussed in this document for readability reasons. The ma-
trices in this smaller subset were chosen in order to provide examples of all
the significant features observed on the test suite. The results for all of the 41
matrices in the test suite can be found in Buttari et al. [2006].

For the iterative sparse methods, we used a set of five matrices of increasing
size. More precisely, the matrices were produced by an adaptive finite element
method discretization of a 3D linear elasticity problem of the form

µ △u + (λ + µ)∇ Div u = f,

where u is displacement, f is a given force, and µ and λ are constants [Gurtin
1981]. The discretization is on a tetrahedral mesh, using piecewise linear finite
elements (see Table II).
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Table III. Hardware Characteristics of the Architectures Used to Measure
the Experimental Results

Clock Vector

freq. Units Memory

AMD Opteron 246 2 GHz SSE, SSE2 2 GB
3DNow!

Sun UltraSparc-IIe 502 MHz none 512 MB

Intel PIII Copp. 900 MHz SSE, MMX 512 MB
PowerPC 970 2.5 GHz AltiVec 2 GB

Intel Woodcrest 3 GHz SSE, SSE2 4 GB
MMX

Intel XEON 2.4 GHz SSE, SSE2 2 GB
MMX

Intel Centrino Duo 2.5 GHz SSE, SSE2 4 GB
MMX

Table IV. Software Characteristics of the Architectures Used to Measure
the Experimental Results

Compiler
Compiler flags BLAS

AMD Opteron 246 Intel v9.1 -O3 Goto
-fast

Sun UltraSparc-IIe Sun v9.0 -xchip=ultra2e Sunperf
-xarch=v8plusa

Intel PIII Copp. Intel v9.0 -O3 Goto
PowerPC 970 IBM v8.1 -O3 Goto

-qalign=4k
Intel Woodcrest Intel v9.1 -O3 Goto

Intel XEON Intel v8.0 -O3 Goto

Intel Centrino Duo Intel v9.0 -O3 Goto

4.2 Performance Characteristics of the Tested Hardware Platforms

The implementation of the mixed-precision algorithm for sparse direct meth-
ods presented in Section 3.1 has been tested on the architectures reported,
along with their main characteristics, in Tables III and IV. All the tests were
done with sequential code, thus only one execution unit was used even on those
processors that present multiple cores. All of these architectures have vector
units except the Sun UltraSparc-IIe one; this architecture has been included
for the purpose of showing that even in the case where the same number of
single and double precision operations can be completed in one clock cycle, sig-
nificant benefits can still be achieved thanks to the reduced memory traffic and
higher cache hit rate provided by single precision arithmetic.

The implementation of the mixed-precision algorithms for sparse iterative
solvers described in Section 3.2 was only tested on the Intel Woodcrest architec-
ture. The application for the numerical tests on the mixed-precision iterative
method for sparse direct solvers was coded in Fortran 90, and the application
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Table V. Performance Comparison Between Single and Double Precision Arithmetic
for Matrix-Matrix and Matrix-Vector Product Operations on Square Matrices

SGEMM/ SGEMV/

Size DGEMM Size DGEMV

AMD Opteron 246 3000 2.00 5000 1.70
Sun UltraSparc-IIe 3000 1.64 5000 1.66
Intel PIII Copp. 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo 3000 2.71 5000 2.21

Table VI. Performance Comparison Between Single and Double Precision Arithmetic
on a Fixed Number of Iterations of Conjugate Gradient (100 iterations) and General-
ized Minimal RESidual (2 cycles/restarts of GMRES(20)) Methods Both With and With-
out Diagonal Scaling Preconditioner. The runs were performed on Intel Woodcrest

(3 GHz with a 1333 MHz front side bus.)

SCG/DCG SGMRES/DGMRES

Size no prec. prec. no prec. prec.

11,142 2.24 2.11 2.04 1.98
25,980 1.49 1.50 1.52 1.51
79,275 1.57 1.50 1.58 1.50
230,793 1.73 1.72 1.74 1.69
602,091 1.50 1.50 1.67 1.63

for the numerical tests on the inner-outer iteration method for sparse iterative
solvers was coded in C.

Table V shows the difference in performance between the single and double
precision implementation for the two dense BLAS operations matrix-matrix
product ( GEMM) and matrix-vector product ( GEMV). They are the two prin-
cipal computational kernels of sparse direct solvers: sparse data structures get
rearranged to fit the storage requirements of these kernels and thus benefit
from their high performance rates (as opposed to the performance of direct op-
eration on sparse data structures). In particular, column three (column five)
reports the ratio between the performance of SGEMM (SGEMV) and DGEMM
(DGEMV). The BLAS libraries used are capable of exploiting the vector units
where available, and thus the speedups shown in Table V are due to a combi-
nation of higher number of floating point operations completed at each clock
cycle, reduced memory traffic on the bus, and higher cache hit rate.

Table VI shows the difference in performance for the single and double pre-
cision implementation of the two sparse iterative solvers, Conjugate Gradi-
ent and Generalized Minimal Residual. Columns two and three report the
ratio between the performance of single and double precision CG for a fixed
number (100) of iterations in both preconditioned and unpreconditioned cases.
Columns four and five report the same information for the GMRES(20) method
where the number of cycles/restarts has been fixed to two. Since the sparse ma-
trix kernels involved in these computations were not vectorized, the speedup
shown in Table VI is exclusively due to reduced data traffic on the bus and a
higher cache hit rate.
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Fig. 1. Experimental results for the MUMPS solvers. The light-shaded bars report the ratio
between the performance of the single precision solver and the double precision one. The dark-
shaded bars report the ratio between the mixed-precision solver and the double precision one.
The absence of the dark bar for a matrix means that convergence was not achieved within the
maximum number of iterations (20). The number of iterations required to converge is given by the
number above the bars. Left: Intel Centrino Duo. Right: Intel XEON.

Fig. 2. Experimental results for the MUMPS solvers. Left: Sun UltraSparc-IIe. Right: Intel
Woodcrest.

4.3 Experimental results

Figures 1, 2, 3, 4 show that the MUMPS single precision solver is always faster
than the equivalent double precision one (i.e., the light bars are always above
the thick horizontal line that corresponds to one). This is mainly due to both
reduced data movement and better exploitation of vector arithmetic (via SSE2
or AltiVec where present) since multifrontal methods have the ability to do
matrix-matrix products.

The results presented also show that mixed-precision iterative refinement is
capable of providing considerable speedups with respect to the full double pre-
cision solver, while providing the same (in many cases better) accuracy. To run
these experiments, a convergence criterion different from the one discussed
in Section 3.1 was used. To make the comparison fair, in fact, the iterative
refinement was stopped whenever the residual norm was the same as that
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Fig. 3. Experimental results for the MUMPS solvers. Left: Intel Pentium III Coppermine. Right:
AMD Opteron 246.

Fig. 4. Experimental results for the MUMPS solvers. PowerPC 970.

computed for the double precision solver. In addition, the iterative refinement
was stopped if convergence was not achieved within a maximum number of
iterations equal to 20; a failure is reported when this limit is reached.

The performance of the mixed precision solver is usually very close to that
of the single precision solver mainly because the cost of each iteration is often
negligible compared to the cost of the matrix factorization. It is important to
note that, in some cases, the speedups reach very high values (more than 4.0
faster for the Poisson3Db matrix on the Sun UltraSparc-IIe architecture). This
is due to the fact that the memory requirements are too high to accomodate the
fill-in generated in the factorization phase as the main memory available on
the system is lower for this machine. It forces the virtual memory system
to swap pages to disk resulting in a considerable loss of performance. Since
double precision data is twice as large as single precision, disk swapping may
affect only the double precision solver and not the single precision one. It can
be noted that disk swapping issues did not affect the results measured on those
machines that are equipped with more memory, while it is usual on the Intel
Pentium III and the Sun UltraSparc-IIe architectures that only have 512MB of
memory. Finally, the data presented in Figures 1- 4 show that, for some cases,
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Table VII. Accuracy of the Double Precision Solver and Mixed-precision Iterative Solver on
the Intel Woodcrest Architecture. (The last column reports number of iterations performed

by the mixed-precision method to achieve the reported accuracy.)

Matrix No. Matrix name DP residual MP residual # it.

1 G64 1.61e-10 2.00e-11 6
2 Si10H16 3.03e-12 1.93e-14 4
3 c-71 1.00e-14 9.78e-15 3
4 cage11 3.94e-16 1.04e-16 2
5 dawson5 5.88e-11 4.40e-12 5
6 nasasrb 1.08e-10 8.12e-11 10
7 poisson3Db 1.56e-14 1.04e-14 2
8 rma10 1.03e-13 6.85e-14 2
9 s3rmt3m1 3.19e-8 5.76e+2 20
10 wang4 9.65e-15 6.13e-15 2

the mixed-precision iterative refinement solver does not provide a speedup.
This can be mainly attributed to three causes (or any combination of them).

(1) The difference in performance between the single and the double precision
solver is too small. In this case, even a few iterations of the refinement
phase will compensate for the small speedup. This is, for example, the case
of the dawson5 matrix on the PowerPC 970 architecture.

(2) The number of iterations to convergence is too high. The number of it-
erations to convergence is directly related to the matrix condition num-
ber [Langou et al. 2006]. The case of the nasasrb matrix on the PowerPC
970 architecture show that even if the single precision solver is almost 1.4×
faster, the mixed precision solver is slower than the double precision one
because of the high number of iterations (11) needed to achieve the same
accuracy. If the condition number is too high, the method may not converge
at all as in the case of the s3rmt3m1 matrix. If convergence is not achieved
within the maximum number of iterations (20 in our experiments), the
dark bar is not reported in the figures meaning that the speedup of the
mixed precision iterative refinement method over the double precision one
can be considered equal to zero since a wrong result is produced.

(3) The cost of each iteration is high compared to the performance difference
between the double precision solver and the single precision one. In this
case, even a few iterations can eliminate the benefits of performing the
system factorization in single precision. As an example, take the case of
the rma10 matrix on the Intel Woodcrest architecture; two iteration steps
on this matrix took 0.1 seconds, which is almost the same time needed to
perform six iteration steps on the G64 matrix.

It is worth noting that, apart from the cases where the method does not con-
verge, whenever the method results in a slowdown, the loss is on average
only 7%.

Table VII shows the residual of the solutions computed with the double pre-
cision solver and the mixed-precision iterative solver for sparse direct methods
on the Intel Woodcrest architecture. Note that for the matrices used and, in
general, for well-conditioned matrices, the mixed-precision iterative method is
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Table VIII. Time to Solution of SuperLU in Single and Double Precision Solvers for the
Selected Sparse Matrices on Intel Woodcrest with Reference and Optimized BLAS

Reference BLAS Goto BLAS

Name tDP tSP tDP/tSP tDP tSP tDP/tSP

G64 102.76 80.54 1.27 101.27 85.23 1.18
Si10H16 392.71 308.83 1.27 343.88 345.18 0.99
c-71 1326.36 984.31 1.34 1266.28 1076.13 1.17
cage11 1274.90 945.81 1.34 1143.23 1047.29 1.09
dawson5 6.94 5.86 1.18 6.19 5.70 1.08
nasasrb 33.02 27.90 1.18 30.87 30.48 1.01
poisson3Db 553.19 404.26 1.36 515.00 450.44 1.14
rma10 3.10 2.74 1.13 2.97 2.52 1.17
s3rmt3m1 0.32 0.28 1.14 0.35 0.32 1.09
wang4 21.77 16.99 1.28 19.32 18.96 1.01

capable of delivering the same or better accuracy than the double precision
solver. The same was also observed for the mixed-precision sparse iterative
solvers. In the case of matrix s3rmt3m1, convergence is not achieved within
the maximum number of iterations on any platform due to the high condition
number (see Table I); the residual of the mixed-precision iterative refinement
solver is much higher (and very high in general) than that of the double preci-
sion one in this case.

Table VIII shows the timings of the sequential version of SuperLU on se-
lected matrices from our test collection for single and double precision solvers.
Both reference and Goto BLAS timings are shown. The sequential version
of SuperLU implements matrix-vector multiply ( GEMV) as its computational
kernel. This explains the rather modest gains (if any) in the performance of
the single precision solver over the double precision one: only up to 30%. The
table also reveals that when optimized BLAS are used, the single precision
is slower than double for some matrices, an artifact of small sizes of dense
matrices passed to BLAS and the level of optimization of the BLAS for this
particular architecture. The results are similar for other tested architectures,
which leads to a conclusion that there is not enough benefit in using our mixed
precision approach for this version of SuperLU.

The largest performance gain of only 30% for SuperLU is not supported by
the data from Table V. The explanation for this is twofold: the calls to the
GEMV kernel routine involve very small matrices and the fact that speed-

ing up the computational part of the factorization doesn’t affect the symboli-
cal part of it, that is, the operations on sparse data structures (the size and
amount of work on these data structures is always the same regardless of the
precision chosen for the matrix data). The consequence of the former is much
higher performance sensitivity to memory latency, function call overhead, and
slow down due to clean-up code. The latter is also true for MUMPS but is
offset as the multifrontal factorization progresses: the frontal matrix sizes
keep growing, which in turn results in performance gains comparable to those
from Table V.

Next, we present our results on the mixed-precision iterative sparse solvers
from Section 3.2. All the results are from runs on Intel Woodcrest (3GHz with
a 1333MHz frontside bus).
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Fig. 5. Left: Speedup using SP vs DP CG (light bars) and the SP-DP vs DP-DP CG-PCG
(dark). Right: Similar graph comparison but for the PCG algorithm (see also Section 3.2.1). The
computations were on a Intel Woodcrest (3GHz with a 1333MHz frontside bus).

It is not known how to choose the restart size m to get optimal results even
for the reference GMRES(m). Assuming, for example, that the bigger m the
better does not guarantee better execution time, and sometimes the conver-
gence can get even worse [Embree 2003]. An alternative worth further explo-
ration is to use a truncated version of GMRES [Saad and Wu 1996]. Another
interesting approach is self adaptivity [Demmel et al. 2005]. Here, to do a fair
comparison, we ran it for m = 25, 50 (PETSc’s default [Balay et al. 2001]),
100, 150, 200, and 300, and chose the best execution time. Experiments show
that the mixed-precision method suggested is stable in regard to changing the
restart values in the inner and outer loops. The experiments presented are for
inner and outer m = 20. Note that this choice also results in smaller mem-
ory requirements than GMRES, with m ≈ 70 and higher (for most of the runs
GMRES(100), and was best among the previous choices for m) since the over-
head in terms of DP vectors is 20+20 (outer GMRES) +10 (20 SP vectors in the
inner loop) +20 (matrix coefficients in SP; there are approximately 40 nonzeros
per row, see Table II). In all the cases presented, we had the number of inner
cycles/restarts set to one.

In Figure 5, we give the speedups for using mixed SP-DP vs DP-DP CG
(dark bars). Namely, on the left, we have the results for CG-PCG and, on the
right, for PCG-PCG with diagonal preconditioner in the inner loop PCG. Sim-
ilarly, in Figure 6, we give the results for GMRES-FGMRES (on the left) and
PGMRES-FGMRES (on the right). Also, we compare the speedups of using SP
vs DP for just the reference CG and PCG (correspondingly left and right in
Figure 5, light bars) and SP vs DP for the reference GMRES and PGMRES
(light bars in Figure 6). Note that in a sense the speedups in the light bars
should represent the maximum that could be achieved by using the mixed pre-
cision algorithms. The fact that we get close to this maximum performance
shows that we have successfully shifted the load from DP to SP arithmetic
(with overall computation having less than 5% in DP arithmetic). The rea-
son that the performance speedup for SP-DP vs DP-DP GMRES-FGMRES in
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Fig. 6. Left: Speedup of using SP vs DP GMRES (light bars) and the SP-DP vs DP-DP GMRES-
FGMRES (dark). Right: Similar graph comparison but for the PGMRES algorithm (see also Sec-
tion 3.2.2. The computations were on a Intel Woodcrest (3GHz with a 1333MHz frontside bus).

Fig. 7. Left: Speedup of mixed SP-DP CG-PCG vs DP CG (light bars) and SP-DP PCG-PCD vs DP
CG (dark) with diagonal preconditioner. The numbers on top of the bars indicate the percentage
overhead measured in numbers of iterations. Right: Similar graph comparison but for the GMRES
based algorithms. The computations were on a Intel Woodcrest (3GHz with a 1333MHz bus).

Figure 6 (left, 4th matrix) is higher than the speedup of SP GMRES vs DP
GMRES is that the SP-DP GMRES-FGMRES did one less outer cycle until
convergence than the DP-DP GMRES-FGMRES.

Results comparing the SP-DP methods with the reference DP methods are
shown in Figure 7 (left is a comparison for CG, right is for GMRES). The num-
bers on top of the bars on the left graph indicate the overhead as the number
of iterations that it took for the mixed precision method to converge versus the
reference DP method (e.g., overhead of 10% indicates 10% more iterations were
performed in the mixed SP-DP vs the DP method). Even with the overhead,
we see a performance speedup of at least 20% over the tested matrices. For
the GMRES-based mixed precision methods, we see a significant improvement
based on a reduced number of iterations and the effect of the SP speedup (from
45 to 100% as indicated in Figure 6). For example, the speedup factor of 12
for the biggest problem is due to speedup factors of approximately 7.5 from
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improved convergence and 1.6 from effects associated with the introduced SP
storage and arithmetic.

Finally, we note the speedup for direct and iterative methods and its ef-
fect on performance. The speed up of moving to single precision for GEMM-
calling code (MUMPS) was approaching two and thus guaranteed success of
our mixed-precision iterative refinement just as it did for the dense matrix op-
erations. Not so for the GEMV-calling code (SuperLU) for which the speedup
did not exceed 30%, and thus no performance improvement was expected.
However, for most of the iterative methods, the speedup was around 50%, and
still we claim our approach to be successful. Inherently, the reason for speedup
is the same for both settings (SuperLU and the iterative methods): the reduced
memory bus traffic and possible superlinear effects when data fits in cache
while being stored in single precision. But for the SuperLU case, there is the
direct method overhead: the maintenance of evolving sparse data structures,
which is done in fixed-point arithmetic so it does not benefit from using single
precision floating-point arithmetic, and hence yields the overall performance
gains insufficient for our iterative refinement approach.

5. FUTURE WORK

We are considering a number of extensions and new directions for our work.
The most broad category is the parallel setting. MUMPS is a parallel code,
but it was used in a sequential setting in this study. Similarly, SuperLU has
a parallel version that differs from the sequential counterpart in a very im-
portant way; it uses the matrix-matrix multiply kernel ( GEMM). This would
give a better context for comparing multifrontal and supernodal approaches
since they use the same underlying computational library. The only caveat is
the lack of a single precision version of the parallel SuperLU solver. Another
aspect brought by the latter solver is using static pivoting. While it vastly
improves numerical stability of parallel SuperLU, it also improves the con-
vergence of the iterative refinement that follows. This should result in less
iterations and shorter solve time.

Using PETSc and its parallel framework for (among others) iterative meth-
ods could give us an opportunity to investigate our approach for a wider range
of iterative methods and preconditioning scenarios. First though, we would
have to overcome a technical obstacle of combining two versions of PETSc (one
using single and one using double precision) in a single executable.

We have performed preliminary experiments on actual IBM Cell BE hard-
ware (as opposed to the simulator, which does not accurately account for mem-
ory system effects, a crucial component of sparse methods) with sparse matrix
operations and are encouraged by the results to port our techniques in full.
This would allow us to study their behavior with a much larger gap in the
performance of the two precisions.

Our algorithms and their descriptions focus solely on two precisions, single
and double. We see them, however, in a broader context of higher and lower
precision where, for example, a GPU performs computationally-intensive oper-
ations in its native 16-bit arithmetic, and consequently the solution is refined
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using 128-bit arithmetic emulated in software (if necessary). As mentioned
before, the limiting factor is conditioning of the system matrix. In fact, an
estimate (up to the order of magnitude) of the condition number (often avail-
able from previous runs or the physical problem properties) may become an
input parameter to an adaptive algorithm [Dongarra and Eijkhout 2002] that
attempts to utilize the fastest hardware available if its limited precision can
guarantee convergence.

Also, the methods for sparse eigenvalue problems that result in Lanczos and
Arnoldi algorithms are amenable to our techniques, and we would like to study
their theoretical and practical challenges.
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M. Kowarschik, and U. Rüde, Eds. Vol. Frontiers in Simulation. SCS Publishing House e.V.,
139–144.

GOLUB, G. H. AND LOAN, C. F. V. 1989. Matrix Computations 2nd Ed. Johns Hopkins University
Press, Baltimore, MD.

GOLUB, G. H. AND YE, Q. 2000. Inexact preconditioned conjugate gradient method with inner-
outer iteration. SIAM J. Scie. Comput. 21, 4, 1305–1320.

GROPP, W. D., KAUSHIK, D. K., KEYES, D. E., AND SMITH, B. F. 2000. Latency, bandwidth,
and concurrent issue limitations in high-performance CFD. Tech. rep. ANL/MCS-P850-1000,
Argonne National Laboratory.

GROPP, W. D., KAUSHIK, D. K., KEYES, D. E., AND SMITH, B. F. 2001. High-performance parallel

implicit CFD. Parall. Comput. 27, 4, 337–362.

GURTIN, M. E. 1981. An Introduction to Continuum Mechanics. Academic Press, New York, NY.

HACKBUSCH, W. 1985. Multigrid Methods and Applications. Springer Series in Computational
Mathematics, Vol. 4, Springer-Verlag, Berlin, Germany.

HIGHAM, N. J. 2002. Accuracy and Stability of Numerical Algorithms 2nd Ed. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA.

LANGOU, J., LANGOU, J., LUSZCZEK, P., KURZAK, J., BUTTARI, A., AND DONGARRA, J. 2006.
Exploiting the performance of 32-bit floating point arithmetic in obtaining 64 bit accuracy. In
Proceedings of the ACM/IEEE Conference on High Performance Networking and Computing

(SC’06). Tampa, FL. http://icl.cs.utk.edu/iter-ref.

LI, X. S. 1996. SuperLU software, Ph.D. thesis, Computer Science Department, University of
California at Berkeley. http://www.nersc.gov/ xiaoye/SuperLU/.

LI, X. S. AND DEMMEL, J. W. 2003. SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29, 110–140.

MOLER, C. B. 1967. Iterative refinement in floating point. J. ACM 14, 2, 316–321.

NOTAY, Y. 2000. Flexible conjugate gradients. SIAM J. Scie. Comput. 22, 1444–1460.

QUARTERONI, A. AND VALLI, A. 1999. Domain Decomposition Methods for Partial Differential

Equations. Oxford University Press, Cambridge, UK.

SAAD, Y. 1991. A flexible inner-outer preconditioned GMRES algorithm. Tech. rep. 91-279, De-
partment of Computer Science and Egineering, University of Minnesota, Minneapolis, MN.

SAAD, Y. 2003. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

SAAD, Y. AND SCHULTZ, M. H. 1986. GMRES: A generalized minimal residual method for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 856–869.

SAAD, Y. AND WU, K. 1996. DQGMRES: a direct quasi-minimal residual algorithm based on in-
complete orthogonalization. Num. Linear Algeb. Appl. 3, 4, 329–343.

SIMONCINI, V. AND SZYLD, D. 2002a. Theory of inexact Krylov subspace methods and applications
to scientific computing. Tech. rep. 02-4-12, Department of Mathematics, Temple University.

SIMONCINI, V. AND SZYLD, D. B. 2002b. Flexible inner-outer Krylov subspace methods. SIAM J.

Numer. Anal. 40, 6, 2219–2239.

ACM Transactions on Mathematical Software, Vol. 34, No. 4, Article 17, Pub. date: July 2008.



17: 22 · A. Buttari et al.

SIMONCINI, V. AND SZYLD, D. B. 2005. The effect of non-optimal bases on the convergence of
Krylov subspace methods. Numer. Math. 100, 4, 711–733.

STEWART, G. W. 2001. Matrix algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA.
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