
INTERACTIVE GRID-ACCESS USING GRIDSOLVE AND
GIGGLE

M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

1Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
2Steinbuch Centre for Computing, Forschungszentrum Karlsruhe, Germany
3Institute for Data Processing and Electronics, Forschungszentrum Karlsruhe, Germany
e-mail: hardt@iwr.fzk.de, seymour@cs.utk.edu

Abstract.
General purpose Problem Solving Environments (PSEs) like Matlab are widely used in

the fields of science for development of new algorithms. If a lot of computing power is
required to run these algorithms, todays PSEs lack support for accessing the distributed
infrastructures of the organisation (i.e. grids), which limits the size of the problems that
can be solved. This contribution shows a new approach to utilize the grid from within PSEs
without major adjustments by the user. The primary tools areGridSolve and and the grid-
middleware gLite. The applicability is illustrated by an exemplary algorithm (Mandelbrot
calculations).

Keywords: GridSolve, gLite, computing, gridRPC, grid computing, problem solving envi-
ronment, Matldab, giggle

1 INTRODUCTION

The Interactive European Grid Project (int.eu.grid) provides a distributed computing in-
frastructure based on gLite. Presently gLite does not provide support for interactive ap-
plications nor for graphical (GUI) applications. Within int.eu.grid, we are investigating
different methods for adding this functionality.

This article gives an overview about gLite and the additional middleware GridSolve.
GridSolve has not been used in combination with gLite. We describe in detail how this can
be done and also show performance measurements of the solution that we implemented.

mailto:hardt@iwr.fzk.de,seymour@cs.utk.edu?subject=Your paper about interactive grid-access
mailto:seymour@cs.utk.edu,hardt@iwr.fzk.de?subject=Your paper about interactive grid-access

2 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

1.1 gLite

We use the gLite installation with its interactive extensions as well as the Message Passing
Interface (MPI) as provided by the Interactive European Grid [5]. This infrastructure is
described in detail in “A Grid Infrastructure for Parallel and Interactive Applications”,
also published in this journal.

The gLite [2] middleware provides an interface to allocate heterogeneous compute

Fig. 1.The diagram shows the path of a batch job using the gLite infrastructure. For execution on
the WorkerNode (WN) data and application have to be transferred from the user interface via the
ResourceBroker (RB) (1) to the CE (2) and back (3) (4) (5).

resources on a “per job” basis. Within this job paradigm, onejob consists of a description
of job requirements:

• dependent input data that has to be already on the grid

• operating system (OS) requirements

• memory or CPU requirements

and a self-contained piece of software that will be executedinside a remote batch queue.
For job submission gLite provides a specialised computer enclosing the User-Interface
(UI). This computer contains client software for submitting jobs as well as the software
that is going to be submitted to the grid. When submitting a job, the UI forwards it to the
ResourceBroker (RB) ((1) in Fig.1). The RB has access to several sources of monitoring
to find (2) the resource with the best match to the user’s job-description. This resource is
typically the headnode of a cluster or Compute Element (CE) in gLite terminology. The
CE in turn forwards (3) the job to one of the cluster or Worker Nodes (WN) where the job
will be executed. If output was created on the WN it can eitherbe stored and registered
in the grid for later use or it has to be transported back alongthe path (3) (4) (5).

1.2 Limitations of gLite

The infrastructure described above is known to scale from large to very large numbers of
resources (see Fig.2). Being designed to meet these scaling requirements, the useability
was not the primary focus. This becomes apparent when tryingto use the infrastructure
with applications for which gLite was not intentionally designed. One example for such
applications could be a scientific problem solving environment (PSE) e.g. Matlab or a
spreadsheet calculation program (e.g. Microsoft Excel). The differences between this
style of application and the one that gLite was designed for are manyfold:

Interactive grid-access using GridSolve and Giggle 3

Fig. 2.European part of the LCG grid. The figures below date from October 2007 and comprise
the worldwide installation

A typical software consists of several parts: A graphical user interface (GUI) and a
backend that processes computations based on the user’s commands. These computations
can be more or less complex. The idea of grid-computing is that the software can uti-
lize remote resources in the grid that are available in largequantities. The application
programmer ensures that the application is capable of usingthe resources in parallel.

The job paradigm, however, requires a certain structure of an application. This is
because firstly the startup of a job in gLite has an overhead inthe range of10 s. Secondly
a job is an application, i.e. a self contained part of a largerapplication has to be sent
to the grid and bootstraped on the assigned WorkerNode in order to process and return
information. While the design of gLite allows the job to access data remotely on behalf of
the user further communication between the user and the job is not supported. This is very
different from the kind of parallel processing usually usedin multithreading or cluster
computing environments. Quintessentially, this lack of support for direct communication
makes interactive useage of the grid very difficult and API-like calls of complex tasks
virtually impossible.

Another issue is related to the job paradigm and the fact thatwe utilize WNs in many
different organisational domains and countries. This leads to the problem that software
dependencies might not be fulfilled at all assigned WN.

Finally software licenses might not match the gLite model. While some applications
are licensed on a per-user base, that one user can run on as many resources as he likes,
other applications require one running license per entity.Many scientific problem solving
environments (e.g. Matlab) require one license per computer.

This contribution shall describe how it is possible to overcome these limitations. In
the following sections we describe the additional middleware (GridSolve) on top of gLite

4 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

(see Section3) as well as the integration of GridSolve and the underlying gLite (4). Fi-
nally we prove that the described solution works and give a performance as evaluated wi
th our prototype in Section5.

2 STATE OF THE ART

GridSolve is based on the GridRPC API, which represents ongoing work to standardize
and implement a portable and simple remote procedure call (RPC) mechanism for Grid
computing. This standardization effort is being pursued through the Open Grid Forum
Research Group on Programming Models [4]. The initial work on GridRPC reported in
[8] shows that client access to existing Grid computing systems such as GridSolve and
Ninf [7] can be unified via a common API, a task that has proven to be problematic in the
past. In its current form, the C API provided by GridRPC allows the source code of client
programs to be compatible with different Grid services, provided that service implements
a GridRPC API.

As of September 2007, the GridRPC API is an OGF standard and has been imple-
mented by several Grid Middleware systems. Ninf [7] is a project from the National
Institute of Advanced Industrial Science and Technology inJapan. The current ver-
sion, called Ninf-G, is a GridRPC-compliant programming middleware system using the
Globus Toolkit as the underlying mechanism. Another ongoing project with a compliant
implementation of the GridRPC API is the Distributed Interactive Engineering Toolbox
(DIET) [1] from ENS Lyon,et al. DIET is similar, but is based on a hierarchical view of
the system and uses CORBA as its underlying mechanism.

To help to verify the compliance of these implementations, the GridRPC working
group has developed software that can test various aspects of their behavior. The results
of this interoperability testing were published in an OGF Informational Document [9] in
early 2007. This report confirmed that Ninf-G, GridSolve, and DIET all conformed to the
GridRPC specification.

Scientific computations will increasingly rely on very large data sets, so future work
on GridRPC has to emphasize data management. Grid middleware should be prepared to
deal with data sets that are too large to reside on the client’s machine or as in the case of
workflow systems, impractical to transfer back and forth between client and server. There
is currently a proposal in the GridRPC working group for a Data Handle API that will
help to address this issue.

3 GRIDSOLVE

3.1 Introduction

The purpose of GridSolve is to create the middleware necessary to provide a seamless
bridge between computational scientists using desktop systems and the rich supply of
services supported by the emerging Grid architecture. The goal is that the users of desktop
systems can easily access and reap the benefits (in terms of shared processing, storage,

Interactive grid-access using GridSolve and Giggle 5

software, data resources, etc.) of using grids. GridSolve is designed to enable a broad
community of scientists, engineers, research professionals and students to easily draw on
the vast, shared resources of the Grid. Working with the powerful and flexible tool set
provided by their familiar desktop computing environment,they can tap into the power of
the Grid for unique or exceptional resource needs. In addition to harnessing computational
power, the Grid infrastructure can enable new forms of collaboration with colleagues in
other organizations and locations.

3.2 How GridSolve Works

GridSolve is a client-agent-server (orbrokered RPC) system which provides remote ac-
cess to hardware and software resources through a variety ofclient interfaces.

Fig. 3.Overview of GridSolve

The system consists of three entities, as illustrated in Figure3.

• The Client, which needs to execute some remote procedure call. In addition to C
and Fortran programs, the GridSolve client may be an interactive problem solving
environment such as Matlab, Octave, or IDL (Interactive Data Language).

• TheServer executes functions on behalf of the clients. The server hardware can range
in complexity from a uniprocessor to a MPP system and the functions executed by the

6 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

server can be arbitrarily complex. Server administrators can add straightforwardly
their own function services without affecting the rest of the GridSolve system.

• TheAgent is the focal point of the GridSolve system. It maintains a list of all available
servers and performs resource selection for client requests as well as ensuring load
balancing of the servers.

In practice, from the user’s perspective the mechanisms employed by GridSolve make
the remote procedure call fairly transparent. However, behind the scenes, a typical call to
GridSolve involves several steps as follows:

1. The client asks the agent for an appropriate server that can execute the desired func-
tion.

2. The agent returns a list of available servers, ranked in order of suitability.

3. The client attempts to contact a server from the list, starting with the first and moving
down through the list. The client then sends the input data tothe server.

4. Finally the server executes the function on behalf of the client and returns the results.

In addition to providing the middleware necessary to perform the brokered remote
procedure call, GridSolve aims to provide mechanisms to interface with other existing
Grid services. This can be done by having a client that knows how to communicate
with various Grid services or by having servers that act as proxies to those Grid services.
GridSolve provides some support for the proxy server approach, while the client-side
approach would be supported by the emerging GridRPC standard API [8].

3.3 Integrating User Services

We have implemented a simple technique for adding arbitraryservices to a running server.
First, the new service should be built as a library or object file. Then the user writes a spec-
ification of the service parameters in a gsIDL (GridSolve Interface Definition Language)
file. The GridSolve problem compiler processes the gsIDL andgenerates a wrapper which
is automatically compiled and linked with the service library or object files. Thus the ser-
vices are compiled as external executables with interfacesto the server described in a
standard format. The server re-examines its own configuration and installed services pe-
riodically to detect new services. In this way it becomes aware of the additional services
without re-compilation or restarting of the server itself.

Normally the GridSolve server executes the actual service request itself, but in some
cases it can act as a proxy to other services such as Condor. The primary benefit is that
the client-server communication protocol is identical so that the client does not need to
be aware of every possible back-end service. A server proxy also allows aggregation and
scheduling of resources on one GridSolve server such as the machines in a cluster.

3.4 Scheduling

The selection of the best server for a particular job is carried out at several layers. When
a new service is added, the author should provide a rough characterization of the perfor-

Interactive grid-access using GridSolve and Giggle 7

mance in terms of the arguments to the function. For example,sorting anN element array
may be characterized withCOMPLEXITY="N * log(N)" in the service configuration
file. As the service is invoked, the server keeps track of the typical execution time for
various problem sizes and uses a least squares regression tocompute coefficients for an
expression that more closely characterizes the expected performance. This is useful in
cases where different implementations of a service have thesame theoretical execution
time, but very different real-world performance (e.g. vendor-tuned BLAS (Basic Linear
Algebra Subprograms)compared with the reference BLAS). Both the theoretical and ob-
served information are sent to the GridSolve agent, which uses them to determine the
ranking of the servers. After the ranked list is returned to the client, it may choose to
refine the list based on communication performance. For instance, a very fast server may
not be the best choice if it is only reachable through a slow connection. Thus, the client
can run a quick series of communication tests to estimate thetime that it would take to
send and receive the data from each of the servers. The serverlist is then re-sorted based
on this information.

3.5 Network Address Translators

As the rapid growth of the Internet began depleting the supply of IP addresses, it be-
came evident that some immediate action would be required toavoid complete IP address
depletion. The IP Network Address Translator [3] is a short-term solution to this prob-
lem. Network Address Translation presents the same external IP address for all machines
within a private subnet, allowing reuse of the same IP addresses on different subnets, thus
reducing the overall need for unique IP addresses.

3.5.1 Complications in the Presence of NATs

As beneficial as NATs may be in alleviating the demand for IP addresses, they pose many
significant problems to developers of distributed applications such as GridSolve [6]. Some
of the problems as they pertain to GridSolve are:

• IP addresses are not unique – In the presence of a NAT, a given IP address may not be
globally unique. Typically the addresses used behind the NAT are from one of several
blocks of IP addresses reserved for use in private networks,though this is not strictly
required. Consequently any system that assumes that an IP address can serve as the
unique identifier for a component will encounter problems when used in conjunction
with a NAT.

• IP address-to-host bindings may not be stable – This has similar consequences to the
first issue in that GridSolve can no longer assume that a givenIP address corresponds
uniquely to a certain component. This is because, among other reasons, the NAT may
change the mappings.

• Hosts behind the NAT may not be contactable from outside – This currently prevents
all GridSolve components from existing behind a NAT becausethey must all be ca-
pable of accepting incoming connections.

8 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

• NATs may increase connection failures – Connections through NATs may be dropped
depending on the particular implementation (especially after a period of inactivity).
This implies that GridSolve needs more sophisticated faulttolerance mechanisms to
cope with the increased frequency of failures in a NAT environment.

To address these issues we have developed a new communication framework for Grid-
Solve. To avoid problems related to potential duplication of IP addresses, the GridSolve
components will be identified by a globally unique identifierspecified by the user or gen-
erated randomly. The mapping between the component identifier and a real host will
not be maintained by the GridSolve components themselves. There will be a discovery
protocol to locate the actual machine running the GridSolvecomponent with the given
identifier. In this sense, the identifiers of the component isa network address that is
layered on top of the real network address. Thus, a componentidentifier is sufficient to
uniquely identify and locate any GridSolve component, evenif the real network addresses
are not unique. This is somewhat similar to a machine having an IP address layered on
top of its MAC address. Since NATs may introduce more frequent connection failures,
we have implemented a mechanism that allows a client to submit a problem, break the
connection, and reconnect later at a more convenient time toretrieve the results. We may
also want to enhance the protocol to allow restarting partial transfers.

An important detail for this work on a new communication model is theproxy, which
is a component that allows servers to exist behind a NAT. Since a server cannot accept un-
solicited connections from outside the private network, itmust first register with a proxy.
The proxy acts on behalf of the component behind the NAT by establishing connections
with other components or by accepting incoming connections. The component behind
the NAT keeps the connection with the proxy open as long as possible since it can only
be contacted by other components while it has a control connection established with the
proxy. To maintain good performance, the proxy only examines the header of the con-
nections that it forwards. It uses a simple table-based lookup to determine the destination
address of each connection. Furthermore, to prevent the proxy from being abused, au-
thentication may be required.

The programming interface that applications use to communicate through the proxy
is based on the BSD sockets API. To simplify for developers the modification of their
code to be NAT-tolerant, our API mirrors the socket API as closely as possible.

4 INTEGRATION OF GRIDSOLVE AND GLITE

On the one hand we are motivated to use gLite because of the large amount of resources
provided, but on the other hand we want to use GridSolve because it provides easy access
to remote resources. The integration of both platforms promises an API-like access to
resources that are made available by gLite.

One challenge is that the developments of the grid-infrastructure middleware gLite
and the GridRPC middleware GridSolve have progressed simultaneously without mutual
consideration. Therefore neither of the systems were designed to work well with the
other one. In order to integrate both software packages, certain integrative tasks have to

Interactive grid-access using GridSolve and Giggle 9

be performed.
To keep these tasks as reproducible and useful as possible, we have developed a set

of tools and created a toolbox that we namedgiggle (GenuineIntegration ofGridSolve
andgLite).

4.1 Giggle design

We want to use the gLite resources within the GridSolve framework, hence we have to
start GridSolve servers on a number of gLite WorkerNodes. This is done by submitting
gLite jobs that are in fact so called “pilot jobs”, i.e. the gLite job is used only to start up
a daemon which provides the allocated resource for the clients that connect to it. In our
case this daemon is the GridSolveserver. Pilot jobs provide two advantages:

• Fault tolerance: Only those pilot jobs that start the GridSolve daemon successfully
will be available for clients to connect. Thus we only have resources that are proven
to work. The downside is that it is difficult to control the precise number of active
resources.

• The provided resources can be used independently from the gLite middleware. This
gives us the intended interactive control of the resources.

Giggle simplifies the pilot job mechanism for the user by providing default jobs that
are sent to the gLite infrastructure whenever the user requests more resources. Using
the interactive grid extensions, it is possible to allocateseveral computers that are either
scattered across the grid or confined to one cluster or a combination of both.

Every single pilot will be started on a WorkerNode (WN) by gLite. It is impossible to
know which software is installed at that particular WN. Thisis why giggle downloads and
installs a pre-built binary package of GridSolve together with the most commonly used
libraries. Currently these packages are downloaded from a webserver.

For enhanced speed of startup time and network throughput, caching is supported.
Furthermore, shared filesystem clusters benefit from gainedinstallation speed, because in
that case only one shared installation per cluster is carried out. After the installation, the
GridSolveserver is started. It connects to theagent and is thereafter available for the user.
In order to accomplish this, we have defined infrastructure servers, that carry out specific
tasks:

• The user has access to thedevelopers workstation. This is typically his desktop or
laptop computer. Giggle and the GridSolve client (gs client) have to be installed.

• A webserver is used to store all software components which have to be installed on
the WorkerNodes by giggle. We cannot ship these components via gLite mechanisms
because then all packages are transferred via two additional computers, as can be seen
in Fig. 1.

• The servicehost runs the GridSolve agent (gs agent) and optionally, the proxy
(gs proxy). A separate host is currently required, because of specific firewall re-
quirements which can not be easily integrated with the security requirements of a

10 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

webserver. Technically the servicehost can run on any publically accessible com-
puter, e.g. the above mentioned webserver.

Fig. 4.Architectural building blocks of giggle and their interaction.

Fig. 4 shows these three additional computers and their interaction with the gLite
hosts.

4.2 Giggle tools for creating services

Creating services (i.e. making functions available remotely) via the GridSolve mechanism
requires in principle only a few steps: definition of the interface and a recompilation using
the GridSolve provided toolproblem compile (see Section3).

However, while developing our own services for GridSolve ongLite, we found that
it is better to include our services into the GridSolve buildprocess and recompile the
service together with the whole GridSolve package. This is more stable when installing
the service and GridSolve in a different location on severalcomputers. We also found
that this approach holds when modifications to the underlying GridSolve sources (e.g.
updates, fixes) are done. Thus we have facilitated this process (with the tools gs-service-
creator and gs-build-services) within giggle.

• gs-service-creator ((1) in Fig.4) generates a directory structure that contains
the required files for creation of a new service. The gs-service-creator is template-
based. Currently two templates – plain C RPC and Matlab compiler runtime RPC –
are supported. Furthermore a mechanism is included that supports the transport of
dynamically linked shared libraries to the server.

• gs-build-services (2) is the tool that organises the compilation of GridSolve
and the service. It hides the complexity of integrating our service into the GridSolve
build system. The tool compiles the sources in a temporary location, where the Grid-
Solve build specifications are modified to integrate the new service. The compilation
process also recompiles GridSolve. This makes the build procedure longer, but we
found that this ensures a higher level of reproducibility, flexibility and robustness
against changes of the service or the underlying version of GridSolve. The output
of the build process is a package (.tar.gz) file that containsthe service. Optionally a
GridSolve distribution tarball can be created.

Interactive grid-access using GridSolve and Giggle 11

After a successful build, the generated packages have to be deployed on the webserver
to be available for download by grid jobs.

4.3 Giggle tools for resource allocation

The gLite resource allocation is done via the gLite User Interface (UI). We provide three
tools that avoid logging into the UI and manage the involved gLite jobs. Furthermore the
authentication to the grid is taken care of.

• gs-glite-start (3) launches the resource allocation. This tool starts a chain
of several steps: First it starts up the GridSolve components (agent and optionally
the proxy) on the servicehost (3a). Then it instructs (3b) the gLite User Interface
(UI) to submit a given number of gLite-jobs (3c) to the resources of the interactive
grid project. The jobs download (3d) and install required dependencies and start the
GridSolve server. The server connects to the agent. Then theWorkerNode is available
to the user via the GridSolve client.

• gs-glite-info can be used to display a short summary of the gLite jobs.

• gs-glite-stop (5) When the user is done using the grid, gs-stop-grid frees the
allocated resources and termindates the GridSolve daemons. Otherwise resources
would remain allocated but unused.

Currently these tools rely on passwordless ssh in order to connect to the gLite User
Interface machine. There the user commands are translated to gLite commands.

4.4 Giggle tools for the end-user

gs-start-matlab (4) configures a users Matlab session so that it can access Grid-
Solve resources. This involves configuring Matlab to find thelocal GridSolve client in-
stallation as well as directing the client to the previouslystarted agent.

Please note that Matlab is taken as an example representative of many other applica-
tions. Being available for Java, C, Fortran, Octave and morethe GridSolve client can be
used from various programming languages in different applications.

5 MEASUREMENTS

We made a performance evaluation based on the CPU intensive loop benchmark. This
benchmark allows to specify the number of loops or iterations and the amount of CPUs
to be used. Advantages of the loop benchmark are

• no communication: this is an important factor for scaling

• linear scaling: two iterations take twice as long as one

• even distribution: every CPU computes the same amount of iterations.

12 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

With this benchmark we measured the performance characteristics of our solution. This
will resemble both: the overhead introduced by GridSolve aswell as an effect that origi-
nates from the different speeds of the CPUs that are assignedto the problem. This effect
may be called unbalanced allocation.

Within this series of measurements we can modify three parameters:

• Number of gLite WNs. This is not the number of CPUs because we have no infor-
mation about how many CPUs are installed in the allocated machines. GridSolve
however used all that are found.

• Number of processes that we use to solve our problem.

• Amount of iteration that we want to be computed.

We chose iterations between 10 and 1000 which correspond to 6s and 10 min run-
time on a single Pentium IV-2400 CPU. The iterations were distributed to the resources
provided by the production infrastructure of int.eu.grid.Resources were allocated at
SAVBA-Bratislava, LIP-Lisbon, IFCA-Santander, Cyfronet-Krakow and FZK-Karlsruhe.
Typically we have allocated 5 to 20 WorkerNodes (WNs), most of which contain 2 CPUs.
The precise number of CPUs is unknown.

We measured the time to compute the iterations over the number of CPUs used. Mea-
surements were repeated 10 times for averaging purposes. The graphs show the inverse
of the computing time as a function of the number of processesinto which we divided
the benchmark. Out of the 10 repititions of each measurementwe show the average of all
measurements as well as the maximum and minimum curves. The difference originates
from the dynamic nature of the grid. If one server exceeds a time limit, it will be termi-
nated. In this situation GridSolve chooses a different resource where this part is computed
again. This leads to a prolonged computation of the whole benchmark, hence a difference
between the “min” and the “max” curve. The min curve resembles a better result while
the max curve stands for the longest runtime of the benchmark. We refer only to the the-
oretical and the min curve further in this discussion. The graphs also show a theoretical
curve, which is based on the assumption of ideal scaling (i.e. if doubling the number of
processes, the result will be computed in half the time

The difference between the maximum and the minimum curve Another reason for
this difference is the unbalanced allocation of CPU speeds that we have mentioned above.
Since these effects are of a random nature it is not possible to compare them between the
different graphs.

Results are shown in Fig.5 to 7.
The comparison between a measurement with a low number of iterations (Fig.5) and

one with more iterations (Fig.6) (6 s and 5 min respectively) reveals the overhead that is
caused by GridSolve. We observed that this overhead dependson the amount of CPUs
that we utilise and occurs mostly during submission and collection of results. This is also
indicated by the increased computing time for more than 4 CPUs in Fig.5.

In all measurements we can find one point at which the curve stops following the the-
oretical prediction and continues horizontally. This indicates that the compute time does
not decrease even if further increasing the number of parallel processes. This is because

Interactive grid-access using GridSolve and Giggle 13

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12

1/
Ti

m
e

[1
/s]

Processes

6 WNs 10 Iterations

Average
Theoretical

Min
Max

Fig. 5.6 gLite WNs allocated. 10 iterations require 6 s on a Pentium-IV CPU.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20

1/
Ti

m
e

[1
/s]

Processes

6 WNs 500 Iterations

Average
Theoretical

Min
Max

Fig. 6.500 iterations run 5 min on a Pentium-IV CPU, 30 s on the grid.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30

1/
Ti

m
e

[1
/s]

Processes

20 WNs 1000 Iterations

Average
Theoretical

Min
Max

Fig. 7.With 20 WNs allocated and 1000 iterations we can the system scale to 18 processes.

14 M. Hardt,∗2 K. Seymour,∗1 J.Dongarra,1 M. Zapf,3 N.V. Ruiter3

at this point the number of available CPUs is smaller than thenumber of processes. The
theoretical curve does not take this effect into account.

In 6 and7 we can see that even the min-curve grows slower than the optimum (theo-
retical) curve. This is due to the heterogenous nature of thegrid. In our pool of resources,
we have CPUs with different speeds. GridSolve allocates thefastest CPU first and only
uses slower CPUs when all fast CPUs are already busy. As the theoretical curve is extrap-
olated from the performance on only one CPU, it resembles theideal scaling behaviour.
In Fig. 6 this can be observed at 6 and more processes, in Fig.6 we can see this effect
already starting with 4 processes.

6 CONCLUSION

We are able to show that both GridSolve and its integration with gLite via giggle work
well. Scaling of resource useage works in principle, but certain obstacles are still to over-
come. The showstopper regarding proper scaling is however,the fact that the underlying
resources disappear. Nevertheless Gridsolve provides a result in a fault tolerant manner.

We have reached the goal of using the gLite infrastructure inan interactive, API-like
fashion from problem solving environments like Matlab.

7 *

References

1. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philippe, M. Quinson, and F. Suter. A
scalable approach to network enabled servers (research note). Lecture Notes in Computer
Science, 2400, 2002.

2. EGEE Project. gLite website.glite.web.cern.ch/glite.

3. K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631, May
1994.

4. Global Grid Forum Research Group on Programming Models.
http://www.gridforum.org/7_APM/APS.htm .

5. Interactive European Grid Project. Website.www.interactive-grid.eu.

6. K. Moore. Recommendations for the Design and Implementation of NAT-Tolerant Applica-
tions. Internet-draft, February 2002. Work in Progress.

7. H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: Towards a
Global Computing Infrastructure. InFuture Generation Computing Systems, Metacomputing
Issue, volume 15, pages 649–658, 1999.

8. K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In M. Parashar, editor,GRID
2002, pages 274–278, 2002.

9. Y. Tanimura, K. Seymour, E. Caron, A. Amar, H. Nakada, Y. Tanaka, and F. Desprez. In-
teroperability Testing for The GridRPC API Specification. Open Grid Forum Informational
Document, February 2007.

http://glite.web.cern.ch/glite
http://www.gridforum.org/7_APM/APS.htm
http://www.interactive-grid.eu

