INTERACTIVE GRID-ACCESS USING GRIDSOLVE AND
GIGGLE

M. Hardt;2 K. Seymour;! J.Dongarrd, M. Zapf? N.V. Ruiter

!Innovative Computing Laboratory, University of Tennessee, Knoxville, USA

2Seinbuch Centre for Computing, Forschungszentrum Karlsruhe, Germany

3Ingtitute for Data Processing and Electronics, Forschungszentrum Karlsruhe, Germany
email: hardt @wr . f zk. de, seynour @s. utk. edu

Abstract.

General purpose Problem Solving Environments (PSEs) liadad¥ are widely used in
the fields of science for development of new algorithms. Iétadf computing power is
required to run these algorithms, todays PSEs lack suppoddcessing the distributed
infrastructures of the organisation (i.e. grids), whiahits the size of the problems that
can be solved. This contribution shows a new approach faeithe grid from within PSEs
without major adjustments by the user. The primary toolsGidSolve and and the grid-
middleware gLite. The applicability is illustrated by areexplary algorithm (Mandelbrot
calculations).

Keywords: GridSolve, gLite, computing, gridRPC, grid computing, Ipleim solving envi-
ronment, Matldab, giggle

1 INTRODUCTION

The Interactive European Grid Project (int.eu.grid) pded a distributed computing in-
frastructure based on gLite. Presently gLite does not geogupport for interactive ap-
plications nor for graphical (GUI) applications. Withintieu.grid, we are investigating
different methods for adding this functionality.

This article gives an overview about gLite and the additionadleware GridSolve.
GridSolve has not been used in combination with gLite. Weidles in detail how this can
be done and also show performance measurements of theoadhit we implemented.

mailto:hardt@iwr.fzk.de,seymour@cs.utk.edu?subject=Your paper about interactive grid-access
mailto:seymour@cs.utk.edu,hardt@iwr.fzk.de?subject=Your paper about interactive grid-access

2 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?
1.1 gLite

We use the gLite installation with its interactive extemsi@s well as the Message Passing
Interface (MPI) as provided by the Interactive Europeard@s]. This infrastructure is
described in detail in “A Grid Infrastructure for Paralleidalnteractive Applications”,
also published in this journal.

The gLite 2] middleware provides an interface to allocate heteroges@@mpute

gLite gLite V) [Headnode || 9Lite

i ~ / (CE) o Qcluster
User Resource "3)

» Interface G vBroker] Y €9 0 €29 0

WN N WN N wN N wN B WN

Fig. 1. The diagram shows the path of a batch job using the gLitestrrature. For execution on
the WorkerNode (WN) data and application have to be traredidrom the user interface via the
ResourceBroker (RB) (1) to the CE (2) and back (3) (4) (5).

resources on a “per job” basis. Within this job paradigm, jobeconsists of a description
of job requirements:

e dependent input data that has to be already on the grid
e operating system (OS) requirements
e memory or CPU requirements

and a self-contained piece of software that will be execiurtside a remote batch queue.
For job submission gLite provides a specialised computelosing the User-Interface
(UI. This computer contains client software for submgtijobs as well as the software
that is going to be submitted to the grid. When submittingta fbe Ul forwards it to the
ResourceBroker (RB) ((1) in Fid). The RB has access to several sources of monitoring
to find (2) the resource with the best match to the user’s gdedption. This resource is
typically the headnode of a cluster or Compute Element (@EjLite terminology. The
CE in turn forwards (3) the job to one of the cluster or Workexdss (WN) where the job
will be executed. If output was created on the WN it can eitteestored and registered
in the grid for later use or it has to be transported back atbagath (3) (4) (5).

1.2 Limitations of gLite

The infrastructure described above is known to scale frogelto very large numbers of
resources (see Fig). Being designed to meet these scaling requirements, trability
was not the primary focus. This becomes apparent when ttginge the infrastructure
with applications for which gLite was not intentionally dgsed. One example for such
applications could be a scientific problem solving envirenin(PSE) e.g. Matlab or a
spreadsheet calculation program (e.g. Microsoft Excele differences between this
style of application and the one that gLite was designedf®nzanyfold:

Interactive grid-access using GridSolve and Giggle 3

e Dum,n - o Lo azzEan s oy

Granaen.Bremen &
°

. s 7 b
“irstand Manches! : : o

° : o ’ e e ¢

me ol Bin o P | 4 Folska {
s/ " Galtag Srairaciae | Zeknag | P Fond ol

‘\!u_warsss - i - " ra Kaliszo

ok o % o Gorthmund Lepza,)0 A o Ll
@amm Bristol ; seger Demschlanu QDrssden -8 s O
et Pl

Py mon®

s e

in
g Franklurt’ e [J\% Rzeszw./
e j. Ces 4 Republika caton”

LeHiwe s - onmerg Grsen Repuinic. | Dsba

i A & agdnah 4 s Koties °
el jovensko
utigart.“. g™ 2012 “f; waw-;/:mmh
y; ¥ 182
Munmen 1% » ‘D,DQ;;,.
f Baa

'\Qslerm:h
o M Adistris !

B ey i
o Pans i
et { :

S roes S| s
; L ran iy iy
[Gimost f—ngals T Ao

B
Hantes O ", Bﬂ?'é
foomia) Pas | Erance

: o 4
L2Rae or Lmgass Lyon X

JMagvarorszag 10,

smma

|DfQ CPUs

Fhaid aiovenia
g WMilana, 55 dizrs s
SantEtema| T Tonng o Bl el e e

Bordeaux - o Nt verons Hma!sl
o ¥ “*”““"237 oderab B0 oot B10-99 CPUS H

Montauban > Enuvao -0 ol
Rm/sr\r 3
@ " Monipeliier ot e i

5
P8t Toulduss.. @ 3 Febe? "="=r.n Imu 999 CPUs g

o A P o
e WS Marseille.

o
Jisacmago |4 Couna
Canmpoate|], = ort
i ; 2 e
3 r e
I ‘ icp o s I !
e ¥ Zaghoza a
Valladobd £ Bﬁcma a
- Bal na Fn
¥ :
i Do = : 3 & 1000 crus A
&

{Segance G Ui Napoi
-ouised _M-ggd P’ ° o Sites: 13 (6 countries) o
©Coimara iy : CPUS: 476 (36 per site)
Espana- ;- ¢ Caglan RAM: 1TB \Gg
spai @ DISK:50T8 =

a0z Elche. {7
Corgoba Murcia 83 Pa\ermn ngDISK sOTE
Quar Y

n a

Valencia Fama
¥ s

Fig. 2. European part of the LCG grid. The figures below date from B&t®007 and comprise
the worldwide installation

A typical software consists of several parts: A graphicarusterface (GUI) and a
backend that processes computations based on the userisasa®. These computations
can be more or less complex. The idea of grid-computing istti@software can uti-
lize remote resources in the grid that are available in lapggntities. The application
programmer ensures that the application is capable of tsegesources in parallel.

The job paradigm, however, requires a certain structurencdiplication. This is
because firstly the startup of a job in gLite has an overheétkinange ofl 0 s. Secondly
a job is an application, i.e. a self contained part of a lagmlication has to be sent
to the grid and bootstraped on the assigned WorkerNode ier ¢odprocess and return
information. While the design of gLite allows the job to asgelata remotely on behalf of
the user further communication between the user and the jodtisupported. This is very
different from the kind of parallel processing usually usednultithreading or cluster
computing environments. Quintessentially, this lack qfigrt for direct communication
makes interactive useage of the grid very difficult and AlRa-lcalls of complex tasks
virtually impossible.

Another issue is related to the job paradigm and the factikaitilize WNs in many
different organisational domains and countries. Thisdeadthe problem that software
dependencies might not be fulfilled at all assigned WN.

Finally software licenses might not match the gLite modehid/some applications
are licensed on a per-user base, that one user can run on ggesaarces as he likes,
other applications require one running license per engny scientific problem solving
environments (e.g. Matlab) require one license per compute

This contribution shall describe how it is possible to oeene these limitations. In
the following sections we describe the additional middien@&ridSolve) on top of gLite

4 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

(see Sectiord) as well as the integration of GridSolve and the underlyibgeg(4). Fi-
nally we prove that the described solution works and giverbopmance as evaluated wi
th our prototype in Sectioh.

2 STATE OF THE ART

GridSolve is based on the GridRPC API, which representsiaggweork to standardize
and implement a portable and simple remote procedure cRICjRnechanism for Grid
computing. This standardization effort is being pursuadupgh the Open Grid Forum
Research Group on Programming Modelk [The initial work on GridRPC reported in
[8] shows that client access to existing Grid computing systsath as GridSolve and
Ninf [7] can be unified via a common API, a task that has proven to Hagmatic in the
past. In its current form, the C API provided by GridRPC abaive source code of client
programs to be compatible with different Grid servicesyted that service implements
a GridRPC API.

As of September 2007, the GridRPC API is an OGF standard asdbéen imple-
mented by several Grid Middleware systems. Nirifis a project from the National
Institute of Advanced Industrial Science and Technologyapan. The current ver-
sion, called Ninf-G, is a GridRPC-compliant programmingidieware system using the
Globus Toolkit as the underlying mechanism. Another ongaroject with a compliant
implementation of the GridRPC API is the Distributed Intgihze Engineering Toolbox
(DIET) [1] from ENS Lyon,et al. DIET is similar, but is based on a hierarchical view of
the system and uses CORBA as its underlying mechanism.

To help to verify the compliance of these implementatiohg, &ridRPC working
group has developed software that can test various asgeittsiobehavior. The results
of this interoperability testing were published in an OGftmational Documentd] in
early 2007. This report confirmed that Ninf-G, GridSolved ®1ET all conformed to the
GridRPC specification.

Scientific computations will increasingly rely on very lardata sets, so future work
on GridRPC has to emphasize data management. Grid midéieshauld be prepared to
deal with data sets that are too large to reside on the diemchine or as in the case of
workflow systems, impractical to transfer back and fortwleen client and server. There
is currently a proposal in the GridRPC working group for ad@Hkandle API that will
help to address this issue.

3 GRIDSOLVE
3.1 Introduction

The purpose of GridSolve is to create the middleware nepg$sgrovide a seamless
bridge between computational scientists using desktofesysand the rich supply of
services supported by the emerging Grid architecture. ©akigthat the users of desktop
systems can easily access and reap the benefits (in termarefighrocessing, storage,

Interactive grid-access using GridSolve and Giggle 5

software, data resources, etc.) of using grids. GridSaweesigned to enable a broad
community of scientists, engineers, research profesksi@mal students to easily draw on
the vast, shared resources of the Grid. Working with the pimivand flexible tool set
provided by their familiar desktop computing environmehéy can tap into the power of
the Grid for unigue or exceptional resource needs. In aitit harnessing computational
power, the Grid infrastructure can enable new forms of tolfation with colleagues in
other organizations and locations.

3.2 How GridSolve Works

GridSolve is a client-agent-server (mokered RPC) system which provides remote ac-
cess to hardware and software resources through a varietigof interfaces.

SERVERS

Microsoft Unix
Compute Cluster Workstation

Bl S

RESOURCE $$

MANAGEMENT
Monitor
Database redbir 8 8
Scheduler BDREOETEEIFLIJEND O STORING

Giasve %™ DISTRIBUTED
STORAGE
=3

CLIENT

Fig. 3. Overview of GridSolve

The system consists of three entities, as illustrated inreig.

e The Client, which needs to execute some remote procedure call. Iniaddd C
and Fortran programs, the GridSolve client may be an inteeaproblem solving
environment such as Matlab, Octave, or IDL (Interactiveallanguage).

e TheServer executes functions on behalf of the clients. The serventanelcan range
in complexity from a uniprocessor to a MPP system and thetioms executed by the

6 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

server can be arbitrarily complex. Server administratens add straightforwardly
their own function services without affecting the rest & thridSolve system.

e TheAgentis the focal point of the GridSolve system. It maintains edfsll available
servers and performs resource selection for client reguestvell as ensuring load
balancing of the servers.

In practice, from the user’s perspective the mechanismsay@g by GridSolve make
the remote procedure call fairly transparent. Howeverifukthe scenes, a typical call to
GridSolve involves several steps as follows:

1. The client asks the agent for an appropriate server tma¢xacute the desired func-
tion.

2. The agent returns a list of available servers, rankeddaerasf suitability.

3. The client attempts to contact a server from the listtisgkvith the first and moving
down through the list. The client then sends the input datad®server.

4. Finally the server executes the function on behalf of tlestand returns the results.

In addition to providing the middleware necessary to penfoine brokered remote
procedure call, GridSolve aims to provide mechanisms terfiate with other existing
Grid services. This can be done by having a client that knowg to communicate
with various Grid services or by having servers that act agips to those Grid services.
GridSolve provides some support for the proxy server amtroehile the client-side
approach would be supported by the emerging GridRPC stddrRir[S].

3.3 Integrating User Services

We have implemented a simple technique for adding arbisaryices to a running server.
First, the new service should be built as a library or objéet fihen the user writes a spec-
ification of the service parameters in a gsIDL (GridSolvesifgce Definition Language)
file. The GridSolve problem compiler processes the gsIDLgaTterates a wrapper which
is automatically compiled and linked with the service lityrar object files. Thus the ser-
vices are compiled as external executables with interfazéle server described in a
standard format. The server re-examines its own configuratnd installed services pe-
riodically to detect new services. In this way it becomesraved the additional services
without re-compilation or restarting of the server itself.

Normally the GridSolve server executes the actual seraqaest itself, but in some
cases it can act as a proxy to other services such as Condeprirhary benefit is that
the client-server communication protocol is identical Isattthe client does not need to
be aware of every possible back-end service. A server prisxyalows aggregation and
scheduling of resources on one GridSolve server such asahbines in a cluster.

3.4 Scheduling

The selection of the best server for a particular job is edrdut at several layers. When
a new service is added, the author should provide a rouglactegization of the perfor-

Interactive grid-access using GridSolve and Giggle 7

mance in terms of the arguments to the function. For exaraptéing anV element array
may be characterized witbOVPLEXI TY="N * | og(N) " in the service configuration
file. As the service is invoked, the server keeps track of ypeal execution time for
various problem sizes and uses a least squares regressiompute coefficients for an
expression that more closely characterizes the expectéorp@nce. This is useful in
cases where different implementations of a service havedhe theoretical execution
time, but very different real-world performance (e.g. ventlined BLAS (Basic Linear
Algebra Subprograms)compared with the reference BLAS)h Bee theoretical and ob-
served information are sent to the GridSolve agent, whias tkem to determine the
ranking of the servers. After the ranked list is returnedh® tlient, it may choose to
refine the list based on communication performance. Foams, a very fast server may
not be the best choice if it is only reachable through a slomnection. Thus, the client
can run a quick series of communication tests to estimatértethat it would take to
send and receive the data from each of the servers. The distusithen re-sorted based
on this information.

3.5 Network Address Translators

As the rapid growth of the Internet began depleting the suppliP addresses, it be-
came evident that some immediate action would be requiraddinl complete IP address
depletion. The IP Network Address Translaté} s a short-term solution to this prob-
lem. Network Address Translation presents the same extiétsaldress for all machines
within a private subnet, allowing reuse of the same IP adesesn different subnets, thus
reducing the overall need for unique IP addresses.

3.5.1 Complicationsin the Presence of NATs

As beneficial as NATs may be in alleviating the demand for I€reskses, they pose many
significant problems to developers of distributed appiares such as GridSolvé]. Some
of the problems as they pertain to GridSolve are:

e |P addresses are not unique — In the presence of a NAT, a given IP address may not be
globally unique. Typically the addresses used behind th€ &t& from one of several
blocks of IP addresses reserved for use in private netwtitkagh this is not strictly
required. Consequently any system that assumes that ardtBsadcan serve as the
unique identifier for a component will encounter problemwhsed in conjunction
with a NAT.

e |P address-to-host hindings may not be stable — This has similar consequences to the
firstissue in that GridSolve can no longer assume that a ¢gR@adress corresponds
uniquely to a certain component. This is because, among mhsons, the NAT may
change the mappings.

e Hosts behind the NAT may not be contactable from outside — This currently prevents
all GridSolve components from existing behind a NAT becabsg must all be ca-
pable of accepting incoming connections.

8 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

e NATsmay increase connection failures— Connections through NATs may be dropped
depending on the particular implementation (especialigrat period of inactivity).
This implies that GridSolve needs more sophisticated faldrance mechanisms to
cope with the increased frequency of failures in a NAT envinent.

To address these issues we have developed a new commumicatieework for Grid-
Solve. To avoid problems related to potential duplicatibhPoaddresses, the GridSolve
components will be identified by a globally unique identiBpecified by the user or gen-
erated randomly. The mapping between the component idenéfid a real host will
not be maintained by the GridSolve components themselvasreTwill be a discovery
protocol to locate the actual machine running the GridSolvaponent with the given
identifier. In this sense, the identifiers of the componerd isetwork address that is
layered on top of the real network address. Thus, a compaagentifier is sufficient to
uniquely identify and locate any GridSolve component, ef/dre real network addresses
are not unique. This is somewhat similar to a machine havntPaaddress layered on
top of its MAC address. Since NATs may introduce more freg@ennection failures,
we have implemented a mechanism that allows a client to submioblem, break the
connection, and reconnect later at a more convenient timgtieve the results. We may
also want to enhance the protocol to allow restarting garaasfers.

An important detail for this work on a new communication middéhe proxy, which
is a component that allows servers to exist behind a NAT.€Séngerver cannot accept un-
solicited connections from outside the private networkyuist first register with a proxy.
The proxy acts on behalf of the component behind the NAT bgldishing connections
with other components or by accepting incoming connectiorfise component behind
the NAT keeps the connection with the proxy open as long asilplessince it can only
be contacted by other components while it has a control atimmeestablished with the
proxy. To maintain good performance, the proxy only examitiee header of the con-
nections that it forwards. It uses a simple table-basedupd& determine the destination
address of each connection. Furthermore, to prevent the/ from being abused, au-
thentication may be required.

The programming interface that applications use to comoateithrough the proxy
is based on the BSD sockets API. To simplify for developeesrttodification of their
code to be NAT-tolerant, our APl mirrors the socket API aselg as possible.

4 INTEGRATION OF GRIDSOLVE AND GLITE

On the one hand we are motivated to use gLite because of tiedanount of resources
provided, but on the other hand we want to use GridSolve lseciprovides easy access
to remote resources. The integration of both platforms geman API-like access to
resources that are made available by gLite.

One challenge is that the developments of the grid-infuatire middleware gLite
and the GridRPC middleware GridSolve have progressed wmedusly without mutual
consideration. Therefore neither of the systems were dedigo work well with the
other one. In order to integrate both software packagetingntegrative tasks have to

Interactive grid-access using GridSolve and Giggle 9

be performed.

To keep these tasks as reproducible and useful as possibleave developed a set
of tools and created a toolbox that we nangggble (Genuinel ntegration ofGridSolve
andgLite).

4.1 Giggle design

We want to use the gLite resources within the GridSolve fraark, hence we have to
start GridSolve servers on a number of gLite WorkerNodess iBhdone by submitting
glLite jobs that are in fact so called “pilot jobs”, i.e. theigjob is used only to start up
a daemon which provides the allocated resource for thetsltbat connect to it. In our
case this daemon is the GridSobaever. Pilot jobs provide two advantages:

e Fault tolerance: Only those pilot jobs that start the Grld&alaemon successfully
will be available for clients to connect. Thus we only haveorgrces that are proven
to work. The downside is that it is difficult to control the pige number of active
resources.

e The provided resources can be used independently from tite igliddleware. This
gives us the intended interactive control of the resources.

Giggle simplifies the pilot job mechanism for the user by jng default jobs that
are sent to the gLite infrastructure whenever the user mguaore resources. Using
the interactive grid extensions, it is possible to alloceeral computers that are either
scattered across the grid or confined to one cluster or a catidn of both.

Every single pilot will be started on a WorkerNode (WN) by tgl.ilt is impossible to
know which software is installed at that particular WN. Tisisvhy giggle downloads and
installs a pre-built binary package of GridSolve togeth@hwhe most commonly used
libraries. Currently these packages are downloaded froralesarver.

For enhanced speed of startup time and network throughpahirg is supported.
Furthermore, shared filesystem clusters benefit from gaistdllation speed, because in
that case only one shared installation per cluster is chaig. After the installation, the
GridSolveserver is started. It connects to tlagent and is thereafter available for the user.
In order to accomplish this, we have defined infrastructereess, that carry out specific
tasks:

e The user has access to ttkevelopers workstation. This is typically his desktop or
laptop computer. Giggle and the GridSolve cliegg €lient) have to be installed.

e A webserver is used to store all software components which have to baliedton
the WorkerNodes by giggle. We cannot ship these componénti ite mechanisms
because then all packages are transferred via two additionguters, as can be seen
in Fig. 1.

e The servicehost runs the GridSolve ageng$_agent) and optionally, the proxy
(gs_proxy) . A separate host is currently required, because of speciiwdil re-
quirements which can not be easily integrated with the $gctequirements of a

10 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

webserver. Technically the servicehost can run on any gaibli accessible com-
puter, e.g. the above mentioned webserver.

~
Workstation Servicehost gLite User
gs_build_services . .. Services

7 Giggle
[gs_glite start €9g glite submit ll Matlab MCR
gs_start_matlab i gStagent | Comprte WN J WN)

/ = gs_proxy cluster WN WN
—_—
gs_glite_stop WN g WN N WN B WN 8 WN

Fig. 4. Architectural building blocks of giggle and their interiaxct.

Fig. 4 shows these three additional computers and their interaetith the gLite
hosts.

4.2 Giggle tools for creating services

Creating services (i.e. making functions available reigptéa the GridSolve mechanism
requires in principle only a few steps: definition of the nfdee and a recompilation using
the GridSolve provided togiroblem_compile (see Sectior3).

However, while developing our own services for GridSolveghite, we found that
it is better to include our services into the GridSolve byldcess and recompile the
service together with the whole GridSolve package. Thisasenstable when installing
the service and GridSolve in a different location on seveoahputers. We also found
that this approach holds when modifications to the undeglygmidSolve sources (e.g.
updates, fixes) are done. Thus we have facilitated this pso@eth the tools gs-service-
creator and gs-build-services) within giggle.

e gs-service-creator ((1)in Fig.4) generates a directory structure that contains
the required files for creation of a new service. The gs-sergreator is template-
based. Currently two templates — plain C RPC and Matlab dempintime RPC —
are supported. Furthermore a mechanism is included thabstspthe transport of
dynamically linked shared libraries to the server.

e gs-bui |l d-servi ces (2) is the tool that organises the compilation of GridSolve
and the service. It hides the complexity of integrating amie into the GridSolve
build system. The tool compiles the sources in a temporation, where the Grid-
Solve build specifications are modified to integrate the newise. The compilation
process also recompiles GridSolve. This makes the buildeghare longer, but we
found that this ensures a higher level of reproducibilitgxitility and robustness
against changes of the service or the underlying versionrmfS8lve. The output
of the build process is a package (.tar.gz) file that conthieservice. Optionally a
GridSolve distribution tarball can be created.

Interactive grid-access using GridSolve and Giggle 11

After a successful build, the generated packages have tegdeyed on the webserver
to be available for download by grid jobs.

4.3 Giggle tools for resource allocation

The gLite resource allocation is done via the gLite Userrfatee (Ul). We provide three
tools that avoid logging into the Ul and manage the involveiegjobs. Furthermore the
authentication to the grid is taken care of.

e gs-glite-start (3) launches the resource allocation. This tool starts @cha
of several steps: First it starts up the GridSolve companésgent and optionally
the proxy) on the servicehost (3a). Then it instructs (3i) dhite User Interface
(UI) to submit a given number of gLite-jobs (3c) to the resms of the interactive
grid project. The jobs download (3d) and install requirepetedencies and start the
GridSolve server. The server connects to the agent. ThadhieerNode is available
to the user via the GridSolve client.

e gs-glite-infocanbe used to display a short summary of the gLite jobs.

e gs-glite-stop (5) When the user is done using the grid, gs-stop-grid frees t
allocated resources and termindates the GridSolve daemOtiserwise resources
would remain allocated but unused.

Currently these tools rely on passwordless ssh in orderrnoeaxt to the gLite User
Interface machine. There the user commands are transtaggdté commands.

4.4 Giggle tools for the end-user

gs-start-nmatl ab (4) configures a users Matlab session so that it can acceds Gri
Solve resources. This involves configuring Matlab to findlteal GridSolve client in-
stallation as well as directing the client to the previoushrted agent.

Please note that Matlab is taken as an example represendétivany other applica-
tions. Being available for Java, C, Fortran, Octave and rtlteeesGridSolve client can be
used from various programming languages in different appibns.

5 MEASUREMENTS

We made a performance evaluation based on the CPU intems&pebenchmark. This
benchmark allows to specify the number of loops or iteratiand the amount of CPUs
to be used. Advantages of the loop benchmark are

e N0 communication: this is an important factor for scaling

e linear scaling: two iterations take twice as long as one

e even distribution: every CPU computes the same amountraftites.

12 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

With this benchmark we measured the performance charstitsrof our solution. This
will resemble both: the overhead introduced by GridSolvevels as an effect that origi-
nates from the different speeds of the CPUs that are asstgribd problem. This effect
may be called unbalanced allocation.

Within this series of measurements we can modify three petenst

e Number of gLite WNs. This is not the number of CPUs because ave no infor-
mation about how many CPUs are installed in the allocatechmas. GridSolve
however used all that are found.

e Number of processes that we use to solve our problem.
e Amount of iteration that we want to be computed.

We chose iterations between 10 and 1000 which correspond &n€@ 10 min run-
time on a single Pentium 1V-2400 CPU. The iterations werégritisted to the resources
provided by the production infrastructure of int.eu.griResources were allocated at
SAVBA-Bratislava, LIP-Lisbon, IFCA-Santander, Cyfrofi€takow and FZK-Karlsruhe.
Typically we have allocated 5 to 20 WorkerNodes (WNs), mésttdch contain 2 CPUs.
The precise number of CPUs is unknown.

We measured the time to compute the iterations over the nuofi@PUs used. Mea-
surements were repeated 10 times for averaging purposesgraphs show the inverse
of the computing time as a function of the number of proceggeswhich we divided
the benchmark. Out of the 10 repititions of each measuremeshow the average of all
measurements as well as the maximum and minimum curves. iffaeedce originates
from the dynamic nature of the grid. If one server exceedma timit, it will be termi-
nated. In this situation GridSolve chooses a differentussmwhere this part is computed
again. This leads to a prolonged computation of the wholelm®ark, hence a difference
between the “min” and the “max” curve. The min curve resemlbaldetter result while
the max curve stands for the longest runtime of the benchnvsiekrefer only to the the-
oretical and the min curve further in this discussion. Thapys also show a theoretical
curve, which is based on the assumption of ideal scaling ifigdgoubling the number of
processes, the result will be computed in half the time

The difference between the maximum and the minimum curvetiferoreason for
this difference is the unbalanced allocation of CPU spdeatsite have mentioned above.
Since these effects are of a random nature it is not possitderhpare them between the
different graphs.

Results are shown in Fi§.to 7.

The comparison between a measurement with a low numberafidges (Fig.5) and
one with more iterations (Figh) (6 s and 5 min respectively) reveals the overhead that is
caused by GridSolve. We observed that this overhead dementlee amount of CPUs
that we utilise and occurs mostly during submission ancectihn of results. This is also
indicated by the increased computing time for more than 4 €iRig. 5.

In all measurements we can find one point at which the curyesstslowing the the-
oretical prediction and continues horizontally. This pates that the compute time does
not decrease even if further increasing the number of gdualbcesses. This is because

Interactive grid-access using GridSolve and Giggle 13

1Time [1/s]

Fig.

1Time [L/s]

1/Time [1/s]

1.5

0.5

0.09 T T T T

6 WNSs 10 Iterations

Processes

5.6 gLite WNs allocated. 10iterations require 6 s on a PentiraPU.

6 WNs 500 lIterations

Average —+——
Theoretical ------
Min

L sk
0.08 Max =

L
o 5 10 15 20
Processes

. 6.500 iterations run 5 min on a Pentium-IV CPU, 30 s on the grid.

20 WNs 1000 Iterations

T
Average —+—
Theoretical --->-—
Min %o

Max =}

o 5 10 15 20 25 30
Processes

Fig. 7.with 20 WNs allocated and 1000 iterations we can the systexie $o 18 processes.

14 M. Hardt,*? K. Seymour,*! J.Dongarra,' M. Zapf,> N.V. Ruiter?

at this point the number of available CPUs is smaller thamthaber of processes. The
theoretical curve does not take this effect into account.

In 6 and7 we can see that even the min-curve grows slower than the optiftheo-
retical) curve. This is due to the heterogenous nature dftice In our pool of resources,
we have CPUs with different speeds. GridSolve allocatesastest CPU first and only
uses slower CPUs when all fast CPUs are already busy. Asdbedtical curve is extrap-
olated from the performance on only one CPU, it resemblegited scaling behaviour.
In Fig. 6 this can be observed at 6 and more processes, in6Rige can see this effect
already starting with 4 processes.

6 CONCLUSION

We are able to show that both GridSolve and its integratidh wiite via giggle work
well. Scaling of resource useage works in principle, butaerobstacles are still to over-
come. The showstopper regarding proper scaling is howthefact that the underlying
resources disappear. Nevertheless Gridsolve providesi# e a fault tolerant manner.

We have reached the goal of using the gLite infrastructusmimteractive, API-like
fashion from problem solving environments like Matlab.

7*

References

1. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, L. Philiplde Quinson, and F. Suter. A
scalable approach to network enabled servers (researel ragcture Notes in Computer
Science, 2400, 2002.

2. EGEE Project. gLite websitelite.web.cern.ch/glite

3. K. Egevang and P. Francis. The IP Network Address Traors(dAT). RFC 1631, May
1994.

4. Global Grid Forum Research Group on Programming Models.
http://wwmv. gridf orum org/ 7_APM APS. ht m

5. Interactive European Grid Project. Websitevw.interactive-grid.eu

6. K. Moore. Recommendations for the Design and Implemiamtatf NAT-Tolerant Applica-
tions. Internet-draft, February 2002. Work in Progress.

7. H. Nakada, M. Sato, and S. Sekiguchi. Design and Implemtiens of Ninf: Towards a
Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing
Issue, volume 15, pages 649-658, 1999.

8. K. Seymour, N. Hakada, S. Matsuoka, J. Dongarra, C. LedtHarCasanova. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. InRérashar, editoGRID
2002, pages 274-278, 2002.

9. Y. Tanimura, K. Seymour, E. Caron, A. Amar, H. Nakada, Yadka, and F. Desprez. In-
teroperability Testing for The GridRPC API Specificationpegd Grid Forum Informational
Document, February 2007.

http://glite.web.cern.ch/glite
http://www.gridforum.org/7_APM/APS.htm
http://www.interactive-grid.eu

