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Abstract

This paper describes the LINPACK Benchmark [41] and some of its variations commonly used to assess perfor-
mance of computer systems. Aside from the LINPACK benchmark suite, the TOP500 [43], and the HPL [48] code
are presented. The latter is frequently used to obtained results for TOP500 submissions. Information is also given on
how to interpret results of the benchmark and how the results fit into performance evaluation process.
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1 Introduction

The original LINPACK Benchmark is, in some sense, an accident. It was originally designed to assist users of the
LINPACK package [15] by providing information on execution times required to solve a system of linear equations.
The first “LINPACK Benchmark” report appeared as an appendix in the LINPACK Users’ Guide [15] in 1979. The
appendix comprised of data for one commonly used path in the LINPACK software package. Results were provided
for a matrix problem of size 100, on a collection of widely used computers (23 computers in all). This was done so
users could estimate the time required to solve their matrix problem by extrapolation.

Over the years additional performance data was added, more as a hobby than anything else, and today the collection
includes over 1300 different computer systems. In addition to the number of computers increasing, the scope of the
benchmark has also expanded. The benchmark report describes the performance for solving a general dense matrix
problemAx= b in 64-bit floating-point arithmetic at three levels of problem size and optimization opportunity: 100
by 100 problem (inner loop optimization), 1000 by 1000 problem (three loop optimization - the whole program), and
a scalable parallel problem. The names and rules for running the LINPACK suite of benchmarks is given in Table 1.

2 The LINPACK Package and Original LINPACK Benchmark

The LINPACK package is a collection of Fortran subroutines for solving various systems of linear equations. The
software in LINPACK is based on a decompositional approach to numerical linear algebra. The general idea is the
following. Given a problem involving a matrix,A, one factors or decomposesA into a product of simple, well-
structured matrices which can be easily manipulated to solve the original problem. The package has the capability of
handling many different matrix types and different data types, and provides a range of options.

The LINPACK package was based on another package, called the Level 1 Basic Linear Algebra Subroutines
(BLAS) [40]. Most of the floating-point work within the LINPACK algorithms is carried out by the BLAS, which
makes it possible to take advantage of special computer hardware without having to modify the underlying algorithm.

In the LINPACK Benchmark, a matrix of size 100 was originally used because of memory limitations with the
computers that were in use in 1979. Such a matrix has 10000 floating-point elements and could have been accommo-
dated in most environments of that time. At the time it represented alarge enoughproblem.

The algorithm used in the timings is based on LU decomposition with partial pivoting. The matrix type is real,
general, and dense, with matrix elements randomly distributed between−1 and 1. The random number generator used
in the benchmark is not sophisticated; rather its major attribute is its compactness.
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Benchmark Matrix Optimizations Parallel
name dimension allowed Processing

LINPACK 100 100 compiler –a

LINPACK 1000b 1000 manual –c

LINPACK Parallel 1000 manual Yes
HPLinpackd arbitrary manual Yes
a Compiler parallelization possible.
b Also known as TPP (Toward Peak Performance) or
Best Effort
c Multiprocessor implementations allowed.
d Highly-Parallel LINPACK Benchmark is also
known as NxN LINPACK Benchmark or High Parallel
Computing (HPC).

Table 1: Overview of nomenclature and rules for the LINPACK suite of benchmarks.

Operation type Operation count
addition 328350
multiplication 333300
reciprocal 99
absolute value 5364
comparison 4950
comparison with zero 5247

Table 2: Double precision operations counts for LINPACK 100’sDGEFA routine.

Solving a system of equations requiresO(n3) floating-point operations, more specifically, 2/3n3 + 2n2 + O(n)
floating-point additions and multiplications. Thus, the time (timen) required to solve such problems on a given machine
can be approximated with the LINPACK number (time100) by the following extrapolation formula:

timen =
time100·n3

1003 .

Operation counts for the most computationally intensive routine of the benchmark are given in Table 2. The table
shows, that even for a small matrix (of order 100), multiplications and additions dominate the total operation count.
The extrapolation formula is also useful because, on most modern CPUs, floating-point multiplications and additions
take (almost) the same number of cycles.

3 Performance Characterization and Improvement

3.1 Concepts

The performance of a computer is a complicated issue, a function of many interrelated quantities. These quantities
include the application, the algorithm, the size of the problem, the high-level language, the implementation, the human
level of effort used to optimize the program, the compiler’s ability to optimize, the age of the compiler, the operating
system, the architecture of the computer, and the hardware characteristics. The results presented for benchmark
suites should not be extolled as measures of total system performance (unless enough analysis has been performed to
indicate a reliable correlation of the benchmarks to the workload of interest) but, rather, as reference points for further
evaluations.
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From this point onwards, by performance we mean the number of millions of floating point operations per second
often measured in terms of Megaflops, (Mflop/s). In the context of the LINPACK benchmark, Gigaflops (Gflop/s) are
also used as the number of billions of floating point operations per second. It is customary to include both additions
and multiplications in the count of Mflop/s, and the operands are assumed to be 64-bit floating-point values.

The manufacturer usually refers to peak performance when describing a system. This peak performance is arrived
at by counting the number of floating-point additions and multiplications that can be completed in a period of time,
usually the cycle time of the machine. For example, an Intel Pentium III with a cycle time of 750 MHz has two floating
point units: an adder and multiplier. During each cycle the results of either the adder or multiplier can be completed,
and thus the peak performance is:

Rpeak=
1 operation

1 cycle
·750 MHz= 750 Mflop/s.

Cycle Peak LINPACK 100 System
Machine time Performance Performance Efficiency

[MHz] [Mflop/s] [Mflop/s] [%]
Intel Pentium III 750 750 138 18.4
Intel Pentium 4 2,530 5,060 1190 23.5
Intel Itanium 800 3,200 600 18.5
AMD Athlon 1,200 2,400 557 23.3
Compaq Alpha 500 1,000 440 44.0
IBM RS/6000 450 1,800 503 27.9
NEC SX-5 250 8,000 856 10.7
Cray SV-1 300 1,200 549 45.7

Table 3: Theoretical peak and LINPACK 100 performance numbers of various CPUs.

Table 3 shows the peak performance for a number of high-performance computers. We treat the peak theoretical
performance as a limit that is guaranteed by the manufacturer not to be exceeded by programs – a sort ofspeed of
light for a given computer. The LINPACK Benchmark illustrates this point quite well. In practice, as Table 3 shows,
there may be a significant difference between peak theoretical and actual performance [14]. We are not claiming that
Table 3 reflects the overall performance of a given system. On the contrary, we believe that no single number ever
can. It does, however, reflect the performance of a dedicated machine for solving a dense system of linear equations.
Since the dense matrix problem is very regular, the performance achieved is quite high, possibly still too high for some
common applications to achieve and to be characterized by. Yet, LINPACK numbers give a good correction of peak
performance.

In the following sections, we focus on performance improving techniques which are relevant to the LINPACK
benchmark:loop unrollinganddata reuse.

3.2 Loop Unrolling

It is a frequently observed fact that the bulk of the central processor time for a program is localized in 3% or less of the
source code [46]. Often the critical code (from a timing perspective) consists of one or a few short inner loops typified,
for instance, by the scalar product of two vectors. On scalar computers, simple techniques for optimizing of such
loops should then be most welcome. Loop unrolling (a generalization ofloop doubling) applied selectively to time-
consuming loops is just such a technique [21, 39]. When a loop is unrolled, its contents is replicated one or more times,
with appropriate adjustments to array indices and loop increments. Loop unrolling enhances performance, because
there is the direct reduction in loop overhead (the increment, test, and branch function). For advanced computer
architectures (employing segmented or pipe-lined functional units), the greater density of non-overhead operations
permits higher levels of concurrency within a particular segmented unit (eg., unrolling could allow more than one
multiplication to be concurrently active on a segmented machine such as the IBM Power processor). Furthermore,
unrolling often increases concurrency between independent functional units on computers so equipped or ones with
fused multiple-add instructions (the IBM Power processor, which has independent multiplier and adder units, could
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obtain concurrency between addition for one element and multiplication for the following element). However, on
machines with vector instructions, the unrolling technique has the opposite effect. Compilers would always try to
detect vector operations in the loop, but the unrolling inhibits it and the resulting vector code might become scalar and
consequently the performance degrades.

3.3 Vector Operations

To observe data reuse patterns we examine the algorithm used in LINPACK and look at how the data are referenced.
We see that, at each step of the factorization process, vector operations are performed that modify a full submatrix
of data. This update causes a block of data to be read, updated, and written back to central memory. The number
of floating-point operations is 2/3n3, and the number of data references, both loads and stores, is 2/3n3. Thus, for
every add/multiply pair we must perform a load and store of the elements, unfortunately obtaining little reuse of data.
Even though the operations are fully vectorized, there is a significant bottleneck in data movement, resulting in poor
performance. On vector computers this translates into two vector operations and three vector-memory references,
usually limiting the performance to well below peak rates. On super-scalar computers this results in a large amount
of data movement and updates. To achieve high-performance rates, thisoperation-to-memory-reference ratemust be
higher.

CPU Fastest and most expensive
Registers

Level 1 Cache
Level 2 Cache
Level 3 Cache
Local Memory
Shared Memory

Distributed Memory
Fast Secondary Storage
Slow Secondary Storage Slowest and least expensive

Figure 1: Computer storage hierarchy.

In some sense this is a problem with doing simple vector operations on a vector or super-scalar machine. The
bottleneck is in moving data and the rate of execution is limited by this quantity. We can see this by examining
the rate of data transfers and the peak performance. The Level 1 BLAS operate only on vectors. The algorithms
as implemented tend to do more data movement than is necessary. As a result, the performance of the routines in
LINPACK suffers on high-performance computers where data movement is as costly as floating-point operations.
Today’s computer architectures usually have multiple stages in the memory hierarchy as shown in Figure 1. One can
gain high performance by restructuring algorithms to exploit this hierarchical organization. To come close to gaining
peak performance, one must optimize the use of the lowest level of memory (i.e., retain information as long as possible
before the next access to lower level of memory hierarchy), obtaining as much reuse as possible.

3.4 Matrix-Vector Operations

One approach to restructuring algorithms to exploit hierarchical memory involves expressing the algorithms in terms
of matrix-vector operations. These operations have the benefit that they can reuse data and achieve a higher rate of
execution than the vector counterpart. In fact, the number of floating-point operations remains the same; only the
data reference pattern is changed. This change results in a operation-to-memory-reference rate on vector computers of
effectively 2 vector floating-point operations and 1 vector-memory reference. The Level 2 BLAS [17] were proposed
in order to support the development of software that would be both portable and efficient across a wide range of
machine architectures, with emphasis on vector-processing machines. Many of the frequently used algorithms of
numerical linear algebra can be coded so that the bulk of the computation is performed by calls to Level 2 BLAS
routines; efficiency can then be obtained by utilizing tailored implementations of the Level 2 BLAS routines. On
vector-processing machines one of the aims of such implementations is to keep the vector lengths as long as possible,
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and in most algorithms the results are computed one vector (row or column) at a time. In addition, on vector register
machines performance is increased by reusing the results of a vector register, and not storing the vector back into
memory.

Unfortunately, this approach to software construction is often not well suited to computers with a hierarchy of
memory and true parallel-processing computers. For those architectures, it is often preferable to partition the matrix
or matrices into blocks and to perform the computation by matrix-matrix operations on the blocks [18, 20, 23]. By
organizing the computation in this fashion we provide for full reuse of data while the block is held in the cache or
local memory. This approach avoids excessive movement of data to and from memory and gives asurface-to-volume
effect for the ratio of operations to data movement. In addition, on architectures that provide for parallel processing,
parallelism can be exploited in two ways:

1. operations on distinct blocks may be performed in parallel,

2. within the operations on each block, scalar or vector operations may be performed in parallel.

3.5 Matrix-Matrix Operations

To accommodate portability of matrix-matrix operations, a set of Level 3 BLAS have been developed; targeted at the
matrix-matrix operations [16]. If the vectors and matrices involved are of ordern, then the original BLAS (Level 1)
include operations that are of orderO(n), the extended or Level 2 BLAS provide operations of orderO(n2), and the
latest BLAS provide operations of orderO(n3) (hence the use of the term Level 3 BLAS). There is a long history of
block algorithms: early algorithms utilized a small main memory, with tape or disk as secondary storage [4, 9, 10, 13,
26, 42]. More recently, several researchers have demonstrated the effectiveness of block algorithms on a variety of
modern computer architectures with vector-processing or parallel-processing capabilities [5, 6, 8, 9, 20, 23, 36, 49, 50].
Additionally, full blocks (and hence the multiplication of full matrices) might appear as a subproblem when handling
large sparse systems of equations [13, 19, 27, 33]. Finally, it has been shown that matrix-matrix operations can be
exploited further. LU factorization (the method of choice for the LINPACK benchmark code) can be formulated
recursively [35]. The recursive formulation achieves better performance [53] than a block algorithm [2]. This is due to
lower memory traffic of the recursive method which is achieved through better utilization of Level 3 BLAS. The result
carries on to the case of out-of-core computations [54]. Interestingly, the recursive algorithm cannot be implemented
in standard Fortran 77 (due to the lack of recursive functions and subroutines) unless explicit code for handling frame
stack is provided [35] or explicit calculation of update sequence is performed. In Fortran 90, on the other hand,
implementation requires careful consideration of the runtime data copying process which may significantly decrease
the performance. A much more elegant implementation may be easily achieved in C.

4 LINPACK Benchmark Suite Evolution

Over the past several years, the LINPACK Benchmark has evolved from a simple listing for one matrix problem to
an expanded benchmark describing the performance at three levels of problem size on several hundred computers.
The benchmark today is used by scientists worldwide to evaluate computer performance, particularly for innovative
advanced-architecture machines.

As mentioned earlier, performance is a complex issue. To accommodate its evaluation, the LINPACK benchmark
suite provides three separate benchmarks that can be used to evaluate computer performance on a dense system of
linear equations: the first for a 100 by 100 matrix, the second for a 1000 by 1000 matrix. The third benchmark, in
particular, is dependent on the algorithm chosen by the manufacturer and the amount of memory available on the
computer being benchmarked. For details refer to Table 1.

In the case of LINPACK 100, the problem size was relatively small and no changes were allowed to the LINPACK
software. Moreover, no explicit attempt was made to use special hardware features or to exploit vector capabilities
or multiple processors. The compilers on some machines may, of course, generate optimized code that itself accesses
special features. Thus, as described before, many high-performance machines may not have reached their asymptotic
execution rates. However, the benchmark is still important because it quite well approximates performance rates of
numerically intensive codes written by the user and optimized by an optimizing compiler.

The fact that a vendor-supplied code could achieve much higher performance rates than any compiler-optimized
code is reflected in the LINPACK benchmark suite by LINPACK 1000. To begin with, the problem size is larger
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Figure 2: Asymptotic performance rate of BLAS routinesDAXPY (Level 1), DGEMV (Level 2), andDGEMM (Level 3)
and LU factorization based on BLAS Level 3 on AMD Athlon 1200 Mhz processor (BLAS routines implementation
comes from ATLAS 3.2.1 [22, 25]).

(matrix of order 1000). In addition, modifying (or even replacing) the algorithm and software is permitted to achieve
as high an execution rate as possible. Thus, the hardware has more opportunity for reaching so callednear-asymptotic
rates. Figure 2 illustrates the concept of asymptotic rate: BLAS routines exhibit higher performance rate as the matrix
size increases and algorithm set up overhead becomes negligible. But at certain point the performance rate seizes to
get larger as the system riches its optimal behavior for a given routine. Other linear algebra, including LINPACK’s
LU factorization shown for comparison in Figure 2, have their asymptotic rates as well.

To guard against excessive optimization encroaching upon correctness of the solution, constraints are imposed on
the setup of the matrix and numerical properties of the solution. This is achieved by requiring the use of the driver
code from LINPACK 100 which generates random matrix entries, calls the routines to solve the problem (these may be
replaced by the user), verifies that the answer is correct, and computes the total number of operations (independently
of the method) as 2n3/3+2n2 (wheren= 1000). The answer is correct if it has the same relative accuracy as standard
techniques such as Gaussian elimination used in the LINPACK package. By relative accuracy we mean that the scaled
residual is a slowly growing function of matrix dimensionn. For completeness, we only mention that this is achieved
through the following standard result which holds regardless of conditioning ofA:

‖Ax−b‖
‖A‖ · ‖x‖ ·n· ε

= O(1)

where: A ∈ Rn×n; x,b ∈ Rn, ε is machine precision for 64-bit floating point arithmetic (ε = max
x>0

float(1+ x) = 1,

float(x) is machine representation ofx), and‖ · ‖ is any consistent matrix and vector norm.
With the arrival of parallel computers yet another requirement of LINPACK benchmark had to be reconsidered.

The, so called, HPLinpack benchmark allows for matrix dimensionn to be made as large as necessary so that asymp-
totic performance can be achieved. The following quantities are reported for each system:

• Rmax the performance in Gflop/s for the largest problem run on a machine,

• Nmax the size of the largest problem run on a machine,

• N1/2 the size where half theRmax execution rate is achieved,

• Rpeak the theoretical peak performance Gflop/s for the machine.
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To summarize, the rules for HPLinpack are: solve systems of equations by some method allow the problem sizen
to vary, and measure the execution time for each size problem. In computing the floating-point execution rate, use
2n3/3+2n2 operations indpendent of the actual method used (if Gaussian elimination is chosen then partial pivoting
must be used), compute and report a residual for the accuracy of solution as‖Ax−b‖/(‖A‖ · ‖x‖).

5 Top500 List

Statistics on high-performance computers are of major interest to manufacturers and potential users. They wish to
know not only the number of systems installed, but also the location of the various supercomputers within the high-
performance computing community and the applications for which a computer system is being used. Such statistics
can facilitate the establishment of collaborations, the exchange of data and software, and provide a better understanding
of the high-performance computer market.

Statistical lists of supercomputers are not new. Every year since 1986, Hans Meuer [43] has published system
counts of the major vector computer manufacturers, based principally on those at the Mannheim Supercomputer Sem-
inar. Statistics based merely on the name of the manufacturer are no longer useful, however. New statistics are
required that reflect the diversification of supercomputers, the enormous performance difference between low-end and
high-end models, the increasing availability of massively parallel processing (MPP) systems, and the strong increase
in computing power of the high-end models of workstations such as symmetric multiprocessors (SMP).

To provide this new statistical foundation, the TOP500 list was created in 1993 to assemble and maintain a list of
the 500 most powerful computer systems. It first edition it was partially based partially on statistical lists published
by others for different purposes [1, 38] while today it relies on submissions from computer system users and ven-
dors. The list is compiled twice a year with the help of high-performance computer experts, computational scientists,
manufacturers, and the Internet community in general.

It is true that, in the list, computers are ranked by their performance on the HPLinpack benchmark. However, in an
attempt to obtain uniformity across all computers in performance reporting, the algorithm used in solving the system
of linear equations in the benchmark routine must conform to the standard operation count for LU factorization with
partial pivoting. In particular, the operation count for the algorithm must be 2/3n3 +O(n2) floating point operations.
This excludes the use of a fast matrix multiply algorithm like Strassen’s [3, 34, 47, 52] or Coppersmith and Wino-
grad’s [12] methods for matrix multiplication. Even though there is no specific requirement for the method used for
measuring performance, there exists a reference implementation of the benchmark called HPL [48]. While meant only
as a guideline, it is being widely used to provide data for the TOP500 list since it uses external routines for matrix-
matrix operations which are supplied by the vendor and are very well tuned for a given computer system. Detailed
description of HPL is provided in the following section. As closing remarks, we would like to mention other soft-
ware packages and technologies that can be used for TOP500 submission. They include: HPF [29, 30], PESSL [37],
PLAPACK [57], ScaLAPACK [7] or even LAPACK [2] combined with either OMP [45] orpthreads [28].

6 HPL

This section gives a rather detailed description of the HPL code. However, to limit the size of this exposition, substan-
tial amount of technical information given is omitted for which the reader is referred to the supplied references.

6.1 Overview

HPL is a portable implementation of the HPLinpack benchmark written in C. At the same time, it can be regarded as
a software package that generates, solves, checks and times the solution process of a random dense linear system of
equations on distributed-memory computers. The package uses 64-bit floating point arithmetic and portable routines
for linear algebra operations and message passing. The former ones can either be BLAS or Vector Signal Image
Processing Library (VSIPL) [51] while the latter ones are from MPI [31, 32]. The true advantage of HPL is the fact
that it allows selection of multiple factorization algorithms. Figure 3 shows an outline of HPL’s driver code, which is
modeled after the original LINPACK 100 benchmark code.
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/* Generate and partition matrix data among MPI computing nodes. */
/* ... */

MPI_Barrier(...); /* All the nodes start at the same time. */

HPL_ptimer(...); /* Start wall-clock timer. */

HPL_pdgesv(...); /* Solve system of equations. */

HPL_ptimer(...); /* Stop wall-clock timer. */

MPI_Reduce(...); /* Obtain the maximum wall-clock time. */

/* Gather statistics about performance rate (base on the maximum wall-clock time)
and accuracy of the solution. */
/* ... */

Figure 3: Main computational steps performed by HPL to obtain the HPLinpack benchmark rating.

6.2 Algorithm

HPL generates and solves a linear system of equations of ordern:

Ax= b; A∈ Rn×n; x,b∈ Rn

by first computing LU factorization with row partial pivoting of then by n+1 coefficient matrix[A,b]:

Pr [A,b] = [[L ·U ],y]; Pr ,L,U ∈ Rn×n; y∈ Rn.

Since the row pivoting (represented by the permutation matrixPr ) and the lower triangular factorL are applied tob as
the factorization progresses, the solutionx is obtained in one step by solving the upper triangular system:

Ux = y.

The lower triangular matrixL is left unpivoted and the array of pivots is not returned.
Figure 4 shows 2-D block cyclic data distribution used by HPL. The data is distributed onto a two-dimensional grid

(of dimensionsP by Q) of processes according to the block-cyclic scheme to ensure good load balance as well as the
scalability of the algorithm. Then by n+1 coefficient matrix is logically partitioned into blocks (each of dimension
nB by nB; wherenB is referred to asblocking factor), that are cyclically dealt onto theP by Q process grid. This is
done in both dimensions of the matrix.

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

Figure 4: Ownership of dense subblocks in two-dimensional block cyclic data distribution used by HPL. The number
of processors is 4 (named P0, P1, P2, and P3), they are organized in 2 by 2 grid (P= Q = 2). The number of subblocks
is 4 in both dimensions (n/nB = 4).

The right-looking variant [18] has been chosen for the main loop of the LU factorization. This computation is
logically partitioned with the same block sizenB that was used for the data distribution. This means that, at each
iteration of the loop, a panel ofnB columns is factored, and the trailing submatrix is updated.

At a given iteration of the main loop, and because of the cartesian property of the distribution scheme, each panel
factorization occurs in one column of processes. This particular part of the computation lies on the critical path of the
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overall algorithm. For this operation, the user is offered a choice of three (Crout, left- and right-looking) recursive
variants based on matrix-matrix multiply. The software also allows the user to choose in how many sub-panels the
current panel should be divided at each recursion level. Furthermore, one can also select at run-time the recursion
stopping criterion in terms of the number of columns left to factor. When this threshold is reached, the sub-panel will
then be factored using one of the three (Crout, left- or right-looking) factorization algorithms based on matrix-vector
operations. Finally, for each panel’s column, the pivot search and the associated swap and broadcast operations of
the pivot row are combined into one single communication step. A binary-exchange (leave-on-all) reduction performs
these three operations at once what reduces the number of messages exchange but requires high-performance network
to perform well.

Once the panel factorization has been performed, the factored panel of columns is broadcast to the other process
columns. There are many possible broadcast algorithms and the software currently offers the following variants:

• Increasing ring,

• Modified increasing ring,

• Increasing two-ring,

• Modified increasing two-ring,

• Bandwidth-reducing,

• Modified bandwidth-reducing.

The modified variants relieve the next processor (the one that would participate in factorization of the panel after
the current one) from the burden of sending messages (otherwise it has to receive as well as send matrix update data).
The ring variants propagate the update data in a single pipeline fashion, whereas the two-ring variants propagate data
in two pipelines concurrently. The bandwidth-reducing variants [11, 24, 34, 55, 56] divide a message to be sent into
a number of pieces and scatter it across a single row of the grid of processors so that more messages are exchanged
but the total volume of communication is independent of number of processors. This becomes particularly important
when the computing nodes are much faster relative to the interconnect.

Once the current panel has been broadcast (or during the broadcast operation) the trailing submatrix has to be
updated. As mentioned before, the panel factorization lies on the critical path. This means that when thekth panel
has been factored and then broadcast, the next most urgent task to complete is factorization and broadcast of panel
k+ 1. This technique is often referred to as alook-ahead(or send-ahead) in the literature. HPL allows to select
various depths of look-ahead. By convention, a depth of zero corresponds to having no look-ahead, in which case the
trailing submatrix is updated by the panel currently broadcast. Look-ahead consumes some extra memory to keep all
the panels of columns currently in the look-ahead pipe. Our experimental results show that a look-ahead of depth 1 or
2 is most likely to achieve the best performance gain.

The update of the trailing submatrix by the last panel in the look-ahead pipe is performed in three phases. First,
the pivots must be applied to form the current row panel ofU . Second, upper triangular solve using the column
panel occurs. Finally, the updated part ofU needs to be broadcast to each process within a single column so that the
local rank update of sizenB can take place. It has been decided to combine the swapping and broadcast ofU at the
cost of replicating the solve. HPL provides two algorithms for this communication operation: one is based on the
binary-exchange algorithm and the second one on bandwidth-reducing techniques. The former variant is a modified
leave-on-all reduction operation. The latter one has communication volume complexity that solely depends on the size
of U (the number of process rows only impacts the number of messages being exchanged) and, consequently, should
outperform the previous variant for large problems on large machine configurations. In addition, both of the previous
variants may be combined in a single run of the code.

After the factorization has ended, the backward substitution remains to be done. HPL uses look-ahead of depth one
to do this. The right hand side is forwarded in process rows in a decreasing-ring fashion, so that we solveQ·nB entries
at a time. At each step, this shrinking piece of the right-hand-side is updated. The process just above the one owning
the current diagonal block of the matrix updates its lastnB entries of vectorx, forwards it to the previous process
column, and then broadcasts it in the process column in a decreasing-ring fashion. The solution is then updated and
sent to the previous process column. The solution of the linear system is left replicated in every process row.
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To verify the result, the input matrix and right-hand side are regenerated. The following scaled residuals are
computed (ε is the relative machine precision):

rn =
‖Ax−b‖∞

‖A‖1 ·n· ε

r1 =
‖Ax−b‖∞

‖A‖1 · ‖x‖1 · ε

r∞ =
‖Ax−b‖∞

‖A‖∞ · ‖x‖∞ · ε

A solution is considered numerically correct when all of these quantities are of orderO(1).
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Figure 5: Comparison of HPL performance with three different interconnects: Gigabit Ethernet, Myrinet, and Fast
Ethernet; on top of IP and Myrinet’s native layer GM. The process grid consist of 4×4 Pentium III 550 MHz CPUs.

6.3 Performance Results

The first set of performance results is shown in Figure 5. They, just like Figure 2, reveal asymptotic behavior of
performance on a cluster of Pentium III 550 MHz processors. In addition, the figure shows how differences between
messaging software (Myrinet GM and TCP/IP stack) and hardware (Myrinet, Gigabit Ethernet, and Fast Ethernet)
influence benchmarking results.

CPU EV67 667 Mhz
OS True64 ver. 5
C compiler cc ver. 6.1
C flags -arch host -tune host -std -O5
MPI native (linker flags:-lmpi -lelan)
BLAS CXML
Date September 2000

Table 4: Description of the Compaq cluster used in tests.
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Performance tests were also performed on a larger system – a Compaq cluster installed at Oak Ridge National
Laboratory in Tennessee, U.S.A. This cluster is listed at position 90 on the June 2001 TOP500 list. Its description and
performance is given in Tables 4 and 5. The LINPACK benchmark numbers for this system are presented in Table 6.
All of the results, including the TOP500 submission for this system, were obtained with HPL. HPL was also used
to benchmark IBM system at Oak Ridge National Lab which is listed at position 8 on the June 2002 TOP500. The
system has 864 IBM Power4 processors. Performance data of this processor is given in Table 7.

Processor Grid Matrix Dimension
Dimension 5000 10000 25000 53000

8 by 8 26.37 45.00 60.99 67.50

Table 5: Performance (in Gflop/s) of HPL on a Compaq cluster with 64 computing nodes.

CPUs/Nodes N1/2 Nmax Rmax E
[Gflop/s] [%]

1/1 150 6625 1.14 100
4/1 800 12350 4.36 95.6
16/4 2300 26500 17.0 93.2
64/16 5700 53000 67.5 92.5
256/64 14000 106000 263.6 90.1

Table 6: LINPACK benchmark numbers for the Compaq cluster obtained using HPL.

7 The Future of the Benchmark

Rather than embarking in a risky fortune-telling, we will describe recent trends in high performance computing which,
we believe, will shape the near future of the LINPACK benchmark suite.

One of such trends is the ongoing improvement of CPU hardware which results in making Moore’s law [44]
reality. However, it is interesting to observe how the peak performance race (marketed to the public in the form of
ever increasing clock rates) leaves behind much more practical metrics such as LINPACK numbers. Table 7 shows
evolution of characteristics of the key hardware components and performance numbers of two widely used families of
superscalar processors. The performance numbers were given as percentages of the peak to show the decreasing trend
of achievable computing power. Partially, it can attributed to insufficient amount of level 1 cache which cannot provide
enough buffering of the increased clock rates of the CPU and the system bus. Also, the tuning of vendor libraries lags
behind the hardware development. The latter can be alleviated by self-tuning libraries such as ATLAS [22, 25] and so
we are most likely to see proliferation of such “intelligent software” which encapsulates years of experience of experts
and automates deployment effort of existing software to new hardware.
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