Usage of the SCALASCA toolset
for scalable performance analysis
of large-scale parallel applications®

Felix Wolf'2, ErikaAbrahant, Daniel Becke}?, Wolfgang Frings,
Karl FurlingeP, Markus Geimet, Marc-André Hermanrs Bernd Moht,
Shirley Mooré, Matthias Pfeife}, Zoltan Szebenyi?, and Brian J. N. Wylié

1 Julich Supercomputing Centre, ForschungszentrumhliBermany
{f.wol f, e.abraham d.becker, w frings, mgeinmer, ma.hermanns,
b. mohr, mpfeifer, z.szebenyi, b.wlie}@z-juelich.de
2 Department of Computer Science and Aachen Institute fomAded Study in
Computational Engineering Science, RWTH Aachen Univgr&ermany
3 Innovative Computing Laboratory, University of Tennesdé8A
{karl, shirley}@s.utk.edu

1 Introduction

Supercomputing is a key technology pillar of modern sciera@dengineering, indis-
pensable to solve critical problems of high complexity. Wewide efforts to build
machines with performance levels in the petaflops rangeadkaige that the re-
quirements of many key applications can only be met by the ambsanced custom-
designed large-scale computer systems. However, as ajpigite for their produc-
tive use, thedpCc community needs powerful and robust performance-andiysis
that make the optimization of parallel applications bothreneffective and more ef-
ficient. Such tools not only help improve the scalability ictweristics of scientific
codes and thus expand their potential, but also allow doergierts to concentrate
on the science underneath rather than to spend a majoofmaattiheir time tuning
their application for a particular machine.

As the current trend in microprocessor development coasinthis need will be-
come even stronger in the future. Facing increasing povesigition and with little
instruction-level parallelism left to exploit, computechitects are realizing further
performance gains by using larger numbers of moderatelypfasessor cores rather
than by further increasing the speed of uni-processors.cddsequence, supercom-
puter applications are being required to harness much hagwgrees of parallelism
in order to satisfy their growing demand for computing pawéith an exponentially

* This work has been supported by the Helmholtz AssociatiateuGrants No. VNG-118
and No. VH-VI-228 (‘VI-HPS’) and by the Federal Ministry fétesearch and Education
(BMBF) under Grant No. 011S07005C (‘ParMA).

2 F. Wolf et al.

rising number of cores, the often substantial gap betweak performance and the
performance actually sustained by production codes [6kfeeted to widen even
further. Finally, increased concurrency levels place bigicalability demands not
only on applications but also on parallel programming t¢d@. When applied to

larger numbers of processes, familiar tools often ceaseott satisfactorily (e.g.,

due to escalating memory requirements, failing display8mated 1/0 bandwidth).

Developed at the Julich Supercomputing Centre in coojoeratith the Univer-
sity of Tennesse&sCALASCA s a performance-analysis toolset that has been specif-
ically designed for use on large-scale systems includig BBue Gene and Cray
XT, but is also well-suited for small- and medium-scakec platforms.SCALASCA
supports an incremental performance-analysis procesitegrates runtime sum-
maries with in-depth studies of concurrent behavior vianétecing, adopting a
strategy of successively refined measurement configugatfodistinctive feature of
SCALASCA is its ability to identify wait states that occur, for examphs a result
of unevenly distributed workloads. Especially when tryingcale communication-
intensive applications to large processor counts, suchskaties can present severe
challenges to achieving good performance. Compared todtiggessat0JAK [11],
SCALASCA can detect such wait states even in very large configurabiom®cesses
using a novel parallel trace-analysis scheme [3].

In this article, we give an overview &fCALASCA and show its capabilities for
diagnosing performance problems in large-scale pargbglieations. First, we re-
view theSCALASCA analysis process and discuss basic usage. After presénéing
SCALASCA instrumentation and measurement systems in Section 3p8etex-
plains how its trace analysis can efficiently identify wd#tes in communication
and synchronization operations even in very large conftgura of processes, be-
fore how execution performance analysis reports can beaictigely explored to
identify problems is demonstrated in Section 5. FinallySattion 6, we outline our
development goals for the coming years.

2 Overview

The current version 0§CALASCA supports measurement and analysis ofnire,
Opemvip and hybrid programming constructs most widely used in lyigitlalable
HPC applications written in C/C++ and Fortran on a wide rangeusfentHpC plat-
forms. Usage is primarily via thecal asca command with appropriate action flags.
Figure 1 shows the basic analysis workflow supporteddy ASCA. Before any
performance data can be collected, the target applicatigst beinstrumented, that
is, it must be modified to record performance-relevant essetenever they occur.
On most systems, this can be done completely automaticsithgcompiler support;
on other systems a mix of manual and automatic instrumentatiechanisms is of-
fered. When running the instrumented code on the parallehina, the user can
choose between generating a summary report (aka profilb) agigregate perfor-
mance metrics for individual function call paths, or gemiagaevent traces recording
individual runtime events from which a profile or time-liniswalization can later be

SCALASCA 3

v Optimized measurement configuration
Measurement |1] Summary
library report

Instr.

target | Local Parallel I Pattern
application _4 event traces pattern search report
’ i |
—_—

Profile
browser

Global
trace

Sequential Pattern
pattern search report

D
Pattern
trace

@ 5 Exported Third-party
onversion trace trace
browser

Fig. 1. scALASCA's performance analysis workflow.

produced. The first option is useful to obtain an overviewhefperformance behav-
ior and also to optimize the instrumentation for later trge@eration. Since traces
tend to become very large, this step is usually recommenefetddchoosing the sec-
ond option. When tracing is enabled, each process generdtase file containing
records for all its process-local events. After programmiaation,SCALASCA loads
the trace files into main memory and analyzes them in panaiely as mangprus
as have been used for the target application itself. DutieganalysisSSCALASCA
searches for characteristic patterns indicating waiestand related performance
properties, classifies detected instances by categoryuartities their significance.
The result is a pattern-analysis report similar in struetorthe summary report but
enriched with higher-level communication and synchratiizeinefficiency metrics.
Both summary and pattern reports contain performance esefor every function
call-path and system resource which can be interactivgdijoesd in a graphical pro-
file browser (Figure 3). As an alternative to the automatizde, the event traces can
be converted and investigated using third-party trace beosvsuch as Paraver [4, 7]
or VAMPIR [5, 9], taking advantage of their powerful time-line visaations and
rich statistical functionality.

3 Instrumentation and M easurement

SCALASCA offers analyses based on two different types of performalata: (i)

aggregated statistical summaries and (ii) event tracesstBying which process
consumes how much time in which call-path, the summary teporides a useful
overview of an application’s performance behavior. Beeatigsggregates the col-
lected metrics across the entire execution, the amounttafisi#éargely independent
of the program duration. This is why runtime summarizat®thie first choice for

4 F. Wolf et al.

very long-running programs working on realistic input da&és and models. The
summary metrics measured wiltALASCA include wall-clock time, the number of
times a call-path has been visited, message counts, bgtestéred, and a rich choice
of hardware counters available via thepi library [2].

In contrast, event traces allow the in-depth study of paraltogram behavior.
Tracing is especially effective for observing the inteiats between different pro-
cesses or threads that occur during communication or sgnization operations and
to analyze the way concurrent activities influence eachristiperformance. When
an application is tracedCALASCA records individual performance-relevant events
with timestamps and writes them to a trace file (one per pg)desde analyzed in a
subsequent step.

To effectively monitor program executioBCALASCA intercepts runtime events
critical to communication and computation activities. $&events include enter-
ing and leaving functions or other code regions as well aslisgnand receiving
point-to-point messages or participation in collectivencounication. Whereas the
communication-related event types are crucial to studyirttexactions among dif-
ferent processes and to identify wait states, functionesntnd exits are needed to
understand the computational requirements and the coimtexhich the most de-
manding communication operations occur.

The application must be instrumented to provide notificatibthese events dur-
ing measurement, using function calls inserted at spenifiortant points (“events”)
which call into thescaLASCA measurement library. Just linking the application with
the measurement library already ensures that all evestiecelomP 1 operations are
properly captured. For Operp, a source preprocessor is used which automatically
instruments directives and pragmas for parallel regiaies,@d many compilers are
capable of adding instrumentation to every function orirmuéntry and exit. Finally,
programmers can manually add their own custom instrumientahnotations in the
source code for important regions (such as phases or loofisnctions when this
is not done automatically by the compiler): these annatatiman are in the form of
pragmas or macros which are ignored when instrumentatiootisonfigured.

Instrumentation configuration and processing of source éite achieved by pre-
fixing the sCALASCA instrumenter to selected compilation commands and the final
link command, without requiring other changes to optimaatievels or the build
process.

scal asca -instrunment <conpile-or-I|ink-comand>

% scal asca -instrument npicc -c¢ foo.c

% scal asca -instrunment f90 -o bar -opennp bar.f90

% scal asca -instrunent npif90 -o fubar -opennp bar.f90 foo.0

A simple means to be able to conveniently instrument anerfiplication, is
to add a ‘preparer’ prefix to compile and link commands in itakiéfile(s), which
is undefined by default and results in a regular uninstruetehuild, or when the
preparer is set to th@CALASCA Instrumenter then an instrumented build is produced.

SCALASCA 5

PREP =
MPI CC = $(PREP) npicc
MPI FC = $(PREP) npi f 90
fubar: bar.f90 foo.0
$(MPIFC) -0 $@-opennmp bar.f90 foo.o0

% make PREP="scal asca -instrument"

ThescALASCA measurement system that gets linked with instrumentedcappl
tion executables can be configured to allow runtime summanig/or event traces
to be collected, along with optional hardware counter ragti\ unique experiment
archive is created to contain all of the measurement angsisartifacts, including
configuration information, log files and analysis reporthef¥ event traces are col-
lected, they are also stored in the experiment archive t@aaridental corruption
by simultaneous or subsequent measurements.

Measurements are collected and analyzed under the cohtralexus which au-
tomatically configures the parallel trace analyzer withgame number of processes
as used for measurement. This allo®GaLASCA analysis to be specified as a com-
mand prefixed to the application execution command-linestivr part of a batch
script or run interactively.

scal asca -anal yze <application-Iaunch- cormand>

% scal asca -anal yze npiexec -np 1024 foo arglist

% OVW_NUM.THREADS=64 scal asca -anal yze - O bar arglist

% OVW_NUM.THREADS=4 scal asca - anal yze npi exec -np 1024 fubar

Instrumented functions which are executed frequently evbiily performing a
small amount of work each time they are called, have an ural#siimpact on mea-
surement. The overhead of measurement for such functidaigis compared to the
execution time of the (uninstrumented) function, resgliim measurement dilation,
while recording such events requires significant space aalysis takes longer with
relatively little improvement in quality. This is espedjaimportant for event traces
whose size is proportional to the total number of eventsraEmh For this reason,
SCALASCA offers various mechanisms to exclude certain functionshfroeasure-
ment. Before writing a trace file, the instrumentation sdabkrefore be optimized
based on a visit-count summary obtained during an earlier ru

4 Trace Analysis

In message-passing applications, processes often reapgess to data provided by
remote processes, making the progress of a receiving asgsendent upon the
progress of a sending process. If a rendezvous protocoleg, ukis relationship
also applies in the opposite direction. Collective synalmation is similar in that its
completion requires each participating process to havehesha certain point. As

6 F. Wolf et al.

a consequence, a significant fraction of the time spent innconication and syn-
chronization routines can often be attributed to wait st#tat occur when processes
fail to reach implicit or explicit synchronization points & timely manner, for exam-
ple, as a result of an unevenly distributed workload. Esplgcivhen trying to scale
communication-intensive applications to large processit) such wait states can
present severe challenges to achieving good performarsce fiést step in reducing
the impact of wait stateSCALASCA provides a diagnostic method that allows their
localization, classification, and quantification. Becausdt states cause temporal
displacements between program events occurring on diff@recesses, their iden-
tification can be accomplished by searching event traceshfaracteristic patterns.
A subset of the patterns supportedfyaALASCA is depicted in Figure 2.

waiting
A 14
8 MPl_Send() —— [MPI _Send()
= | S
|
|
waiting |
|
F— MRl _Recv() — MPI _Recv() —
time time
(a) Late Sender (b) Late Receiver
@ @
8 MPI _Send() S MPl _Allreduce()
o |] ;
= } = waiting |
I |
— MPI_Send() t MPI _All reduce() ————
‘ .
| waiting }
— MR _Recv() ‘ — MPI_Recv() WAL
waiting
time time
(c) Late Sender / Wrong Order (d) WaitatN x N

Fig. 2. Examples for patterns of inefficient behavior. Note thatdbmbination ofmPI func-
tions used in each of these examples represents just onblpassse.

As the first example of a typical wait state, consider the alted Late Sender
pattern (Fig. 2(a)). Here, a receive operation is enteredn®y process before the
corresponding send operation has been started by the Bhieetime lost waiting due
to this situation is at least the time difference betweemtlounction invocations. In
contrast, the_ate Receiver pattern (Fig. 2(b)) describes the inverse situation, where
a sender is blocked while waiting for the receiver when a egmdus protocol is
used (e.g., to transfer a large message).Jdte Sender / Wrong Order pattern (Fig.
2(c)) is more complex than the previous two. Here, a receiats for a message,
although an earlier message is ready to be received by the dastination process

SCALASCA 7

(i.e., message receipt in wrong order). Finally, Ykt at NxN pattern (Fig. 2(d))
quantifies the waiting time due to the inherent synchroioman collective n-to-n
operations, such a#! _Al | reduce.

To accomplish the search is a scalable v&ayaLASCA exploits both distributed
memory and parallel processing capabilities availabldenarget system. Instead of
sequentially analyzing a single global trace file, as donigsyredecessor toao-
JAK, SCALASCA analyzes separate process-local trace files in paralleddsying
the original communication on as maayus as have been used to execute the target
application itself. During the search processALASCA classifies detected pattern
instances by category and quantifies their significancevieryeprogram phase and
system resource involved. Since trace processing capedili.e., processors and
memory) grow proportionally with the number of applicatjprocessesSCALASCA
has completed pattern searches even at the previouslgtiitia scale of over 22,000
processes. Additionally, to allow accurate trace analgsesystems without globally
synchronized clocks such as mestclusters the trace analyzer provides the ability
to synchronize inaccurate timestamps postmortem usingdhee scalable replay
mechanism [1].

OpenMP Support and Pattern Traces

In addition to the scalablgpPi trace analysis, sequential trace analysis (Figure 1) is
also provided for Openr andmP1 one-sidecRMA operations. This sequential trace
is currently the default for pure Opeir measurements, and can be specified for an
augmented analysis ofPI and hybrid measurements when desired. For large mea-
surements, however, the additional storage space and aersalysis time required
can be prohibitive, unless very targeted instrumentat@onfigured or the problem
size is reduced (e.g., to only a few timesteps or iteratio@fher options include
visual analysis using third-party trace browsers, sucheaayer and/aAMPIR and the
generation of pattern traces.

The first step to access these features consists of mergnigc¢hl trace files
generated bysCALASCA into a single global trace file. The resulting global trace
file can then be searched feir1 and/or Opemp patterns or converted and loaded
into Paraver ovAMPIR. A third option was motivated by the fact that the pattern
search method accumulates the severities of all of therpaittstances found to
inform about the overall performance penalty. However, tdraporal and spatial
relationships between individual pattern instances ast &ithough these relation-
ships can be essential to understand the detailed circooestaof a performance
problem. These relationships can now be retained by wrairsgcond event trace
with events delimiting individual pattern occurrencesidga by the summary pat-
tern report, this synthetic pattern trace can be interalgtianalyzed leveraging the
powerful functionality of the aforementioned trace brovgse

8 F. Wolf et al.
5 Under standing Perfor mance Behavior

After SCALASCA analysis is completed, the experiment archive may contaima
mary report generated immediately at measurement coroplatid/or trace-analysis
report(s) generated after searching event traces. Thefilephave the same struc-
ture and can be viewed and manipulated using the same setief to

scal asca -exani ne <experi nent-archi ve>
% scal asca - exani ne epi k_fubar _1024x4_sum

Whereas a summary report includes metrics, such as tinecoimts, message
statistics or hardware counters, a trace-analysis refsaréacounts for the times lost
in different wait states. Both types of reports are stored tsee-dimensional array
with the dimensions metric, call path, and system resoweg,(process or thread).
Because of the cubic structure, the corresponding file foisralledcuBE. For ev-
ery metric included, @ UBE report stores the aggregated value for each combination
of call-path and process or thread. Motivated by the needpcesent performance
behavior on different levels of granularity as well as to regs natural hierarchi-
cal relationships among metrics, program, or system ressyueach dimension is
organized in a hierarchy.

ThescALAscA analysis report explorer (Figure 3), provides the abilitynter-
actively browse through this three-dimensional perforogathata space in a conve-
nient way. Its design emphasizes simplicity by combiningnalsnumber of orthog-
onal features with a limited set of user actions. Each diioensf the data space
(metric, call-path, and system resource) can be shown ussegdisplays and al-
lows the user to interactively explore the values of all thtaghoints. Since the data
space is large, views representing only a subspace can déeeskland combined
with aggregation mechanisms that control the level of tefaio types of actions
can be performed: selecting a node or expanding/collajpsimgle. Whereas the first
action defines a “slice” or “column” of the data space, thtetagxposes/hides sub-
hierarchies of the different dimensions. To help identiynbinations with a high
value more quickly, all values are not only shown numerychiit also color-coded.
To facilitate the analysis of runs on many processors, thevger provides a scalable
two- or three-dimensional Cartesian grid display to vieggbhysical or virtual pro-
cess topologies which were recorded with measurementstoffedogical display
is offered as an alternative to a standard tree hierarchyashine compute nodes,
processes and threads.

With a set of command-line tools [8UBE reports can be combined or ma-
nipulated to allow comparisons or aggregations of differeports or to focus the
analysis on specific parts of a report. Specifically, mudtigdports can be averaged
or merged, the difference between two reports calculatea new report generated
after pruning specified call-trees and/or specifying atrakk node as a new root. The
latter can be particularly useful for eliminating unintstieg phases (e.g., initializa-
tion) and focusing the analysis on a selected part of theutixet These utilities each
generate newUBE-format reports as output that can be loaded into the brolikeer
the original reports that were used as input.

SCALASCA 9

Eile Vew Help

Metrics | CallTree | Fistprotie | [system Tree | Topslogy View
| Root percent |v |||| oot percent | ~ |||[peer percent |- |
=[] 0.0Time =[] 0.0 <<time step loop>> (] - (=]
=[] 38.4 Execution [0.0updatedt Which processes EREE
1 o.omPi ~+—[J 0.1 updatex are most affected?
0.0 Communication —+—B 8.7 updateien
+=—[ml 9.1 Collective —+—[] 0.0gene
——{] 0.0 Early Reduce =] 0.0<<iteration loop>>
——1{] 0.0 Late Broadcast ~>—{ll 2.3 genbc
1.4 Waitat NxN — (] 0.0setd
11.9 Point-to-point —>—{] 0.0 newx A
[0.2 Late Receiver ~—1 0.0genf HEAs 1
L3 S vgeid Percentage of the
0.0MPI IO [0.0genh execution time
0.0 Init/Exit ==—{] 0.0 newd
0.0 Synchronizgtion] 0.0 ewdtimerstafnp
-] 0.1 Barrier ——1 0.0 ewdmorel
—— [0.0Barier fompletion -+—[] 0.0blkins3ds]
9.5 Wait at Barrier 1] o.0blkrhs
—1 0.00verhead —T—D 0.0 ewdscter2 e o v AR
100.0 Visits b=] 0.0 ewfiscatter2i
i—[\ 0. ewdmalloc_
Which performance / }_g
problem? | E
/ [0.0 ewdstatrhs
b 0.0 ewdbsrgetdia
Which call paths L (lnewdmaiesg o
are most affected? —11 0.0 ewdmult
] 0.0ewdgmres
Color encoding of ~+—T 5.9 ewdgathert
percentage] 0.0 ewdbsrmatvec
1 0.0 ewdcopy
—+—[0.0 updated
-+ 0.2 recoverstress (<]
1.0 checkd = D

[13.776070 (29.4%) | 46882404 | |[5.246.336 (11.2%) [4.6882+404 |’1’ZB|+«‘-378%

Fllllllll | ‘ Wlll“lllllﬂlllllIIIIIIIIIIIIIIIIIII‘

‘4095&1 ‘

Fig. 3. The trace analysis report displayed in the profile browseicates that 29.4% of the
total time in the annotated regicit i nest ep | oop>> is spent waiting due tbate Sender
situations (left pane). The call tree (middle pane) showstiore than one-third of the waiting
time is concentrated in one call-path, with its waiting tiongevenly distributed across the
visible section of the machine topology (right pane).

6 Outlook

Future enhancements will aim at both further improving tinectionality and scal-
ability of the scALASCA toolset. Whereas automatir! analysis has been demon-
strated at very large scales, runtime summaries currenljyinclude measurements
for the Opemp master thread, and Open trace analysis is currently done serially:
for hybrid applications, scalableri trace analysis is the default and serial Open
analysis is offered as an additional option.

Most standard-conforming HPC applications should be mease;, however,
there is no recording or analysis aPi 1/0, experimental analysis ofP1 one-sided
RMA operations is currently only done by the serial trace arslyand automatic
trace analysis of Operp applications using dynamic, nested and guarded workshar-
ing constructs is not yet possible.

While the current parallel trace analysis mechanism isdlya very powerful in-
strument in terms of the number of application processegjparts, we are working
on optimized data management operations and work flows tiiallow us to mas-

10 F. Wolf et al.

ter even larger configurations. Restrictions and inefficiesiimposed by the current
cuBke-file format and data model are also being addressed to abbmwaggregatable
metrics (such as rates) to be stored and accessed withone#teto process and
aggregate values from the entire report.

Although parallel simulations are often iterative in natundividual iterations
can differ in their performance characteristics. Anothajanfocus of our research
is therefore to study the temporal evolution of the perfaroebehavior as a compu-
tation progresses. Our general approach is to first obskevedghavior on a coarse-
grained level and then to successively refine the measutdomrs as new perfor-
mance knowledge becomes available. Using a more flexiblesuneaent control,
we are also striving to offer more targeted trace collectimechanisms, reducing
memory and disk space requirements while retaining theevafurace-based in-
depth analysis.

Finally, the symptoms of a performance bottleneck may appegh later than
the event causing it, on a different processor, or both. Fsrreason, we are cur-
rently looking for ways to establish causal connections mgndifferent pattern in-
stances found in traces and related phenomena such as Ibathivoe because we
believe that understanding such links can prove esseptiahbre effective scaling
strategies. First experiments with a trace-based simuta&o verifies corresponding
hypotheses by replaying modified traces in real time on thgetasystem proved
encouraging.

For more information oisCALASCA refer to the websitemw. scal asca. or g.

References

1. D. Becker, R. Rabenseifner, and F. Wolf. Timestamp syarihation for event traces of
large-scale message-passing application$rdéa. of the 14th European Parallel Virtual
Machine and Message Passing Interface Conference (EuroPVM/MPI), volume 4757 of

Lecture Notes in Computer Science, pages 315-325, Paris, France, September-October

2006. Springer.

2. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. Agtde programming in-
terface for performance evaluation on modern procesdotetnational Journal of High
Performance Computing Applications, 14(3):189-204, 2000.

3. M. Geimer, F. Wolf, B.J.N. Wylie, and B. Mohr. Scalable @il trace-based perfor-
mance analysis. Ifroc. of the 13th European Parallel Virtual Machine and Message
Passing Interface Conference (EuroPVM/MPI), volume 4192 of_ecture Notes in Com-
puter Science, pages 303—-312, Bonn, Germany, September 2006. Springer.

4. J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. GregorDiP : A parallel program
development environment. Proc. of the 2nd International Euro-Par Conference, pages
665-674, Lyon, France, August 1996. Springer.

5. W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach. VARtPVisualization and
analysis of MPI resourceSupercomputer, 63, XI1(1):69-80, 1996.

~

11.

SCALASCA 11

L. Oliker, A. Canning, J. Carter, C. lancu, M. Lijewski, Bamil, J. Shalf, H. Shan,
E. Strohmaier, S. Ethier, and T. Goodale. Scientific appiicaperformance on candi-
date petascale platforms. Ruoc. of the International Parallel & Distributed Processing
Symposium (IPDPS), Long Beach, CA, 2007.

. Paraverhttp:// ww. cepba. upc. es/ paraver/.
. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. Ayelita for cross-experiment

performance analysis. IRroc. of the International Conference on Parallel Processing
(ICPP), pages 63—72, Montreal, Canada, August 2004. IEEE Society.

. VAMPIR. http://ww. vanmpir. eu/.
. M.L. Van De Vanter, D.E. Post, and M.E. Zosel. HPC needskstrategy. IrProc. of the

2nd International Workshop on Software Engineering for High Performance Computing
System Applications (SE-HPCS), May 2005.

F. Wolf and B. Mohr. Automatic performance analysis dbtiy MPI/OpenMP applica-
tions. Journal of Systems Architecture, 49(10-11):421-439, 2003.

