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{f.wolf, e.abraham, d.becker, w.frings, m.geimer, m.a.hermanns,
b.mohr, m.pfeifer, z.szebenyi, b.wylie}@fz-juelich.de

2 Department of Computer Science and Aachen Institute for Advanced Study in
Computational Engineering Science, RWTH Aachen University, Germany

3 Innovative Computing Laboratory, University of Tennessee, USA
{karl, shirley}@cs.utk.edu

1 Introduction

Supercomputing is a key technology pillar of modern scienceand engineering, indis-
pensable to solve critical problems of high complexity. World-wide efforts to build
machines with performance levels in the petaflops range acknowledge that the re-
quirements of many key applications can only be met by the most advanced custom-
designed large-scale computer systems. However, as a prerequisite for their produc-
tive use, theHPC community needs powerful and robust performance-analysistools
that make the optimization of parallel applications both more effective and more ef-
ficient. Such tools not only help improve the scalability characteristics of scientific
codes and thus expand their potential, but also allow domainexperts to concentrate
on the science underneath rather than to spend a major fraction of their time tuning
their application for a particular machine.

As the current trend in microprocessor development continues, this need will be-
come even stronger in the future. Facing increasing power dissipation and with little
instruction-level parallelism left to exploit, computer architects are realizing further
performance gains by using larger numbers of moderately fast processor cores rather
than by further increasing the speed of uni-processors. As aconsequence, supercom-
puter applications are being required to harness much higher degrees of parallelism
in order to satisfy their growing demand for computing power. With an exponentially
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rising number of cores, the often substantial gap between peak performance and the
performance actually sustained by production codes [6] is expected to widen even
further. Finally, increased concurrency levels place higher scalability demands not
only on applications but also on parallel programming tools[10]. When applied to
larger numbers of processes, familiar tools often cease to work satisfactorily (e.g.,
due to escalating memory requirements, failing displays, or limited I /O bandwidth).

Developed at the Jülich Supercomputing Centre in cooperation with the Univer-
sity of Tennessee,SCALASCA is a performance-analysis toolset that has been specif-
ically designed for use on large-scale systems including IBM Blue Gene and Cray
XT, but is also well-suited for small- and medium-scaleHPC platforms.SCALASCA

supports an incremental performance-analysis process that integrates runtime sum-
maries with in-depth studies of concurrent behavior via event tracing, adopting a
strategy of successively refined measurement configurations. A distinctive feature of
SCALASCA is its ability to identify wait states that occur, for example, as a result
of unevenly distributed workloads. Especially when tryingto scale communication-
intensive applications to large processor counts, such wait states can present severe
challenges to achieving good performance. Compared to its predecessorKOJAK [11],
SCALASCA can detect such wait states even in very large configurationsof processes
using a novel parallel trace-analysis scheme [3].

In this article, we give an overview ofSCALASCA and show its capabilities for
diagnosing performance problems in large-scale parallel applications. First, we re-
view theSCALASCA analysis process and discuss basic usage. After presentingthe
SCALASCA instrumentation and measurement systems in Section 3, Section 4 ex-
plains how its trace analysis can efficiently identify wait states in communication
and synchronization operations even in very large configurations of processes, be-
fore how execution performance analysis reports can be interactively explored to
identify problems is demonstrated in Section 5. Finally, inSection 6, we outline our
development goals for the coming years.

2 Overview

The current version ofSCALASCA supports measurement and analysis of theMPI,
OpenMP and hybrid programming constructs most widely used in highly-scalable
HPC applications written in C/C++ and Fortran on a wide range of currentHPC plat-
forms. Usage is primarily via thescalasca command with appropriate action flags.

Figure 1 shows the basic analysis workflow supported bySCALASCA. Before any
performance data can be collected, the target application must beinstrumented, that
is, it must be modified to record performance-relevant events whenever they occur.
On most systems, this can be done completely automatically using compiler support;
on other systems a mix of manual and automatic instrumentation mechanisms is of-
fered. When running the instrumented code on the parallel machine, the user can
choose between generating a summary report (aka profile) with aggregate perfor-
mance metrics for individual function call paths, or generating event traces recording
individual runtime events from which a profile or time-line visualization can later be
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Fig. 1. SCALASCA’s performance analysis workflow.

produced. The first option is useful to obtain an overview of the performance behav-
ior and also to optimize the instrumentation for later tracegeneration. Since traces
tend to become very large, this step is usually recommended before choosing the sec-
ond option. When tracing is enabled, each process generatesa trace file containing
records for all its process-local events. After program termination,SCALASCA loads
the trace files into main memory and analyzes them in parallelusing as manyCPUs
as have been used for the target application itself. During the analysis,SCALASCA

searches for characteristic patterns indicating wait states and related performance
properties, classifies detected instances by category and quantifies their significance.
The result is a pattern-analysis report similar in structure to the summary report but
enriched with higher-level communication and synchronization inefficiency metrics.
Both summary and pattern reports contain performance metrics for every function
call-path and system resource which can be interactively explored in a graphical pro-
file browser (Figure 3). As an alternative to the automatic search, the event traces can
be converted and investigated using third-party trace browsers such as Paraver [4, 7]
or VAMPIR [5, 9], taking advantage of their powerful time-line visualizations and
rich statistical functionality.

3 Instrumentation and Measurement

SCALASCA offers analyses based on two different types of performancedata: (i)
aggregated statistical summaries and (ii) event traces. Byshowing which process
consumes how much time in which call-path, the summary report provides a useful
overview of an application’s performance behavior. Because it aggregates the col-
lected metrics across the entire execution, the amount of data is largely independent
of the program duration. This is why runtime summarization is the first choice for
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very long-running programs working on realistic input datasets and models. The
summary metrics measured withSCALASCA include wall-clock time, the number of
times a call-path has been visited, message counts, bytes transfered, and a rich choice
of hardware counters available via thePAPI library [2].

In contrast, event traces allow the in-depth study of parallel program behavior.
Tracing is especially effective for observing the interactions between different pro-
cesses or threads that occur during communication or synchronization operations and
to analyze the way concurrent activities influence each other’s performance. When
an application is traced,SCALASCA records individual performance-relevant events
with timestamps and writes them to a trace file (one per process) to be analyzed in a
subsequent step.

To effectively monitor program execution,SCALASCA intercepts runtime events
critical to communication and computation activities. These events include enter-
ing and leaving functions or other code regions as well as sending and receiving
point-to-point messages or participation in collective communication. Whereas the
communication-related event types are crucial to study theinteractions among dif-
ferent processes and to identify wait states, function entries and exits are needed to
understand the computational requirements and the contextin which the most de-
manding communication operations occur.

The application must be instrumented to provide notification of these events dur-
ing measurement, using function calls inserted at specific important points (“events”)
which call into theSCALASCA measurement library. Just linking the application with
the measurement library already ensures that all events related toMPI operations are
properly captured. For OpenMP, a source preprocessor is used which automatically
instruments directives and pragmas for parallel regions, etc., and many compilers are
capable of adding instrumentation to every function or routine entry and exit. Finally,
programmers can manually add their own custom instrumentation annotations in the
source code for important regions (such as phases or loops, or functions when this
is not done automatically by the compiler): these annotations can are in the form of
pragmas or macros which are ignored when instrumentation isnot configured.

Instrumentation configuration and processing of source files are achieved by pre-
fixing the SCALASCA instrumenter to selected compilation commands and the final
link command, without requiring other changes to optimization levels or the build
process.

# scalasca -instrument <compile-or-link-command>
% scalasca -instrument mpicc -c foo.c
% scalasca -instrument f90 -o bar -openmp bar.f90
% scalasca -instrument mpif90 -o fubar -openmp bar.f90 foo.o

A simple means to be able to conveniently instrument an entire application, is
to add a ‘preparer’ prefix to compile and link commands in its Makefile(s), which
is undefined by default and results in a regular uninstrumented build, or when the
preparer is set to theSCALASCA instrumenter then an instrumented build is produced.
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PREP =
MPICC = $(PREP) mpicc
MPIFC = $(PREP) mpif90
fubar: bar.f90 foo.o

$(MPIFC) -o $@ -openmp bar.f90 foo.o

% make PREP="scalasca -instrument"

TheSCALASCA measurement system that gets linked with instrumented applica-
tion executables can be configured to allow runtime summaries and/or event traces
to be collected, along with optional hardware counter metrics. A unique experiment
archive is created to contain all of the measurement and analysis artifacts, including
configuration information, log files and analysis reports. When event traces are col-
lected, they are also stored in the experiment archive to avoid accidental corruption
by simultaneous or subsequent measurements.

Measurements are collected and analyzed under the control of a nexus which au-
tomatically configures the parallel trace analyzer with thesame number of processes
as used for measurement. This allowsSCALASCA analysis to be specified as a com-
mand prefixed to the application execution command-line, whether part of a batch
script or run interactively.

# scalasca -analyze <application-launch-command>
% scalasca -analyze mpiexec -np 1024 foo arglist
% OMP NUM THREADS=64 scalasca -analyze -O bar arglist
% OMP NUM THREADS=4 scalasca -analyze mpiexec -np 1024 fubar

Instrumented functions which are executed frequently while only performing a
small amount of work each time they are called, have an undesirable impact on mea-
surement. The overhead of measurement for such functions islarge compared to the
execution time of the (uninstrumented) function, resulting in measurement dilation,
while recording such events requires significant space and analysis takes longer with
relatively little improvement in quality. This is especially important for event traces
whose size is proportional to the total number of events recorded. For this reason,
SCALASCA offers various mechanisms to exclude certain functions from measure-
ment. Before writing a trace file, the instrumentation should therefore be optimized
based on a visit-count summary obtained during an earlier run.

4 Trace Analysis

In message-passing applications, processes often requireaccess to data provided by
remote processes, making the progress of a receiving process dependent upon the
progress of a sending process. If a rendezvous protocol is used, this relationship
also applies in the opposite direction. Collective synchronization is similar in that its
completion requires each participating process to have reached a certain point. As
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a consequence, a significant fraction of the time spent in communication and syn-
chronization routines can often be attributed to wait states that occur when processes
fail to reach implicit or explicit synchronization points in a timely manner, for exam-
ple, as a result of an unevenly distributed workload. Especially when trying to scale
communication-intensive applications to large process counts, such wait states can
present severe challenges to achieving good performance. As a first step in reducing
the impact of wait states,SCALASCA provides a diagnostic method that allows their
localization, classification, and quantification. Becausewait states cause temporal
displacements between program events occurring on different processes, their iden-
tification can be accomplished by searching event traces forcharacteristic patterns.
A subset of the patterns supported bySCALASCA is depicted in Figure 2.
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Fig. 2. Examples for patterns of inefficient behavior. Note that thecombination ofMPI func-
tions used in each of these examples represents just one possible case.

As the first example of a typical wait state, consider the so-called Late Sender
pattern (Fig. 2(a)). Here, a receive operation is entered byone process before the
corresponding send operation has been started by the other.The time lost waiting due
to this situation is at least the time difference between thetwo function invocations. In
contrast, theLate Receiver pattern (Fig. 2(b)) describes the inverse situation, where
a sender is blocked while waiting for the receiver when a rendezvous protocol is
used (e.g., to transfer a large message). TheLate Sender / Wrong Order pattern (Fig.
2(c)) is more complex than the previous two. Here, a receiverwaits for a message,
although an earlier message is ready to be received by the same destination process
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(i.e., message receipt in wrong order). Finally, theWait at N×N pattern (Fig. 2(d))
quantifies the waiting time due to the inherent synchronization in collective n-to-n
operations, such asMPI Allreduce.

To accomplish the search is a scalable way,SCALASCA exploits both distributed
memory and parallel processing capabilities available on the target system. Instead of
sequentially analyzing a single global trace file, as done byits predecessor toolKO-
JAK, SCALASCA analyzes separate process-local trace files in parallel byreplaying
the original communication on as manyCPUs as have been used to execute the target
application itself. During the search process,SCALASCA classifies detected pattern
instances by category and quantifies their significance for every program phase and
system resource involved. Since trace processing capabilities (i.e., processors and
memory) grow proportionally with the number of applicationprocesses,SCALASCA

has completed pattern searches even at the previously intractable scale of over 22,000
processes. Additionally, to allow accurate trace analyseson systems without globally
synchronized clocks such as mostPC clusters the trace analyzer provides the ability
to synchronize inaccurate timestamps postmortem using thesame scalable replay
mechanism [1].

OpenMP Support and Pattern Traces

In addition to the scalableMPI trace analysis, sequential trace analysis (Figure 1) is
also provided for OpenMP andMPI one-sidedRMA operations. This sequential trace
is currently the default for pure OpenMP measurements, and can be specified for an
augmented analysis ofMPI and hybrid measurements when desired. For large mea-
surements, however, the additional storage space and serial analysis time required
can be prohibitive, unless very targeted instrumentation is configured or the problem
size is reduced (e.g., to only a few timesteps or iterations). Other options include
visual analysis using third-party trace browsers, such as Paraver andVAMPIR and the
generation of pattern traces.

The first step to access these features consists of merging the local trace files
generated bySCALASCA into a single global trace file. The resulting global trace
file can then be searched forMPI and/or OpenMP patterns or converted and loaded
into Paraver orVAMPIR. A third option was motivated by the fact that the pattern
search method accumulates the severities of all of the pattern instances found to
inform about the overall performance penalty. However, thetemporal and spatial
relationships between individual pattern instances are lost, although these relation-
ships can be essential to understand the detailed circumstances of a performance
problem. These relationships can now be retained by writinga second event trace
with events delimiting individual pattern occurrences. Guided by the summary pat-
tern report, this synthetic pattern trace can be interactively analyzed leveraging the
powerful functionality of the aforementioned trace browsers.
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5 Understanding Performance Behavior

After SCALASCA analysis is completed, the experiment archive may contain asum-
mary report generated immediately at measurement completion and/or trace-analysis
report(s) generated after searching event traces. These profiles have the same struc-
ture and can be viewed and manipulated using the same set of tools.

# scalasca -examine <experiment-archive>
% scalasca -examine epik fubar 1024x4 sum

Whereas a summary report includes metrics, such as time, visit counts, message
statistics or hardware counters, a trace-analysis report also accounts for the times lost
in different wait states. Both types of reports are stored asa three-dimensional array
with the dimensions metric, call path, and system resource (e.g., process or thread).
Because of the cubic structure, the corresponding file format is calledCUBE. For ev-
ery metric included, aCUBE report stores the aggregated value for each combination
of call-path and process or thread. Motivated by the need to represent performance
behavior on different levels of granularity as well as to express natural hierarchi-
cal relationships among metrics, program, or system resources, each dimension is
organized in a hierarchy.

TheSCALASCA analysis report explorer (Figure 3), provides the ability to inter-
actively browse through this three-dimensional performance data space in a conve-
nient way. Its design emphasizes simplicity by combining a small number of orthog-
onal features with a limited set of user actions. Each dimension of the data space
(metric, call-path, and system resource) can be shown usingtree displays and al-
lows the user to interactively explore the values of all the data points. Since the data
space is large, views representing only a subspace can be selected and combined
with aggregation mechanisms that control the level of detail. Two types of actions
can be performed: selecting a node or expanding/collapsinga node. Whereas the first
action defines a “slice” or “column” of the data space, the latter exposes/hides sub-
hierarchies of the different dimensions. To help identify combinations with a high
value more quickly, all values are not only shown numerically but also color-coded.
To facilitate the analysis of runs on many processors, the browser provides a scalable
two- or three-dimensional Cartesian grid display to visualize physical or virtual pro-
cess topologies which were recorded with measurements. Thetopological display
is offered as an alternative to a standard tree hierarchy of machine compute nodes,
processes and threads.

With a set of command-line tools [8],CUBE reports can be combined or ma-
nipulated to allow comparisons or aggregations of different reports or to focus the
analysis on specific parts of a report. Specifically, multiple reports can be averaged
or merged, the difference between two reports calculated, or a new report generated
after pruning specified call-trees and/or specifying a call-tree node as a new root. The
latter can be particularly useful for eliminating uninteresting phases (e.g., initializa-
tion) and focusing the analysis on a selected part of the execution. These utilities each
generate newCUBE-format reports as output that can be loaded into the browserlike
the original reports that were used as input.
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Fig. 3. The trace analysis report displayed in the profile browser indicates that 29.4% of the
total time in the annotated region<<timestep loop>> is spent waiting due toLate Sender
situations (left pane). The call tree (middle pane) shows that more than one-third of the waiting
time is concentrated in one call-path, with its waiting timeunevenly distributed across the
visible section of the machine topology (right pane).

6 Outlook

Future enhancements will aim at both further improving the functionality and scal-
ability of theSCALASCA toolset. Whereas automaticMPI analysis has been demon-
strated at very large scales, runtime summaries currently only include measurements
for the OpenMP master thread, and OpenMP trace analysis is currently done serially:
for hybrid applications, scalableMPI trace analysis is the default and serial OpenMP

analysis is offered as an additional option.
Most standard-conforming HPC applications should be measurable, however,

there is no recording or analysis ofMPI I /O, experimental analysis ofMPI one-sided
RMA operations is currently only done by the serial trace analyzer, and automatic
trace analysis of OpenMP applications using dynamic, nested and guarded workshar-
ing constructs is not yet possible.

While the current parallel trace analysis mechanism is already a very powerful in-
strument in terms of the number of application processes it supports, we are working
on optimized data management operations and work flows that will allow us to mas-
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ter even larger configurations. Restrictions and inefficiencies imposed by the current
CUBE-file format and data model are also being addressed to allow non-aggregatable
metrics (such as rates) to be stored and accessed without theneed to process and
aggregate values from the entire report.

Although parallel simulations are often iterative in nature, individual iterations
can differ in their performance characteristics. Another major focus of our research
is therefore to study the temporal evolution of the performance behavior as a compu-
tation progresses. Our general approach is to first observe the behavior on a coarse-
grained level and then to successively refine the measurement focus as new perfor-
mance knowledge becomes available. Using a more flexible measurement control,
we are also striving to offer more targeted trace collectionmechanisms, reducing
memory and disk space requirements while retaining the value of trace-based in-
depth analysis.

Finally, the symptoms of a performance bottleneck may appear much later than
the event causing it, on a different processor, or both. For this reason, we are cur-
rently looking for ways to establish causal connections among different pattern in-
stances found in traces and related phenomena such as load imbalance because we
believe that understanding such links can prove essential for more effective scaling
strategies. First experiments with a trace-based simulator that verifies corresponding
hypotheses by replaying modified traces in real time on the target system proved
encouraging.

For more information onSCALASCA refer to the websitewww.scalasca.org.
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