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Abstract

This paper describes the design concepts behind implementations of
mixed-precision linear algebra routines targeted for the Cell processor.
It describes in detail the implementation of code to solve linear system
of equations using Gaussian elimination in single precision with iterative
refinement of the solution to the full double precision accuracy. By utiliz-
ing this approach the algorithm achieves close to an order of magnitude
higher performance on the Cell processor than the performance offered
by the standard double precision algorithm. Effectively the code is an
implementation of the high performance LINPACK benchmark, since it
meets all the requirements concerning the problem being solved and the
numerical properties of the solution.
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1 Introduction

1.1 Motivation

Initially this work was motivated by the fact that many processors today exhibit
higher single precision performance than double precision performance due to
SIMD vector extensions. In fact the technology has been around since the late
90s. Examples include 3DNow! extensions for AMD processors, SSE extensions
for both Intel and AMD processors and VMX/AltiVec extensions for PowerPC
processors. Today in most cases these extensions offer a factor of two perfor-
mance advantage for single precision versus double precision calculations. The
advent of the Cell processor[1–4] introduced yet more dramatic performance
difference between single precision floating point unit[5] and double precision
floating point unit[6] with the ratio of 14 for the synergistic processing element
(SPE)[7, 8] and the overall ratio of more than 10 for the entire processor. With
the ratio of such magnitude, it is an extremely attractive idea to exploit single
precision operations whenever possible and resort to double precision at critical
stages, while attempting to provide the full double precision accuracy.

1.2 Iterative Refinement

Iterative refinement is a well known method for improving the solution of a
linear system of equations of the form Ax = b[9]. The standard approach is
to use the technique of Gaussian elimination. First, the coefficient matrix A is
factorized using LU decomposition into the product of a lower triangular matrix
L and an upper triangular matrix U . Commonly, partial row pivoting is used
to improve numerical stability resulting in the factorization PA = LU , where
P is the row permutation matrix. The system is solved by solving Ly = Pb
(forward substitution), and then solving Ux = y (backward substitution). Due
to the roundoff error, the solution carries an error related to the condition num-
ber of the coefficient matrix A. In order to improve the computed solution, an
iterative refinement process is applied, which produces a correction to the com-
puted solution, x, at each iteration, which yields the basic iterative refinement
algorithm outlined on Figure 1.

Here mixed-precision iterative refinement approach is presented. The fac-
torization PA = LU and the solution of the triangular systems Ly = Pb and
Ux = y are computed using single precision arithmetic. The residual calculation
and the update of the solution are computed using double precision arithmetic
and the original double precision coefficients. The most computationally expen-
sive operations, including the factorization of the coefficient matrix A and the
forward and backward substitution, are performed using single precision arith-
metic and take advantage of the single precision speed. The only operations
executed in double precision are the residual calculation and the update of the
solution. It can be observed that all operations of O(n3) computational com-
plexity are handled in single precision, and all operations performed in double
precision are of at most O(n2) complexity. The coefficient matrix A is converted
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REPEAT
r = b−Ax

z = L\(U\Pr)

x = x + z

UNTIL x is ”accurate enough”

Figure 1: Iterative refinement of the solution of a system of linear equations
using MatlabTM notation.

A(32), b(32) ← A, b

L(32), U(32), P(32) ←SGETRF(A(32))

x
(1)
(32) ←SGETRS(L(32), U(32), P(32), b(32))

x(1) ← x
(1)
(32)

REPEAT

r(i) ← b−Ax(i)

r
(i)
(32) ← r(i)

z
(i)
(32) ←SGETRS(L(32), U(32), P(32), r

(i)
(32))

z(i) ← z
(i)
(32)

x(i+1) ← x(i) + z(i)

UNTIL x(i) is ”accurate enough”

Figure 2: Solution of a linear system of equations with mixed-precision iterative
refinement.

to single precision for the LU factorization. At the same time, the original ma-
trix in double precision has to be retained for the residual calculation. By the
same token, the method requires 1.5 times the storage of the strictly double
precision method. The mixed-precision iterative refinement algorithm is out-
lined on Figure 2. More details of the algorithm, including error analysis, can
be found in[10].

1.3 LINPACK Benchmark

The high performance LINPACK benchmark (HPL)[11] is the most widely used
method for measuring performance of computer systems. The computational
problem posed by the HPL benchmark is a solution of a system of linear equa-
tions, where the coefficient matrix is real, general and dense with random uni-
form distribution of its elements. Since performance gains can be achieved by
sacrificing the correctness of the solution, as a guard against such practices,
constraints are imposed on the numerical properties of the solution. In general
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terms, the answer is correct if it has the same relative accuracy as standard
techniques, such as the Gaussian elimination with partial pivoting used in the
LINPACK package, when performed in double precision. To be more precise,
the following scaled residuals are computed:

rn =
‖Ax− b‖∞
‖A‖1 · n · ε

,

r1 =
‖Ax− b‖∞
‖A‖1 · ‖x‖1 · ε

,

r∞ =
‖Ax− b‖∞

‖A‖∞ · ‖x‖∞ · ε
,

where ε is the relative machine precision. A solution is considered numeri-
cally correct when all of these quantities are of order O(1). In calculating the
floating-point execution rate, the formula 2n3/3 + 2n2 is used for the number
of operations, regardless of the actual number.

The mixed-precision iterative refinement algorithm was implemented on the
Cell processor as a proof of concept prototype, with the goal to pave the way
for a wider range of algorithms in numerical linear algebra. At the same time,
the code meets all requirements of the high performance LINPACK benchmark,
most notably the constraint on the accuracy of the solution. By the same
token, the code can be used to evaluate the performance of the Cell processor
in comparison to other architectures.

1.4 Comments on the CBE Design

The most significant architectural feature of the Cell processor is its multicore
design based on one PowerPC core, referred to as PPE, and eight synergistic
processing elements (SPEs). The most interesting characteristic of the Cell is
that it blurs the line between shared memory and distributed memory systems.
The main memory still plays the role of the central repository for code and data,
yet the SPEs can only execute code in the local store[12] of 265KB, and only op-
erate on data in the local store with all code and data motion handled explicitly
via DMA transfers, in a message passing fashion. At the same time, the com-
munication is non-blocking in its very nature, greatly facilitating overlapping
of communication and computation. Great effort has been invested throughout
the years in optimizing code performance for cache-based systems, in most cases
leading to the programmers reverse engineering the memory hierarchy. By re-
quiring explicit data motion, the memory design of the Cell takes the guesswork
out of the equation and delivers predictable performance.

The SPEs are inherently vector units capable of very fast single precision
arithmetic. This work is motivated in particular by the single to double perfor-
mance ratio of the Cell processor. An SPE can issue a single precision vector
fused multiplication-addition operation per clock cycle. A vector of 128B con-
tains four 32-bit single precision values, which means that each SPE can execute
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8 operations per cycle. At the same time, a vector contains only two 64-bit dou-
ble precision values. Moreover, due to space and power constraints, double
precision operations are not fully pipelined. It takes one cycle to issue a double
precision operation, and the operation requires a stall for another six cycles. As
a result, one vector can be processed every seven cycles. The factor of two and
the factor of seven combined make the ratio of single to double precision per-
formance equal to 14 for the SPEs. This means that for a 2.4 GHz system the
single precision peak of the eight SPEs is 153.6 Gflop/s and the double precision
peak is 11 Gflop/s. The VMX engine of the PPE can in theory deliver single
precision performance equal to that of an SPE. At the same time, the double
precision arithmetic is fully pipelined on the PPE and can complete one fused
multiplication-addition operation per clock cycle. If the PPE performance is
also considered, then the overall performance is 172.8 Gflop/s for single pre-
cision and 15.8 Gflop/s for double precision. For the 3.2 GHz system single
precision peak of the SPEs is 204.8 Gflop/s and double precision peak is 14.6
Gflop/s. The values are 230.4 Gflop/s and 21 Gflop/s if the PPE is included.

Finally, it should be noted that the SPE floating point unit only implements
truncation rounding, flushes denormalized numbers to zero, and handles NaNs
as normal numbers[5], which can potentially cause numerical problems. No
numerical problems were encountered for input matrices with random uniform
distribution of elements. Nevertheless, the issue deserves further attention.

2 Design and Implementation

2.1 Overview

At the top level the algorithm is driven by a FORTRAN 77 routine, named
DGESIRSV after its LAPACK[13] double precision counterpart DGESV and, in
principle, offering the same functionality, but using a mixed-precision approach.
The routine is planned to be also included in the LAPACK library, possibly with
slight modifications. Development of more mixed-precision routines is planned
to address a wider range of problems in linear algebra including linear systems
and least squares problems as well as singular value and eigenvalue problems.

The mixed-precision routine is build on top of existing LAPACK and BLAS[14]
routines and, in turn, LAPACK is designed to rely on a BLAS implementation
optimized for a specific hardware platform to deliver the desired performance.
Due to availability of both LAPACK and a reference implementation of BLAS
in source code, the functionality can be delivered immediately on the Cell pro-
cessor by compiling the necessary components for execution on the PPE. The
lack of existence of a FORTRAN 77 compiler in the SDK can be addressed by
either using the F2C utility[15] or compilation on the Cell hardware using exist-
ing PowerPC Linux compilers, GNU G77 or IBM XLF, although only the first
one is publicly available at this moment. Also, the reference BLAS can be re-
placed with a more optimized implementation. Possibilities include ATLAS[16],
GOTO BLAS[17] and ESSL[18], with the first two being freely available at this
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time. All these implementations are engineered to make efficient use of the
memory hierarchy and the vector/SIMD extension of the PPE[19], and, as a
result, are much faster than the reference BLAS. At the same time, by utilizing
only the PPE, they are capable of delivering only a tiny fraction of the overall
performance of the Cell processor. Due to unavailability of an implementation
of BLAS parallelized between the SPEs at this moment, the performance of the
code has to be engineered from scratch.

Nevertheless, code compiled for execution on the PPE only was used as a
starting point for iterative development of the optimized version. The initial
hope was that only Level 3 BLAS would have to be replaced with vectorized
code parallelized between the SPEs. The emphasis in LAPACK is on imple-
menting most of the computational work in Level 3 BLAS routines. As a result,
it frequently is the case that Level 2 BLAS routines only contribute O(n2) fac-
tor to algorithms of O(n3) complexity and optimal performance of the Level 2
BLAS is not crucial. At the same time, on many multiprocessor systems paral-
lelization of the Level 2 BLAS routines not only does not result in a speedup,
but often yields a slowdown. This turned out not to be the case on the Cell,
where the parallelization of Level 2 BLAS proved not only to be beneficial,
but in most cases also necessary in order not to degrade the performance of
the whole algorithm. By the same token, only Level 1 BLAS routines could
remain implemented in the PPE BLAS and for simplicity the reference BLAS
implementation from Netlib was chosen to provide this functionality.

2.2 SPE Parallelization

The basic model for developing the SPE-parallel version of the optimized rou-
tines is master-worker, with the PPE playing the role of the master, and the
SPEs as the workers. The PPE manages the execution of the overall algorithm
relying on the SPEs to deliver computational services. The PPE is responsible
for launching and terminating the workers. The SPE execution cycle consists
of waiting for a request, performing the requested task and sending back a re-
sponse, which can be a positive acknowledgment, an error message or a return
value.

At the time of the creation of the SPE threads the main memory address is
passed to the global control block, which is then pulled by each SPE to its local
store by a DMA transfer. The control block contains global execution parame-
ters and main memory addresses of synchronization variables as well as effective
addresses of the local store of each SPE to facilitate direct DMA transfers be-
tween local stores when it is desired. After this initial exchange of information
each SPE waits for commands sent from the PPE to its inbound mailbox. The
commands are integral values representing particular BLAS routines. Next, the
SPE fetches the list of arguments specific for a given routine from the main
memory through a DMA transfer from a location specified in the global control
block. The list contains what would typically be BLAS function call arguments
including input array sizes and their memory locations. Then the SPE proceeds
to the computational task. When the task is finished, the SPE acknowledges
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the completion to the PPE by sending a response through a DMA which is
holding on a barrier with the last data transfer. The cycle continues until the
PPE decides to terminate the servers by sending a termination command, at
which point the SPEs finish their execution by simply returning from the main
function.

Work partitioning is done by one- or two-dimensional decomposition of the
input arrays, commonly referred to as tiling, and cyclic processing of the tiles
by the SPEs. Each SPE processes a set of tiles, by pulling them from the
main memory, performing the calculations, and writing the result back to main
memory. Assignment of the tiles is managed either statically or dynamically,
with dynamic assignment used in the LU factorization and static assignment
used for all other operations. In this case the decision was arbitrary and the
use of one approach versus the other should be further investigated. For many
operations there are no dependencies between the tiles processed by different
SPEs, and, as a result, no communication or synchronizations between the SPEs
is necessary. In certain cases it is possible to remove existing dependencies by
providing each SPE with an auxiliary space to store intermediate results, which
are later combined by the PPE to form the final result. The implementation
of matrix vector product in double precision is an example of this approach.
When communication and synchronization is required, like in the case of panel
factorization in LU decomposition, it is implemented by direct local store to
local store DMA exchanges.

The majority of the routines in the code are built around the idea of over-
lapping computation and communication by pipelining of operations, which is
facilitated by the DMA engines attached to the SPEs. Most of the routines fol-
low the pattern depicted on Figure 3 with differences in the number and shape
of buffers used. In many situations it is sufficient to use the technique of double
buffering, where, for a given data stream, one tile is processed when another
is being transferred. Good example of such operation is matrix multiplication
C = A×B, where double buffering can be applied to the tiles of each matrix. In
this case, in each step of the algorithm, one tile of A and B can be read in, and
one tile of C can be written back. The concept of triple buffering can be utilized
when the data has to be read in, modified and written back, as it is in the case
of calculating C = C − A × B. Here double buffering is still used to bring in
the tiles of A and B. However, calculation of a tile of C has to be overlapped
with fetching of the next tile of C, as well as returning the tile resulting from
the previous step of the loop. In this case three buffers are rolled instead of two
buffers being swapped. It is also possible to use just two buffers for the tiles of
C by using the same buffer for reading and writing and ordering the operations
with a barrier, a solution actually utilized in the code.

2.3 Local Store Usage

One of the most prominent features of the Cell processor is the local store, which
provides limited space of 256KB for both data and code. This enforces tiling
of the matrix operations and raises the question of the optimal tile size. For a
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Prologue
Receive tile 1
Receive tile 2
Compute tile 1
Swap buffers

Loop body
FOR I=2 TO N-1

Send tile I-1
Receive tile I+1
Compute tile I
Swap buffers

END FOR

Epilogue
Send tile N-1
Compute tile N
Send tile N

Figure 3: Basic model of overlapping communication and computation with
tiling and pipelined processing of tiles.

number of reasons the size of 64 by 64 elements in single precision was chosen.
In particular, for this size, an optimized matrix multiplication kernel can achieve
within 98% of the peak of an SPE. Also, the matrix multiplication operations
are implemented using tiles of this size. This provides a transfer to computation
ratio, which allows to fully overlap communication with computation. At the
same time, the size of a tile is 16KB, which is the maximum size of a single
DMA transfer. By the same token, if block layout[20, 21] is used (§2.4), a whole
tile can be transferred in one DMA transfer. Moreover, the size of a tile is a
multiplicity of 128B, which is the size of a cache line. This means that, if a
matrix is aligned at a 128B boundary, then each of its tiles is aligned on a 128B
boundary, what is beneficial for the performance of DMA transfers. Lastly, a
cache line aligned DMA of size 16KB perfectly balances memory accesses to all
16 memory banks, allowing for maximum utilization of the memory bandwidth.
Not without significance is the fact that the tile size is a power of two, which
can simplify efficient implementations of recursive formulations of many linear
algebra algorithms.

The tile size of 64 by 64 is perfect for implementing matrix multiplication
C = A×B, in particular when A, B and C are of considerable size and relatively
square. The most time consuming part of the LINPACK benchmark is the
update to the trailing matrix in the LU factorization in single precision, C =
C − A × B. Although in principle the operation is a matrix multiplication, it
would better be described as a block outer product, since C is of size m×n, A is
of size m×NB and B is of size NB×n, NB being the block size. Unfortunately,
this operation is much more demanding in terms of communication. It could
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only achieve the peak in theory if bus utilization was perfect. In practice it
achieves 80% of the peak, so in the future bigger tile sizes should be taken into
consideration.

A second question is the number of tile buffers to be allocated. Again, the
most demanding operation here is the update to the trailing matrix in the LU
factorization in single precision, C = C − A × B. In, order to update a tile
of matrix C, an SPE has to read in a tile of C, a tile of A and a tile of B,
perform the computation and write back the updated tile of C. If buffer usage
is maximized for the sake of communication overlapping, the tiles of A and B
are double buffered and the tiles of C are triple buffered (§2.2), which means
that the total of seven buffers are required. Alternatively, reading in a tile of C
and writing it back after the update can be separated with a barrier, in which
case tiles of C are double buffered and only a total number of six buffers is
required. The implementation actually allocates eight buffers for a couple of
reasons. Obviously, it is beneficial for the number of buffers to be a power of
two. For some operations it may be advantageous to temporarily transpose a
tile, in which case an auxiliary buffer may be necessary. Larger buffer space
can be taken advantage of when certain operations can be executed entirely in
the local store, without the need to write back intermediate results to the main
memory. It also allows more DMA requests to be queued for memory intensive
operations, like the conversion from standard to block layout. On the other hand,
eight tiles of 16KB sum up to 128KB, which constitutes half of the local store
and going beyond that would be a serious limitation for the space for code.

Finally, the last issue is the tile size in double precision, which cannot be the
same as tile same size in single precision. The minimum of six buffers is required
to implement matrix multiplication efficiently. Six buffers of size 64 by 64 in
double precision would consume 192KB of the local store, leaving dangerously
little space for the code. The choice was made to use the closest smaller power
of two of 32, in which case, as in single precision, the 128B memory alignment
property also holds for each tile, each tile can be transferred in a single DMA
and utilization of memory banks is fully balanced when block layout is used. In
the general case, the use of a smaller tile introduces inefficiencies due to bigger
communication overhead and a worse ratio of memory accesses to floating point
operations. In this case, however, these inefficiencies are negligible due to an
order of magnitude lower speed of double precision arithmetic. Since the double
precision buffers are aliased to the single precision buffers, 16 double precision
buffers are available. Although such number is not requited for the matrix
multiplication, same as for single precision, they prove useful for operations,
which can take place entirely in the local store and for memory intensive storage
and precision conversions.

2.4 Block Layout and Large Pages

Traditionally the matrices are stored in the main memory in a column-major
or row-major order, where all column elements, or row elements respectively,
are stored continuously in memory, which is further referred to as standard
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layout. Column-major order is assumed unless stated otherwise. Optimized
linear algebra routines use block algorithms in order to implement most of their
operations in Level 3 BLAS, and frequently access submatrices of sizes being
multiples of the block size. At the same time, most matrix operations on the
Cell have to be implemented with tiling, due to the limited size of the local store.
By the same token, the data in memory is accessed by blocks of fixed size most
of the time.

The communication mechanism of the Cell offers a convenient way of access-
ing tiles in the main memory by using DMA lists, which in principle can be as
fast as DMA transfers of continuous memory blocks. That is, however, only if
TLB misses and optimal usage of memory banks do not come into play. Pulling
a tile from the main memory using a DMA list is an example of strided mem-
ory access and, unfortunately, due to the two issues mentioned, its performance
largely depends on the stride, which in this case is the leading dimension of the
input matrix. The memory subsystem of the Cell has 16 banks interleaved on
cache line boundaries, and addresses 2KB apart access the same bank. For a
tile of 64 by 64 in single precision the transfer of each DMA list element ac-
cesses two banks. The worst case scenario is, when the leading dimension of
the matrix is 2KB or 512 single precision elements. In this case, each DMA list
element accesses the same two banks, and only those two banks are accessed for
the transfer of the entire tile. The fact that more than one SPE can be issuing
requests to the same memory banks may further aggregate the situation. One
possible approach is to simply try to avoid the troublesome matrix sizes. In
general this is not a satisfactory solution though.

The second problem is that, with the standard page size of 4KB, accesses to
strided data are likely to access different memory pages and generate many TLB
misses, which may turn out to be fatal in case of relatively small TLBs of the
SPEs (256 entries, vs. 1024 entries for the PPE[22]). For instance if the leading
dimension of the matrix is larger than the page size, which typically is 4KB or
1024 single precision elements, then each DMA list element accesses a different
page, and can potentially generate a page fault. As large numbers of pages are
accessed, TLB thrashing occurs, resulting in performance degradation.

The solution to the first problem is storage of the matrices in block layout.
Here blocks of 64 by 64 single precision elements are stored continuously in the
memory and row-major order is used within the blocks as well as on the block
level. The same storage is used for double precision with blocks of size 32 by 32.
In this case each single DMA operates on either a 16KB or a 8KB continuous
memory blocks uniformly distributing accesses to all 16 memory banks with the
additional benefit, that a single tile can be read or written with a single DMA
instead of a DMA list.

Since the input matrices are stored in the standard column-major layout,
conversion operations are required. Due to the fact that the iterative refinement
algorithm requires the conversion of the coefficient matrix from single precision
to double precision, this operation is performed first. Then the single precision
matrix is translated to block layout with 64 by 64 blocks and the double precision
matrix is translated to block layout with 32 by 32 blocks. The conversion from
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Figure 4: Performance of block outer product C = C − A × B, where C is of
size N ×N , A is of size N × 64 and B is of size 64×N , on a 2.4 GHz Cell BE.

single to double, as well as the two conversions from standard to block layout,
are performed in parallel by all SPEs. Also, both the transposition in the layout
conversion step and the precision conversion are subject to vectorization.

The solution to the TLB thrashing problem is the use of large pages. Here
pages of 16MB are used. There is the question of to what extent block layout can
solve the problem of page faults when small pages are used. It could potentially
solve the TLB performance problem in the main algorithm. Unfortunately, there
still remain the operations performing the conversion from standard storage to
block layout. The experience shows that the use of small pages can degrade the
performance of these conversions by an order of magnitude, effectively making
them prohibitively expensive. The issue can be further investigated. Figure
4 shows the performance impact of using large pages and block layout on the
calculation of block outer product in single precision.

2.5 More on Optimizations

Manual vectorization with inlined assembler[23] and C intrinsics[24] and manual
loop unrolling are heavily used for performance optimization of the code. The
code relies largely in its performance on optimized math kernels for processing
of the tiles. The best example is the matrix multiplication implementing the
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functionality of the BLAS routine SGEMM. The code is manually unrolled and
relies heavily on inlined assembler statements. It is also manually tuned to
maximize the amount of dual issue and achieves a dual issue ratio above 90%.
In many cases inlined assembler and manual optimization for dual issue are not
used. Nevertheless, vectorization with C language intrinsics and manual loop
unrolling is prevalent in the code, and even applied to such auxiliary operations
as precision conversions and DMA list creation.

For both performance, as well as correctness of the DMA transfers, all mem-
ory allocations are made with alignment to the cache line size of 128B, and
most of control data structures are rounded up in size to 128B by padding with
empty space.

Also, for performance reasons the code does not pay particular attention to
possible numerical problems, which is further commented on in the following
section.

2.6 Limitations

Although in principle the top level FORTRAN 77 routine accepts multiple right
hand sides, the underlaying Cell-specific code only supports a single right hand
side.

The code requires that the input coefficient matrix is in standard FORTRAN
77 style column-major layout. Due to the use of block layout the size has to
be a multiplicity of the block size of 64. The translation from standard to
block layout is included in program timing and in the calculation of the Gflop/s
number, and turns out not to pose a significant performance problem. However,
at this moment the code excessively allocates memory due to the fact that the
coefficient matrix is stored in both double and single precision and in both
standard and block layout. This considerably limits the size of problems which
can be solved with a given amount of main memory. Also, the code requires
large page support or otherwise the performance is unacceptable, mainly due
to slow speed of the layout and precision conversion operations. It is assumed
that pages of size 16MB are used.

The number of numerical problems are neglected at this time due to perfor-
mance reasons. Obviously, a smaller range of numbers is representable in single
precision than in double precision, and a check for overflow would be desirable,
but, at the same time, introduce unacceptable performance overhead. Overflow
is also possible when calculating norms of vectors and matrices, and for the
same reasons it is not checked for. For instance the LAPACK DLANGE routine
is basically implemented as DDOT.

If for these or other reasons the result does not meet the required bound
on the backward error, as a fall-back strategy, the factorization is performed
entirely in double precision, and, at this moment, by calling to the PPE BLAS.
More details on the numerical behavior of the algorithm can be found in[10].
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3 Results

The results presented here were collected on a 2.4 GHz Cell blade using only one
of the two processors located on the board. The Gflop/s numbers reported here
mean the actual number of floating point operations over time for the codes run-
ning exclusively single or double precision calculations. For the mixed-precision
iterative refinement code, the Gflop/s number means performance relative to
the double precision case. In other words, it is the speed required by the double
precision code to deliver the same results in the same amount of time.

Due to very suboptimal use of memory, the largest system which could be
run was of size 3712 by 3712. A uniform random matrix was used as the coeffi-
cient matrix. The relative norm-wise backward error of O(10−14) was achieved
in four iterations of the iterative step. The system was solved in 0.37 second,
with the relative speed of 84 Gflop/s, which is 5.4 times greater than the to-
tal double precision peak of the Cell, including all eight SPEs and the PPE,
7.7 times greater than the double precision peak of the eight SPEs only, and
9.9 times greater than the actual speed of solving the system entirely in dou-
ble precision on the eight SPEs. Figure 5 shows the performance comparison
between the single precision algorithm, the double precision algorithm and the
mixed-precision iterative refinement algorithm.

Figure 6 shows the breakdown of the execution time for the mixed-precision
algorithm. Individual routines are referred to using their equivalent BLAS or
LAPACK names with the exception of the conversion from single to double
precision (s2d) and double to single precision (d2s), the conversion from standard
(LAPACK) layout to block layout in single precision (l2b) and the conversion
from standard layout to block layout in double precision (l2b d). The most
time is spent in the factorization of the coefficient matrix in single precision,
which is the desired behavior. The two operations which contribute the most
to the overhead of iterative refinement are solution of the triangular system
in single precision (sgetrs) and matrix-vector multiplication in double precision
(dgemm/dgemv), which is to be expected. The overhead from all other routines,
including layout and precision conversions, is minimal.

The code was also run on a 3.2 GHz Cell system. It achieved 98.05 Gflop/s,
which is less than the expected gain from the faster clock comparing to the
2.4 GHz system. Due to limited availability of the 3.2 GHz hardware, it was
not possible to address some of the performance issues. Nevertheless, as of the
August 1st 2006 the 3.2 GHz Cell system is included in the LINPACK report
[25], where it outperforms a number systems based on modern HPC processors.

4 Conclusions

The results presented here show the huge potential of the mixed precision ap-
proach to the development of numerical algorithms in particular in the area of
numerical linear algebra. The method is applicable to a wide range of algorithm
for solutions of linear systems and least square problems as well as singular and
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Figure 5: Performance comparison of solving linear system of equation A×x =
b on a 2.4 GHz Cell BE using single precision, double precision and mixed-
precision approach.

eigenvalue problems.
The results also prove the huge potential of the Cell processor for high per-

formance numerical applications. The Cell architecture allows for much finer
granularity of parallelism then the traditional architectures. It also encour-
ages much more dynamic and asynchronous algorithm behavior and may be a
good target for testing concepts like work-queue parallelization. By blurring
the boundaries between shared and distributed memory systems the Cell has
the potential to inspire new algorithmic discoveries in the area of numerical
computing.

5 Future Plans

Despite the fact that significant effort was invested in the current implemen-
tation, the code suffers from numerous performance problems. The block size
used here does not allow the block outer product operation to achieve the peak
when parallelized between all eight SPEs. Wasteful memory usage limits the
size of systems which can be solved. At the same time, the cost of panel fac-
torization prevents the code from achieving good performance for systems of
moderate sizes. Also, the triangular solve is not parallelized between SPEs at
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Figure 6: Breakdown of the execution time of solving linear system of equations
using mixed-precision iterative refinement on a 2.4 GHz Cell BE.

this time. Although the reported performance is rather impressive, addressing
the shortcomings listed above should yield substantial further performance in-
creases. Finally, right now the code can only utilize a single Cell processor, and
parallelization between multiple Cell systems with message passing is envisioned
in the future.

Hopefully the early experiences with the iterative refinement code can guide
the design of the BLAS for the Cell processor. A number of crucial design
questions remain. Probably the most important is the one of block layout. Ex-
perience shows that block layout offers unquestionable performance advantages.
At the same time, it seems unlikely that data layout can be hidden within BLAS
and not exposed to higher software layers in one way or another. In particular
LAPACK uses block operations and it will be necessary to synchronize the block
sizes between LAPACK and BLAS. At the same time, LAPACK has no notion
of block layout and code modifications would be required to facilitate it. The
question remains if, and how, the block layout should be exposed to the user,
and if conversion is required, how is it handled. It does not help the situation
that different block sizes may be necessary for single and double precision and
in both cases the question of the optimal block size remains unanswered. A
related issue is the one of introducing constraints to the BLAS and possibly
also LAPACK implementations. In both BLAS and LAPACK significant inef-
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ficiencies are caused by matrix sizes not being a multiplicity of the block size.
In case of the Cell the impact can reach such proportions that introduction of
constraints in the input array sizes can be justifiable. At this time it is quite
certain that a library like BLAS will not be able to fit in the local store in its
entirety. Code motion at runtime will be necessary and, although the concept
is simple in principle, the question remains if it should be resolved internally in
BLAS or exposed to the higher level library. Also, reliance on parallel BLAS
can prevent interesting algorithmic improvements and it may be desirable to
bypass the standard BLAS API and directly utilize the underlaying high per-
formance kernels. The question remains of utilizing the PPE of the Cell, which
is capable in matching the performance of an SPE in single precision, and is
much more powerful than a single SPE in double precision. Implementations of
the PPE BLAS already exist, although as of today none of them is well tuned
for the hardware. The availability of BLAS in all three instances of single SPE
BLAS, SPE-parallel BLAS and PPE BLAS would provide the application devel-
oper with an extremely flexible and powerful tool and not only facilitate quick
port of libraries like LAPACK, but also enable the pursuit of new algorithms in
numerical linear algebra and other computational disciplines.

Although it is hard to predict the future hardware road map for the Cell
processor, improvements to the double precision performance of the processor
would be very welcome, as long as single precision performance is not sacrificed.
One interesting concept is the Cell+ architecture [26].
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