
L2 Cache Modeling for Scientific Applications on Chip Multi-Processors ∗

Fengguang Song
Dept. of Computer Science

University of Tennessee
Knoxville, TN

song@cs.utk.edu

Shirley Moore
Dept. of Computer Science

University of Tennessee
Knoxville, TN

shirley@cs.utk.edu

Jack Dongarra
Dept. of Computer Science

University of Tennessee
Knoxville, TN

Oak Ridge National Laboratory
Oak Ridge, TN

dongarra@cs.utk.edu

Abstract

It is critical to provide high performance for scientific
applications running on Chip Multi-Processors (CMP). A
CMP architecture often comprises a shared L2 cache and
lower-level storages. The shared L2 cache can reduce the
number of cache misses if the data are accessed in com-
mon by several threads, but it can also lead to performance
degradation due to resource contention. Sometimes running
threads on all cores can cause severe contention and in-
crease the number of cache misses greatly. To investigate
how the performance of a thread varies when running it
concurrently with other threads on the remaining cores, we
develop an analytical model to predict the number of misses
on the shared L2 cache. In particular, we apply the model to
thread-parallel numerical programs. We assume that all the
threads compute homogeneous tasks and share a fully asso-
ciative L2 cache. We use circular sequence profiling and
stack processing techniques to analyze the L2 cache trace
to predict the number of compulsory cache misses, capacity
cache misses on shared data, and capacity cache misses on
private data, respectively. Our method is able to predict the
L2 cache performance for threads that have a global shared
address space. For scientific applications, threads often
have overlapping memory footprints. We use a cycle ac-
curate simulator to validate the model with three scientific
programs: dense matrix multiplication, blocked dense ma-
trix multiplication, and sparse matrix-vector product. The
average relative errors for the three experiments are 8.01%,
1.85%, and 2.41%, respectively.

Keywords: architecture, chip multi-processor, cache
performance modeling, multi-threaded programming

∗This material is based upon work supported by the National Science
Foundation under grant No. 0444363 and by the Department of Energy
Office of Science under grant No. DE-FC02-06ER25761.

1 Introduction

Cache performance plays an important role in software
performance. With the increasing gap between memory
and CPU speeds, it is essential to utilize the cache to
its full potential. In recent years, Chip Multi-Processing
(CMP) architectures have been developed to enhance per-
formance and power efficiency through the exploitation of
both instruction-level and thread-level parallelism. For in-
stance, the IBM Power5 processor enables two SMT threads
to execute on each of its two cores and four chips to be in-
terconnected to form an eight-core module [11]. Intel Mon-
tecito, Woodcrest, and AMD AMD64 processors all support
dual-cores [9]. Sun also shipped eight-core 32-way Niagara
processors in 2006 [7].

In these architectures, some share an on-chip L2 cache
among cores and others own private L1/L2 caches. As de-
scribed in the prior work by Fedorova [5], an L2 cache miss
penalty can be as high as 200-300 cycles while an L1 cache
miss only costs a few cycles. Poor L2 cache behavior can
dramatically increase the amount of off-chip communica-
tion and degrade the overall performance. Thus, our work is
focused on modeling the behavior of the on-chip shared L2
cache. For multi-threaded programs, the shared L2 cache
allows higher utilization of the L2 cache as a thread can
reuse the same data loaded previously by another thread.
Such reuse reduces power consumption and avoids dupli-
cating hardware resources. However, parallel threads of-
ten interfere with each other and contend for accesses to
the shared L2 cache, leading to suboptimal performance.
We present an analytical model to predict the number of L2
cache misses for shared-memory scientific applications. By
analyzing the L2 cache trace which is recorded when just
a single thread is running, our model is able to predict the
number of misses if we run the thread together with other
threads on the remaining cores. We assume there is one
thread on each core.

Considering the characteristics of thread-parallel pro-
grams from scientific computation, nearly all threads are
homogeneous. That is, each thread works on the same task
in parallel and has similar temporal behavior. Our model is
an extension to Chandra’s work [3]. The difference is that
we use an offline approach to analyze the L2 cache trace
and take into account the factor of memory sharing between
threads. Being able to model the effect of shared memory
accesses leads to a more powerful model that can predict
the number of L2 cache misses for threads not only from
distinct processes, but also from a single process.

The method presented in this paper classifies cache
misses into three types: compulsory misses, capacity misses
on shared data, and capacity misses on private data. The
terms shared and private indicate whether the data are ref-
erenced by more than one thread (shared) or by a single
thread (private). For instance, threads from different pro-
cesses usually have disjoint memory accesses. We model
the above three types of misses with three different meth-
ods: an average value for modeling compulsory misses, a
probability method for modeling capacity misses on private
data, and an effective cache space and a probability method
for modeling capacity misses on shared data. Our goal is
to model the L2 cache behavior by discovering the causes
a cache hit developing into a cache miss as well as a cache
miss turning into a cache hit.

The model is validated using the cycle-accurate simula-
tor SESC [10]. Three scientific programs have been im-
plemented to verify the model: matrix multiplication us-
ing three nested loops, blocked matrix multiplication, and
sparse matrix-vector product taking as input sparse matri-
ces from Matrix Market [2].

This paper is organized as follows: the next section in-
troduces related work. Section 3 outlines the concepts and
techniques used by the model. Section 4 describes in detail
how we model the three miss types by different methods. In
Section 5 we present the experimental results evaluating the
model. Finally, Section 6 concludes the paper.

2 Related work

Agarwal [1] developed a cache model that combines
measurement and analytical techniques to give miss rates
for a given trace. The model is a function of a small num-
ber of factors that affect cache performance. It estimates
cache performance for both a single process and multiple
round-robin processes. Thiébaut [13] presents a model for
cache-reload transients occurring in a multitasking system.
The estimate provided by the model is dependent on the
cache size and the footprints of the competing processes.
Since both models only consider the process swapping ef-
fect, they are not suitable for modeling concurrent accesses
to a shared cache from multiple processes or threads.

Mattson [8] describes a technique called stack process-
ing to evaluate storage hierarchies. By one-pass scanning
an address trace, the frequency of stack distances can be
obtained to determine the miss rate function. The stack pro-
cessing technique needs a memory trace and thus only a sin-
gle program run is required. Suh [12] used a set of hardware
counters (fully-associative counters, way-counters, and set-
counters) to monitor the marginal gains in cache hits as the
cache size is increased. These methods predict the miss
rate as a function of cache size, but they require that ad-
dress trace be fixed. Ding [4] measures program locality by
reuse distance and presents a two-step strategy to maximize
program locality. This strategy alleviates the pressure on
insufficient memory bandwidth. Chandra [3] introduced an
inductive probability model using circular sequences to pre-
dict cache interference from other threads. The probability
model assumes that co-scheduled threads do not share any
address space. However, there are many scientific applica-
tions that use the shared-memory programming model (e.g.,
OpenMP programs). Our research targets the new problem
of cache modeling for shared-memory programs.

3 Methodology overview

We can use the stack processing technique to estimate
the number of L2 cache misses given a fixed L2 cache trace.
However, the L2 cache trace might be changed if we run a
thread together with other threads due to the shared mem-
ory accesses. Therefore, we must be able to predict how
a thread’s trace is affected by the other threads (we call it
”interference”). To realize the prediction, we employ the
technique of circular sequence profiling. Note that we still
need the stack processing technique to derive the number of
cache misses from the estimated trace.

3.1 Stack processing technique

Gecsei introduces a technique called ”stack processing”
to evaluate storage hierarchies that use stack algorithms
as a replacement policy [8]. A storage hierarchy con-
sists of multiple levels of devices that are partitioned into
pages or blocks. The input to the model is a page trace
x1, x2, . . . , xn, where xi is the page number accessed by
the program. It is possible to apply the technique to any
level of the storage hierarchy as long as there is a corre-
sponding trace. We call the trace a block trace if we are
examining caches.

Assume a fully-associative cache has C lines (or ways).
It is easy to see that at any time t under LRU the cache con-
tains the C most recently used lines. Even if we increase the
cache size to C+1, C+2, . . . , the set of C lines are still in the
cache. This property is called the ”inclusion property” and

is formally defined in [8]. Because of the inclusion prop-
erty, the content of the cache at any time t is able to be
represented as an LRU stack

S(t) = {s(t)(1), s(t)(2), · · · , s(t)(C)}, where

s(t)(i) = Blocks(t)(C = i) − Blocks(t)(C = i − 1).

Blocks(m) denotes the set of lines contained in a cache of
size m. s(t)(i) is also known as ”marginal gain” [12]. If a
cache line xt has been referenced before, the position � of
that line counted from the top of the stack is called ”stack
distance”. Let counter(�) accumulate the number of
times the stack distance � appears in the page trace. Such a
set of counters forms a so-called stack distance profile. For
instance, counter(1) counts the number of hits in the
most recently used line, counter(C) counts the number
of hits in the least recently used line, and counter(C+1)
counts the number of cache misses.

Our model assumes a fully associative cache that uses
the LRU algorithm and has no conflict misses. It has
been shown that set-associative cache miss ratios are re-
lated to fully associative ones and a model using Bayes
rule is able to make quite accurate predictions [6]. In ad-
dition, when the number of set-associativity is large, set-
associative caches often have a miss rate comparable to
fully associative caches.

A stack distance profile is sufficient to estimate the num-
ber of misses for a particular cache capacity. However, a
page trace is prone to change because of other threads run-
ning on the remaining cores. Hence we must acquire more
information to model the possible interferences from the
other threads. The concept of circular sequence profile was
introduced by Chandra [3] and has successfully modeled the
interference effect from other processes in different address
spaces. Note that we can deduce a stack distance profile
from a circular sequence profile easily.

3.2 Circular sequence profile

A circular sequence is a sequence of cache lines
x1, x2, · · · , xn where x1 = xn, and x1 does not appear any-
where in the middle of the sequence except for the begin-
ning and the end positions [3]. It is possible that other circu-
lar sequences exist in the sequence if one cache line appears
several times in the middle. For instance, the trace in Fig-
ure 1 contains five circular sequences. We use CSEQ(d, n)
to denote some set of circular sequences, in which each se-
quence is of length n and has d distinct cache lines:

CSEQ(d, n) = {α is a circular sequence | α
accesses n lines and has d distinct lines}.

d and n define a different circular sequence set. In prac-
tice we use a counter to record the number of elements in

 x1 x2 x3 x4 x3 x2 x1 x1 ... x4

Figure 1. An example of a cache block trace
containing five circular sequences

a nonempty CSEQ(d, n). It is denoted as |CSEQ(d, n)|.
Each CSEQ(d, n) has a counter and the list of counters
form a circular sequence profile.

We extend the SESC simulator to collect an L2 cache
trace that consists of L2 lines sent from all processor cores.
In the trace file, each cache line is written in the form
of PhysicalAddress:CoreId:VirtualAddress.
The second field CoreId helps keep track of a specific
thread’s trace, and the third field VirtualAddress is
used to distinguish shared data accesses from private data
accesses.

To obtain circular sequence profiles of each core, we
use a scan process to analyze the L2 trace. Figure
2 shows the process’s C++ program. Associative map
addr map records physical addresses and their indices
in the trace, array compulsory counts the total number
of compulsory misses for each core, and cseq shared,
cseq private are circular sequence counters for shared
and private data. The analysis process outputs not only
compulsory misses for each core, but also circular sequence
profiles for shared data cseqshared(d, n) and private data
cseqprivate(d, n). Based on these three components, we are
able to estimate the number of cache misses if running mul-
tiple threads simultaneously.

4 Modeling strategy

We use the most well-known ”three Cs” model (compul-
sory, capacity, and conflict misses) to classify cache misses.
For simplicity, we only consider fully associative caches.
Our model takes as input a thread’s circular sequence profile
and estimates the number of misses if the thread had run to-
gether with other threads. Note that we always measure and
predict the performance of the initial single thread. Since
we don’t consider simultaneous multi-threading (SMT) on
processor cores and always have one thread per core, we
interchangeably use ”thread” and ”core”.

We analyze the L2 cache trace of a single-thread exe-
cution to estimate the number of L2 misses for a multiple-
thread execution as follows: the scan process in Figure 2
creates a circular sequence profile, from which we can de-
rive the number of cache misses:

misses = compulsory +
∑

d>C

∑

n>d

|CSEQ(d, n)|.

map<paddr, pos> addr_map;
pos = 1;
while(not end of the file) {
read into paddr, coreid, vaddr;
if(addr_map[paddr] == 0) {

addr_map[paddr] = pos;
compulsory[coreid]++;

}else {
n = pos - addr_map[paddr] + 1;
d = get_num_distinct

(addr_map[paddr], pos-1);
addr_map[paddr] = pos;
if(is_shared(vaddr))

cseq_shared[coreid][n][d]++;
else

cseq_private[coreid][n][d]++;
}
pos++;

}

Figure 2. The C++ program to scan the L2
cache trace to obtain circular sequence pro-
files and the number of compulsory misses
for each processor core

If we run a thread together with other threads on differ-
ent cores, the trace of that thread will be affected by ref-
erences from the other threads. We divide L2 cache refer-
ences into two types based on their addresses: references to
shared data, and references to private data. Instead of using
a single circular sequence profile cseq(d, n), we introduce
cseqprivate(d, n) and cseqshared(d, n) for each thread. For
instance, consider two sequences: ABCDA where A is
shared and ZBCDZ where Z is private. The first sequence
increases the counter cseqshared(4, 5), while the second in-
creases cseqprivate(4, 5).

Given a thread, different types of references are affected
differently by the other threads. For instance, when a shared
datum is accessed by two threads, the cache line previously
loaded by one thread can save the other from reloading it.
Therefore, (i) an original compulsory cache miss might be-
come a hit. Another type is that (ii) the number of capac-
ity misses on private data should increase because a previ-
ous hit may become a miss due to interferences from other
threads. Finally, the prediction of capacity misses on shared
data is much more complicated. (iii) A cache miss on shared
data may become a hit because the other thread already
loaded the data, meanwhile (iv) a cache hit on shared data
may become a miss owing to other threads’ interference.

In the following sections, we will describe our meth-
ods to predict the above three types of misses respectively.
Misses

(co)
new denotes the predicted number of compulsory

misses, Misses
(pr)
new denotes the predicted number of ca-

pacity misses on private data, and Misses
(sh)
new denotes the

number of capacity misses on shared data.

4.1 Modeling compulsory misses

An accurate method to determine how many compulsory
misses become hits is dependent upon the relative speed
of the concurrent threads and how much their working sets
overlap. Given thread 0, thread 1, and shared data accesses
b1, b2, b3, b4, thread 0 will have four compulsory misses if
it is running alone. With thread 1 running, thread 0 misses
might become fewer if thread 1 loads some of the data, or
remain to be four if thread 1 always lags behind thread 0. It
is hard to provide a precise prediction unless we know more
detailed information.

Since we are concerned with homogeneous threads, it is
reasonable to assume that the shared data are loaded evenly
by the participating threads. This assumption has been val-
idated by our experiments and most of the time the relative
error for the compulsory miss estimate is less than 15%.
Figure 3 shows an example that launches two threads to
compute C = A×B using a block data distribution. Matrix
B is shared by thread 0 and thread 1. From the perspective
of thread 0, around half of its compulsory misses on matrix
B may be loaded by thread 1.

We introduce F
(co)
m2h to denote the fraction of a thread’s

compulsory misses that may become cache hits:

F
(co)
m2h =

Overlapped Blocks
TotalBlocks× NumCores

.

The fraction of compulsory misses that remain to be com-
pulsory misses F

(co)
miss is as follows:

F
(co)
miss = 1 − F

(co)
m2h.

Thus the predicted number of compulsory misses if we run
the thread together with other threads is expressed as:

Misses(co)
new = Misses

(co)
old × F

(co)
miss,

where Misses
(co)
old is the original number of compulsory

misses when the thread is running alone.

4.2 Modeling capacity misses on private
data

Any access to a private datum is either a miss or a hit.
It is easy to see that every capacity miss on private data is
still a cache miss regardless of whether the thread is running
alone or with another thread. But a cache hit may become a
miss because references of other threads will likely stretch
out the circular sequence too much. Figure 4 illustrates how
a cache hit could become a miss for a cache of size C = 4.

= x

C A B

thread 0
thread 1

Figure 3. Two threads compute matrix multi-
plication of C = A×B using block data distri-
bution. For thread 0, half of its compulsory
misses on matrix B may be saved by data
loading of thread 1 (i.e., F

(co)
m2h = 1

(.5+.5+1)×2 =
1
4 of the number of the original compulsory
misses).

The sequence at the bottom is likely to happen if we run
thread 0 and thread 1 together. At this time, the second ref-
erence to a1 is now becoming a cache miss. Therefore, the
predicted number of capacity misses on private data should
be equal to the sum of the original misses and some original
hits which turn into misses.

Let thread 0 and thread 1 run in parallel on two differ-
ent cores. CSEQ(d, n) corresponds to the cache hits of
thread 0 if d ∈ [1, C]. During the time thread 0 is accessing
its n addresses in L2, thread 1 is also accessing the shared
L2 cache. The references from thread 1 may insert an ex-
tra ∆d distinct addresses into the circular sequence. When
d + ∆d > C, thread 0’s cache hit develops into a miss. For
simplicity, we assume all the references inserted are differ-
ent from those in the original sequence.

We use Prob
(pr)
h2m to compute the interference probability

for which a hit on private data becomes a miss. The mod-
eling method for private data is an extension of the tech-
nique developed by Chandra et al. [3], which predicts the
L2 cache contention for multiple processes. We apply the
technique to private data profiles of shared-memory threads
using:

Prob
(pr)
h2m(cseq(pr)(d, n̄)) =

∑

d̂>C−d

Prob(seq(d̂, n̄)),

where d ≤ C and n̄ is the average length of sequences
with d distinct addresses. Since we only consider homoge-
neous threads, our model scans the same trace to compute
the interference probability Prob(seq(d̂, n)). The inductive
probability function used by [3] is more complex and essen-
tially exponential. In our implementation, the computation
of

∑
d̂>C−d Prob(seq(d̂, n̄)) is performed by scanning the

trace file to find the frequency of sequences with length n̄

thread0

a1
a2
a2
a3
a3
a4
a4
a1

thread 1

a10
a10
a11
a11
a12
a12

thread0:a1a2a2a10a10a3a3a11a11a4a4a1a12a12

CSEQ(6,12)

C
S
E
Q
(
4
,
8
)

Figure 4. A cache hit of thread 0 becomes
a cache miss because of references from
thread 1.

and greater than C−d distinct addresses. It has a linear time
complexity of O(TraceSize).

This modeling process takes as input the private data cir-
cular sequence profile CSEQ(pr)(d, n) and works as fol-
lows:

1. Compute the total number of capacity misses when a
single thread is running:

Misses
(pr)
old =

∑

d>C

∑

n>d

|CSEQ(pr)(d, n)|

2. Compute the number of cache hits which become
misses:
for d = 1 to C do

total num =
∑

n>d

|CSEQ(pr)(d, n)|

n̄ =
∑

n>d

(|CSEQ(pr)(d, n)| × n
)

total num

Prob
(pr)
h2m(d, n̄) =

∑

d̂>C−d

Prob(seq(d̂, n̄))

∆Misses(pr)+ = total num × Prob
(pr)
h2m

end for

3. Finally, compute the predicted number of capacity
misses on private data:

Misses(pr)
new = Misses

(pr)
old + ∆Misses(pr)

4.3 Modeling capacity misses on shared
data

The number of capacity misses happening on the shared
data is much more difficult to model than the above two
types. We need to partition the shared-data circular se-
quence profile CSEQ(sh)(d, n) into two subcategories:
cache hits (sequences with d ≤ C) and cache misses (se-
quences with d > C). Likewise, cache hits may become
misses because references from other threads stretch out
the sequence length, and cache misses may become hits
because other threads already loaded the data into L2. To
model the two different subcategories, we adopt two differ-
ent approaches, respectively.

4.3.1 Cache hits become cache misses

A thread is unable to occupy all the lines of the L2 cache
when it is running concurrently with other threads. A frac-
tion of the cache lines will contain data from the other
threads. Since all threads have similar temporal behavior,
we assume the effective cache size Ceff (t0) of thread t0
is proportional to the percentage of its footprint size to the
overall footprint size:

Ceff (t0) =
|footprint(t0)|

|⋃i footprint(ti)| × C.

The number of additional cache misses Misses
(sh)
h2m is com-

puted by applying Ceff to the circular sequence profile of
the concerned thread:

Misses
(sh)
h2m =

C∑

d=Ceff +1

∑

n>d

|CSEQ(d, n)|

Another possible approach is to use the probability model
introduced in Section 4.2.

4.3.2 Cache misses become cache hits

To consider another situation where capacity misses on
shared data become hits, we use the same idea as in predict-
ing the compulsory misses. If m cache lines are accessed by
n threads in common, we assume each thread will load m

n

lines. Therefore the fraction F
(sh)
m2h of capacity misses that

become hits is expressed as:

F
(sh)
m2h = 1 − 1

Number of Threads
,

and the reduced number of capacity misses is equal to:

Misses
(sh)
m2h = Misses

(sh)
old × F

(sh)
m2h .

By Sections 4.3.1 and 4.3.2, we can now estimate the
number of capacity misses on shared data:

Misses(sh)
new = Misses

(sh)
old − Misses

(sh)
m2h + Misses

(sh)
h2m

= Misses
(sh)
old × 1

Number of Threads

+ Misses
(sh)
h2m

Summing up Misses
(co)
new, Misses

(pr)
new, and Misses

(sh)
new

gives the predicted number of L2 cache misses.

5 Experimental results

The implementation of our model consists of a tool an-
alyzing the L2 trace to create circular sequence profiles for
each core and a library implementing the analytical model.
We validate the model using three examples typical of sci-
entific computing. All three experiments perform double-
floating point operations on matrices/vectors that are stored
contiguously in memory. We use the simple 1-D block data
distribution to allocate tasks to two threads. The three ex-
periments are:

• Dense matrix multiplication using three nested loops.
We denote it as dgemm.

• Dense matrix multiplication using the tiling technique.
The tile size is equal to eight. It is denoted as
blocked dgemm.

• Sparse matrix-vector multiplication. The experiment
is referred to as spmv.

Our experiments were conducted on an extended version
of the SESC simulator. Table 1 shows the parameters of
the two-core CMP architecture. A larger L2 cache results
in very few capacity misses and nearly all cache misses are
compulsory misses. It is relatively trivial to model such ar-
chitectures. In order to model the more complicated non-
compulsory misses, we choose to use a small L2 cache size.

5.1 Experimental result for dgemm

Table 2 does a comparison between the actual number of
misses and the predicted number of misses for running two
threads. The relative error lies in the range between 1.97%
and 20.19%. For each N, there are three rows that display
the actual number of L2 cache misses when we run a single
thread, the actual number when we run two threads, and the
prediction for running two threads, respectively.

As shown in the third row for each N, the analytical
model decomposes cache misses into three components:
compulsory misses, capacity misses on private data, and ca-
pacity misses on shared data. Each component adopts a dif-
ferent approach to model. The compulsory and shared data

misses are based upon empirical parameters, and the private
data misses build upon a probability model. For different
applications, the total number of cache misses is dominated
by one of the three components. For instance, the dgemm
experiment has a large number of capacity misses on shared
data.

5.2 Experimental result for blocked
dgemm

This experiment is a tiling version of dgemm. It uses a
block size of 8 to compute the matrix multiplication. Table
3 lists the actual number of misses for running one thread
alone, the actual number for running two threads together,
and the predicted number for running two threads. The rel-
ative error is between 0.1% and 4.2%.

5.3 Experimental result for spmv

Finally, we conducted experiments on sparse matrix-
vector multiplications. The matrices used are dw2048 and
qc324 which were downloaded from the Matrix Market
web site. dw2048 is a 2048 × 2048 sparse matrix with
10114 non-zero elements, while qc is a 324 × 324 ma-
trix having 26730 non-zero elements. Figures 5 and 6 show
their images correspondingly. Table 4 lists the performance
result. To estimate the number of compulsory misses for
matrix qc324, we observe that the two threads are work-
ing on nearly-disjoint subsets of the shared memory area,
therefore we simply keep the number of compulsory misses
unchanged.

Table 1. Parameters of the two-core CMP sim-
ulated architecture

Processor Two cores, 5.0GHz
out of order issue

L1(private) ICache: LRU, 4-way, 32KB
64B line, write-through
DCache: LRU, 4-way, 8KB
64B line, write-through
MESI protocol

L1L2 Bus Split transaction system bus
L2 MSHR 64
L2(shared) Unified, LRU, 64B line

64KB, fully associative
write-back

Table 2. Result for dgemm: prediction of the total number
of L2 misses for thread 0 if running with another thread.
For each N, there are three rows. The 1st row shows the
measured result for running a single thread, then the second
row shows measured result for running two threads, and the
third row shows our prediction.

N Total Compulsory Capacity Capacity Error

(private) (shared)

64 single 1041 1025 16

64 double 862 838 24

64 predict 813 769 43 1 -5.68%

72 single 1313 1297 16

72 double 901 870 31

72 predict 991 973 17 1 +9.99%

80 single 1631 1601 30

80 double 1096 1037 59

80 predict 1233 1201 31 1 +12.50%

88 single 2076 1937 139

88 double 6479 1158 5321

88 predict 7787 1453 145 6189 +20.19%

96 single 56839 2305 54534

96 double 30179 1681 28498

96 predict 29584 1729 391 27464 -1.97%

104 single 72231 2705 69526

104 double 35531 2037 33494

104 predict 37710 2029 1204 34477 +6.13%

112 single 89983 3137 86846

112 double 44428 2317 42111

112 predict 46081 2353 607 43121 +3.72%

144 single 190445 5185 185260

144 double 93495 3817 89678

144 predict 97135 3889 1229 92017 +3.89%

Average Error 8.01%

6 Conclusions and future work

In this paper we present an analytical model to predict
the number of L2 cache misses on a chip multi-processor
quantitatively. We use the circular sequence profiling and
stack processing technique to analyze an L2 cache trace.
First, the trace file is scanned to generate a circular sequence
profile. Next the analytical model reads in the profile and
estimates the number of cache misses for running multiple
threads. Since we are concentrating on a fully associative
L2 cache, cache misses are decomposed into three types:
compulsory misses, capacity misses on shared data, and ca-
pacity misses on private data. Each miss type is modeled
by using a different method since each one’s behavior is af-
fected variously by other threads.

We have shown that the fractions of compulsory misses
becoming hits and shared data capacity misses becoming
hits are accurate for most of the experiments. For all the
three scientific programs, the model has an average relative
error less than 8.01%. In addition, the analytical model pro-
vides insight into how cache sharing and cache contention
interact with each other. With this model, we are also able
to predict the number of L2 cache misses for various CMP
architectures given a trace. Although the model is accurate,
it is not very convenient to collect the whole cache trace. We
plan to further simplify the model and extend it to support
heterogeneous chip multi-processors.

Table 3. Result for blocked dgemm: prediction of the
total number of L2 misses for thread 0 if running with an-
other thread. For each N, there are three rows. The 1st
row shows the measured result for running a single thread,
then the second row shows measured result for running two
threads, and the third row shows our prediction.

N Total Compulsory Capacity Capacity Error

(private) (shared)

64 single 1047 1031 16

64 double 805 775 30

64 predict 827 773 53 1 +2.73%

72 single 1251 1231 20

72 double 1952 985 977

72 predict 1916 923 21 972 -1.84%

80 single 4537 1607 2930

80 double 2963 1215 1748

80 predict 3089 1205 51 1833 +4.25%

88 single 5795 1855 3940

88 double 3374 1332 2042

88 predict 3399 1391 71 1937 +0.74%

96 single 8161 2311 5850

96 double 4911 1764 3147

96 predict 4792 1733 178 2881 -2.42%

104 single 9474 2607 6867

104 double 5319 1891 3428

104 predict 5444 1955 108 3381 +2.35%

112 single 12690 3143 9547

112 double 7230 2423 4807

112 predict 7202 2357 140 4705 -0.39%

144 single 26222 5191 21031

144 double 14543 3904 10639

144 predict 14561 3893 299 10369 +0.12%

Average Error 1.85%

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analyti-
cal cache model. ACM Trans. Comput. Syst., 7(2):184–215,
1989.

[2] R. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. Don-
garra. Matrix Market: a web resource for test matrix col-
lections. In Quality of Numerical Software, pages 125–137,
1996.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architec-
ture. In High-Performance Computer Architecture, 2005,
pages 340–351, Feb. 2005.

[4] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. J. Par-
allel Distrib. Comput., 64(1):108–134, 2004.

[5] A. Fedorova, M. Seltzer, and M. Smith. A non-work-
conserving operating system scheduler for SMT processors.
In Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture, June 2006.

[6] M. Hill and A. Smith. Evaluating associativity in CPU
caches. IEEE Trans. Computers, 38(12):1612–1630, 1989.

Table 4. Result for spmv: prediction of the total number
of L2 misses for thread 0 if running with another thread. For
each sparse matrix, the 1st row shows the measured result
for running a single thread, then the 2nd row shows mea-
sured result for running two threads, and the 3rd row shows
our prediction.

N Total Compulsory Capacity Capacity Error

(private) (shared)

dw single 1483 1403 80

dw double 1483 1391 92

dw predict 1412 1324 88 0 -4.787%

qc single 2807 2693 114

qc double 2841 2668 173

qc predict 2840 2693 147 0 -0.035%

Average Error 2.41%

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5. Sparse ma-
trix of dw2048 (nnz =

10, 114)

50

100

150

200

250

300

50 100 150 200 250 300

Figure 6. Sparse ma-
trix of qc324 (nnz =

26, 730)

[7] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21–
29, 2005.

[8] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal,
9(2):78–117, 1970.

[9] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-
thread itanium processor. IEEE Micro, 25(2):10–20, 2005.

[10] J. Renau, B. Fraguela, J. Tuck, W. Liu, and M. Prvulovic.
SESC simulator, Jan. 2005. http://sesc.sourceforge.net.

[11] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and
J. Joyner. Power5 system microarchitecture. IBM Journal of
Research and Development, 49(4/5):505–521, 2005.

[12] G. Suh, S. Devadas, and L. Rudolph. A new memory mon-
itoring scheme for memory-aware scheduling and partition-
ing. In Proceedings of the Eighth International Symposium
on High-Performance Computer Architecture (HPCA’02),
pages 117–128, Feb. 2002.

[13] D. Thiébaut and H. Stone. Footprints in the cache. ACM
Trans. Comput. Syst., 5(4):305–329, 1987.

