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Chapter 14 C H A P T E R  F O U R T E E N

How Elegant Code Evolves with
Hardware: The Case of Gaussian

Elimination
Jack Dongarra and Piotr Luszczek

THE INCREASING AVAILABILITY OF ADVANCED-ARCHITECTURE COMPUTERS, AT AFFORDABLE COSTS, HAS

had a significant effect on all spheres of scientific computation. In this chapter, we’ll show

the need for designers of computing algorithms to make expeditious and substantial adap-

tations to algorithms, in reaction to architecture changes, by closely examining one simple

but important algorithm in mathematical software: Gaussian elimination for the solution

of linear systems of equations.

At the application level, science has to be captured in mathematical models, which in turn

are expressed algorithmically and ultimately encoded as software. At the software level,

there is a continuous tension between performance and portability on the one hand, and

understandability of the underlying code. We’ll examine these issues and look at trade-

offs that have been made over time. Linear algebra—in particular, the solution of linear

systems of equations—lies at the heart of most calculations in scientific computing. This

chapter focuses on some of the recent developments in linear algebra software designed to

exploit advanced-architecture computers over the decades.

There are two broad classes of algorithms: those for dense matrices and those for sparse

matrices. A matrix is called sparse if it contains a substantial number of zero elements. For
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sparse matrices, radical savings in space and execution time can be achieved through spe-

cialized storage and algorithms. To narrow our discussion and keep it simple, we will look

only at the dense matrix problem (a dense matrix is defined as one with few zero elements).

Much of the work in developing linear algebra software for advanced-architecture com-

puters is motivated by the need to solve large problems on the fastest computers available.

In this chapter, we’ll discuss the development of standards for linear algebra software, the

building blocks for software libraries, and aspects of algorithm design as influenced by the

opportunities for parallel implementation. We’ll explain motivations for this work, and

say a bit about future directions.

As representative examples of dense matrix routines, we will consider Gaussian elimina-

tion, or LU factorization. This examination, spanning hardware and software advances

over the past 30 years, will highlight the most important factors that must be considered in

designing linear algebra software for advanced-architecture computers. We use these fac-

torization routines for illustrative purposes not only because they are relatively simple, but

also because of their importance in several scientific and engineering applications that

make use of boundary element methods. These applications include electromagnetic scat-

tering and computational fluid dynamics problems.

The past 30 years have seen a great deal of activity in the area of algorithms and software

for solving linear algebra problems. The goal of achieving high performance in code that is

portable across platforms has largely been realized by the identification of linear algebra

kernels, the Basic Linear Algebra Subprograms (BLAS). We will discuss the LINPACK,

LAPACK, and ScaLAPACK libraries, which are expressed in successive levels of the BLAS.

See “Further Reading at the end of this chapter for discussions of these libraries.

The Effects of Computer Architectures on Matrix Algorithms
The key motivation in the design of efficient linear algebra algorithms for advanced-archi-

tecture computers involves the storage and retrieval of data. Designers wish to minimize

the frequency with which data moves between different levels of the memory hierarchy.

Once data is in registers or the fastest cache, all processing required for this data should be

performed before it gets evicted back to the main memory. Thus, the main algorithmic

approach for exploiting both vectorization and parallelism in our implementations uses

block-partitioned algorithms, particularly in conjunction with highly tuned kernels for per-

forming matrix-vector and matrix-matrix operations (the Level-2 and Level-3 BLAS).

Block partitioning means that the data is divided into blocks, each of which should fit

within a cache memory or a vector register file.

The computer architectures considered in this chapter are:

• Vector machines

• RISC computers with cache hierarchies

• Parallel systems with distributed memory
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• Multi-core computers

Vector machines were introduced in the late 1970s and early 1980s. They were able in one

step to perform a single operation on a relatively large number of operands stored in vec-

tor registers. Expressing matrix algorithms as vector-vector operations was a natural fit for

this type of machines. However, some of the vector designs had a limited ability to load

and store the vector registers in main memory. A technique called chaining allowed this

limitation to be circumvented by moving data between the registers before accessing main

memory. Chaining required recasting linear algebra in terms of matrix-vector operations.

RISC computers were introduced in the late 1980s and early 1990s. While their clock rates

might have been comparable to those of the vector machines, the computing speed lagged

behind due to their lack of vector registers. Another deficiency was their creation of a deep

memory hierarchy with multiple levels of cache memory to alleviate the scarcity of band-

width that was, in turn, caused mostly by a limited number of memory banks. The even-

tual success of this architecture is commonly attributed to the right price point and

astonishing improvements in performance over time as predicted by Moore’s Law. With

RISC computers, the linear algebra algorithms had to be redone yet again. This time, the

formulations had to expose as many matrix-matrix operations as possible, which guaran-

teed good cache reuse.

A natural way of achieving even greater performance levels with both vector and RISC

processors is by connecting them together with a network and letting them cooperate to

solve a problem bigger than would be feasible on just one processor. Many hardware con-

figurations followed this path, so the matrix algorithms had to follow yet again as well. It

was quickly discovered that good local performance has to be combined with good global

partitioning of the matrices and vectors.

Any trivial divisions of matrix data quickly uncovered scalability problems dictated by so-

called Amdahl’s Law: the observation that the time taken by the sequential portion of a

computation provides the minimum bound for the entire execution time, and therefore

limits the gains achievable from parallel processing. In other words, unless most of compu-

tations can be done independently, the point of diminishing returns is reached, and add-

ing more processors to the hardware mix will not result in faster processing.

For the sake of simplicity, the class of multi-core architectures includes both symmetric

multiprocessing (SMP) and single-chip multi-core machines. This is probably an unfair

simplification, as the SMP machines usually have better memory systems. But when

applied to matrix algorithms, both yield good performance results with very similar algo-

rithmic approaches: these combine local cache reuse and independent computation with

explicit control of data dependences.

A Decompositional Approach
At the basis of solutions to dense linear systems lies a decompositional approach. The gen-

eral idea is the following: given a problem involving a matrix A, one factors or decomposes
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A into a product of simpler matrices from which the problem can easily be solved. This

divides the computational problem into two parts: first determine an appropriate decom-

position, and then use it in solving the problem at hand.

Consider the problem of solving the linear system:

Ax = b

where A is a nonsingular matrix of order n. The decompositional approach begins with the

observation that it is possible to factor A in the form:

A = LU

where L is a lower triangular matrix (a matrix that has only zeros above the diagonal)

with ones on the diagonal, and U is upper triangular (with only zeros below the diagonal).

During the decomposition process, diagonal elements of A (called pivots) are used to

divide the elements below the diagonal. If matrix A has a zero pivot, the process will break

with division-by-zero error. Also, small values of the pivots excessively amplify the

numerical errors of the process. So for numerical stability, the method needs to inter-

change rows of the matrix or make sure pivots are as large (in absolute value) as possible.

This observation leads to a row permutation matrix P and modifies the factored form to:

PTA = LU

The solution can then be written in the form:

x = A-1Pb

which then suggests the following algorithm for solving the system of equations:

1. Factor A

2. Solve the system Ly = Pb

3. Solve the system Ux = y

This approach to matrix computations through decomposition has proven very useful for

several reasons. First, the approach separates the computation into two stages: the compu-

tation of a decomposition, followed by the use of the decomposition to solve the problem

at hand. This can be important, for example, if different right hand sides are present and

need to be solved at different points in the process. The matrix needs to be factored only

once and reused for the different right hand sides. This is particularly important because

the factorization of A, step 1, requires O(n3) operations, whereas the solutions, steps 2 and

3, require only O(n2) operations. Another aspect of the algorithm’s strength is in storage:

the L and U factors do not require extra storage, but can take over the space occupied ini-

tially by A.

For the discussion of coding this algorithm, we present only the computationally intensive

part of the process, which is step 1, the factorization of the matrix.
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A Simple Version
For the first version, we present a straightforward implementation of LU factorization. It

consists of n–1 steps, where each step introduces more zeros below the diagonal, as shown

in Figure 14-1.

A tool often used to teach Gaussian elimination is MATLAB. It features a scripting lan-

guage (also called MATLAB) that makes developing matrix algorithms very simple. The

language might seem very unusual to people familiar with other scripting languages

because it is oriented to process multidimensional arrays. The unique features of the lan-

guage that we use in the example code are:

• Transposition operator for vectors and matrices: ’ (single quote)

• Matrix indexing specified as:

• Simple integer values: A(m, k)

• Ranges: A(k:n, k)

• Other matrices: A([k m], : )

• Built-in matrix functions such as size (returns matrix dimensions), tril (returns the

lower triangular portion of the matrix), triu (returns the upper triangular portion of

the matrix), and eye (returns an identity matrix, which contains only zero entries,

except for the diagonal, which is all ones)

Example 14-1 shows the simple implementation.

F I G U R E 1 4 - 1 . LU factorization

E X A M P L E 1 4 - 1 . Simple variant (MATLAB coding)

function [L,U,p] = lutx(A)
%LUTX  Triangular factorization, textbook version
%   [L,U,p] = lutx(A) produces a unit lower triangular matrix L,
%   an upper triangular matrix U, and a permutation vector p,
%   so that L*U = A(p,:)

[n,n] = size(A);
p = (1:n)';

for k = 1:n-1

   % Find index 'm' of largest element 'r' below diagonal in k-th column

After i=n–1

0
0
0

0

0

0

0

0

0

After i=3

0

0

0

0

0

0

After i=2

0

0

0

0

After i=1

0

0
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The algorithm presented in Example 14-1 is row-oriented, in the sense that we are taking

a scalar multiple of the “pivot” row and adding it to the rows below to introduce zeros

below the diagonal. The beauty of the algorithm lies in its similarity to the mathematical

notation. Hence, this is the preferred way of teaching the algorithm for the first time so

that students can quickly turn formulas into running code.

This beauty, however, has its price. In the 1970s, Fortran was the language for scientific

computations. Fortran stores two-dimensional arrays by column. Accessing the array in a

row-wise fashion within the matrix could involve successive memory reference to loca-

tions separated from each other by a large increment, depending on the size of the

declared array. The situation was further complicated by the operating system’s use of

memory pages to effectively control memory usage. With a large matrix and a row-ori-

ented algorithm in a Fortran environment, an excessive number of page swaps might be

generated in the process of running the software. Cleve Moler pointed this out in the

1970s (see “Further Reading”).

To avoid this situation, one needed simply to interchange the order of the innermost

nested loops on i and j. This simple change resulted in more than 30 percent savings in

wall-clock time to solve problems of size 200 on an IBM 360/67. Beauty was thus traded

for efficiency by using a less obvious ordering of loops and a much more obscure (by

today’s standard) language.

   [r,m] = max(abs(A(k:n,k)));
   m = m+k-1; % adjust 'm' so it becomes a global index

   % Skip elimination if column is zero
   if (A(m,k) ~= 0)

      % Swap pivot row
      if (m ~= k)
         A([k m],:) = A([m k],:); % swap rows 'k' and 'm' of 'A'
         p([k m]) = p([m k]);     % swap entrix 'k' and 'm' of 'p'
      end

      % Compute multipliers
      i = k+1:n;
      A(i,k) = A(i,k)/A(k,k);

      % Update the remainder of the matrix
      j = k+1:n;
      A(i,j) = A(i,j) - A(i,k)*A(k,j);
   end
end

% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);

E X A M P L E 1 4 - 1 . Simple variant (MATLAB coding) (continued)
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LINPACK’s DGEFA Subroutine
The performance issues with the MATLAB version of the code continued as, in the mid-

1970s, vector architectures became available for scientific computations. Vector architec-

tures exploit pipeline processing by running mathematical operations on arrays of data in

a simultaneous or pipelined fashion. Most algorithms in linear algebra can be easily vec-

torized. Therefore, in the late 70s there was an effort to standardize vector operations for

use in scientific computations. The idea was to define some simple, frequently used opera-

tions and implement them on various systems to achieve portability and efficiency. This

package came to be known as the Level-1 Basic Linear Algebra Subprograms (BLAS) or

Level-1 BLAS.

The term Level-1 denotes vector-vector operations. As we will see, Level-2 (matrix-vector

operations), and Level-3 (matrix-matrix operations) play important roles as well.

In the 1970s, the algorithms of dense linear algebra were implemented in a systematic

way by the LINPACK project. LINPACK is a collection of Fortran subroutines that analyze

and solve linear equations and linear least-squares problems. The package solves linear

systems whose matrices are general, banded, symmetric indefinite, symmetric positive

definite, triangular, and tridiagonal square. In addition, the package computes the QR and

singular value decompositions of rectangular matrices and applies them to least-squares

problems.

LINPACK uses column-oriented algorithms, which increase efficiency by preserving local-

ity of reference. By column orientation, we mean that the LINPACK code always refer-

ences arrays down columns, not across rows. This is important since Fortran stores arrays

in column-major order. This means that as one proceeds down a column of an array, the

memory references proceed sequentially through memory. Thus, if a program references

an item in a particular block, the next reference is likely to be in the same block.

The software in LINPACK was kept machine-independent partly through the introduction

of the Level-1 BLAS routines. Almost all of the computation was done by calling Level-1

BLAS. For each machine, the set of Level-1 BLAS would be implemented in a machine-

specific manner to obtain high performance.

Example 14-2 shows the LINPACK implementation of factorization.

E X A M P L E 1 4 - 2 . LINPACK variant (Fortran 66 coding)

      subroutine dgefa(a,lda,n,ipvt,info)
      integer lda,n,ipvt(1),info
      double precision a(lda,1)
      double precision t
      integer idamax,j,k,kp1,l,nm1
c
c
c     gaussian elimination with partial pivoting
c
      info = 0
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The Level-1 BLAS subroutines DAXPY, DSCAL, and IDAMAX are used in the routine

DGEFA. The main difference between Example 14-1 and Example 14-2 (other than the

programming language and the interchange of loop indexes) is the use of routine DAXPY

to encode the inner loop of the method.

      nm1 = n - 1
      if (nm1 .lt. 1) go to 70
      do 60 k = 1, nm1
         kp1 = k + 1
c
c        find l = pivot index
c
         l = idamax(n-k+1,a(k,k),1) + k - 1
         ipvt(k) = l
c
c        zero pivot implies this column already triangularized
c
         if (a(l,k) .eq. 0.0d0) go to 40
c
c           interchange if necessary
c
            if (l .eq. k) go to 10
               t = a(l,k)
               a(l,k) = a(k,k)
               a(k,k) = t
   10       continue
c
c           compute multipliers
c
            t = -1.0d0/a(k,k)
            call dscal(n-k,t,a(k+1,k),1)
c
c           row elimination with column indexing
c
            do 30 j = kp1, n
               t = a(l,j)
               if (l .eq. k) go to 20
                  a(l,j) = a(k,j)
                  a(k,j) = t
   20          continue
               call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
   30       continue
         go to 50
   40    continue
            info = k
   50    continue
   60 continue
   70 continue
      ipvt(n) = n
      if (a(n,n) .eq. 0.0d0) info = n
      return
      end

E X A M P L E 1 4 - 2 . LINPACK variant (Fortran 66 coding) (continued)
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It was presumed that the BLAS operations would be implemented in an efficient,

machine-specific way suitable for the computer on which the subroutines were executed.

On a vector computer, this could translate into a simple, single vector operation. This

avoided leaving the optimization up to the compiler and explicitly exposing a perfor-

mance-critical operation.

In a sense, then, the beauty of the original code was regained with the use of a new vocab-

ulary to describe the algorithms: the BLAS. Over time, the BLAS became a widely adopted

standard and were most likely the first to enforce two key aspects of software: modularity

and portability. Again, these are taken for granted today, but at the time they were not.

One could have the cake of compact algorithm representation and eat it too, because the

resulting Fortran code was portable.

Most algorithms in linear algebra can be easily vectorized. However, to gain the most out

of such architectures, simple vectorization is usually not enough. Some vector computers

are limited by having only one path between memory and the vector registers. This cre-

ates a bottleneck if a program loads a vector from memory, performs some arithmetic

operations, and then stores the results. In order to achieve top performance, the scope of

the vectorization must be expanded to facilitate chaining operations together and to mini-

mize data movement, in addition to using vector operations. Recasting the algorithms in

terms of matrix-vector operations makes it easy for a vectorizing compiler to achieve these

goals.

Thus, as computer architectures became more complex in the design of their memory

hierarchies, it became necessary to increase the scope of the BLAS routines from Level-1

to Level-2 and Level-3.

LAPACK DGETRF
As mentioned before, the introduction in the late 1970s and early 1980s of vector

machines brought about the development of another variant of algorithms for dense lin-

ear algebra. This variant was centered on the multiplication of a matrix by a vector. These

subroutines were meant to give improved performance over the dense linear algebra sub-

routines in LINPACK, which were based on Level-1 BLAS. Later on, in the late 1980s and

early 1990s, with the introduction of RISC-type microprocessors (the “killer micros”) and

other machines with cache-type memories, we saw the development of LAPACK Level-3

algorithms for dense linear algebra. A Level-3 code is typified by the main Level-3 BLAS,

which, in this case, is matrix multiplication.

The original goal of the LAPACK project was to make the widely used LINPACK library

run efficiently on vector and shared-memory parallel processors. On these machines, LIN-

PACK is inefficient because its memory access patterns disregard the multilayered memory

hierarchies of the machines, thereby spending too much time moving data instead of

doing useful floating-point operations. LAPACK addresses this problem by reorganizing

the algorithms to use block matrix operations, such as matrix multiplication, in the inner-
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most loops (see the paper by E. Anderson and J. Dongarra under “Further Reading). These

block operations can be optimized for each architecture to account for its memory hierar-

chy, and so provide a transportable way to achieve high efficiency on diverse modern

machines.

Here we use the term “transportable” instead of “portable” because, for fastest possible

performance, LAPACK requires that highly optimized block matrix operations be imple-

mented already on each machine. In other words, the correctness of the code is portable,

but high performance is not—if we limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK in terms of functionality, although it

doesn’t always use the same function-calling sequences. As such a successor, LAPACK was

a win for the scientific community because it could keep LINPACK’s functionality while

getting improved use out of new hardware.

Example 14-3 shows the LAPACK solution to LU factorization.

E X A M P L E 1 4 - 3 . LAPACK solution factorization

SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
      INTEGER            INFO, LDA, M, N
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
      INTEGER            I, IINFO, J, JB, NB
      EXTERNAL           DGEMM, DGETF2, DLASWP, DTRSM, XERBLA
      INTEGER            ILAENV
      EXTERNAL           ILAENV
      INTRINSIC          MAX, MIN
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGETRF', -INFO )
         RETURN
      END IF
      IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
      NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
         CALL DGETF2( M, N, A, LDA, IPIV, INFO )
      ELSE
         DO 20 J = 1, MIN( M, N ), NB
            JB = MIN( MIN( M, N )-J+1, NB )
*           Factor diagonal and subdiagonal blocks and test for exact
*           singularity.
            CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
*           Adjust INFO and the pivot indices.
            IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - 1

,ch14.2149  Page 246  Friday, May 25, 2007  4:13 PM



H O W  E L E G A N T  C O D E  E V O L V E S  W I T H  H A R D W A R E :  T H E  C A S E  O F  G A U S S I A N  E L I M I N A T I O N 247

Most of the computational work in the algorithm from Example 14-3 is contained in three

routines:

DGEMM

Matrix-matrix multiplication

DTRSM

Triangular solve with multiple right hand sides

DGETF2

Unblocked LU factorization for operations within a block column

One of the key parameters in the algorithm is the block size, called NB here. If NB is too

small or too large, poor performance can result—hence the importance of the ILAENV

function, whose standard implementation was meant to be replaced by a vendor imple-

mentation encapsulating machine-specific parameters upon installation of the LAPACK

library. At any given point of the algorithm, NB columns or rows are exposed to a well-

optimized Level-3 BLAS. If NB is 1, the algorithm is equivalent in performance and mem-

ory access patterns to the LINPACK’s version.

Matrix-matrix operations offer the proper level of modularity for performance and trans-

portability across a wide range of computer architectures, including parallel systems with

memory hierarchy. This enhanced performance is primarily due to a greater opportunity

for reusing data. There are numerous ways to accomplish this reuse of data to reduce

memory traffic and to increase the ratio of floating-point operations to data movement

through the memory hierarchy. This improvement can bring a three- to ten-fold improve-

ment in performance on modern computer architectures.

            DO 10 I = J, MIN( M, J+JB-1 )
               IPIV( I ) = J - 1 + IPIV( I )
   10       CONTINUE
*           Apply interchanges to columns 1:J-1.
            CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
*
            IF( J+JB.LE.N ) THEN
*              Apply interchanges to columns J+JB:N.
               CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1, IPIV, 1 )
*              Compute block row of U.
               CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
     $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ), LDA )
               IF( J+JB.LE.M ) THEN
*                 Update trailing submatrix.
                  CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
     $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
     $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), LDA )
               END IF
            END IF
   20    CONTINUE
      END IF
      RETURN
      end

E X A M P L E 1 4 - 3 . LAPACK solution factorization (continued)
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The jury is still out concerning the productivity of writing and reading the LAPACK code:

how hard is it to generate the code from its mathematical description? The use of vector

notation in LINPACK is arguably more natural than LAPACK’s matrix formulation. The

mathematical formulas that describe algorithms are usually more complex if only matrices

are used, as opposed to mixed vector-matrix notation.

Recursive LU
Setting the block size parameter for the LAPACK’s LU might seem like a trivial matter at

first. But in practice, it requires a lot of tuning for various precisions and matrix sizes.

Many users end up leaving the setting unchanged, even if the tuning has to be done only

once at installation. This problem is exacerbated by the fact that not just one but many

LAPACK routines use a blocking parameter.

Another issue with LAPACK’s formulation of LU is the factorization of tall and narrow

panels of columns performed by the DGETF2 routine. It uses Level-1 BLAS and was found

to become a bottleneck as the processors became faster throughout the 90s without corre-

sponding increases in memory bandwidth.

A solution came from a rather unlikely direction: divide-and-conquer recursion. In place

of LAPACK’s looping constructs, the newer recursive LU algorithm splits the work in half,

factorizes the left part of the matrix, updates the rest of the matrix, and factorizes the right

part. The use of Level-1 BLAS is reduced to an acceptable minimum, and most of the calls

to Level-3 BLAS operate on larger portions of the matrix than LAPACK’s algorithm. And,

of course, the block size does not have to be tuned anymore.

Recursive LU required the use of Fortran 90, which was the first Fortran standard to allow

recursive subroutines. A side effect of using Fortran 90 was the increased importance of

the LDA parameter, the leading dimension of A. It allows more flexible use of the subrou-

tine, as well as performance tuning for cases when matrix dimension m would cause mem-

ory bank conflicts that could significantly reduce available memory bandwidth.

The Fortran 90 compilers use the LDA parameter to avoid copying the data into a contigu-

ous buffer when calling external routines, such as one of the BLAS. Without LDA, the

compiler has to assume the worst-case scenario when input matrix a is not contiguous and

needs to be copied to a temporary contiguous buffer so the call to BLAS does not end up

with an out-of-bands memory access. With LDA, the compiler passes array pointers to

BLAS without any copies.

Example 14-4 shows recursive LU factorization.

E X A M P L E 1 4 - 4 . Recursive variant (Fortran 90 coding)

      recursive subroutine rdgetrf(m, n, a, lda, ipiv, info)
      implicit none

      integer, intent(in) :: m, n, lda
      double precision, intent(inout) :: a(lda,*)
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      integer, intent(out) :: ipiv(*)
      integer, intent(out) :: info

      integer :: mn, nleft, nright, i
      double precision :: tmp

      double precision :: pone, negone, zero
      parameter (pone=1.0d0)
      parameter (negone=-1.0d0)
      parameter (zero=0.0d0)

      intrinsic min

      integer idamax
      external dgemm, dtrsm, dlaswp, idamax, dscal

      mn = min(m, n)

      if (mn .gt. 1) then
         nleft = mn / 2
         nright = n - nleft

         call rdgetrf(m, nleft, a, lda, ipiv, info)

         if (info .ne. 0) return
         call dlaswp(nright, a(1, nleft+1), lda, 1, nleft, ipiv, 1)

         call dtrsm('L', 'L', 'N', 'U', nleft, nright, pone, a, lda,
     $        a(1, nleft+1), lda)

         call dgemm('N', 'N', m-nleft, nright, nleft, negone,
     $        a(nleft+1,1) , lda, a(1, nleft+1), lda, pone,
     $        a(nleft+1, nleft+1), lda)

         call rdgetrf(m - nleft, nright, a(nleft+1, nleft+1), lda,
     $        ipiv(nleft+1), info)
         if (info .ne. 0) then
            info = info + nleft
            return
         end if

         do i = nleft+1, m
            ipiv(i) = ipiv(i) + nleft
         end do

         call dlaswp(nleft, a, lda, nleft+1, mn, ipiv, 1)

      else if (mn .eq. 1) then
         i = idamax(m, a, 1)
         ipiv(1) = i
         tmp = a(i, 1)

         if (tmp .ne. zero .and. tmp .ne. -zero) then
            call dscal(m, pone/tmp, a, 1)

E X A M P L E 1 4 - 4 . Recursive variant (Fortran 90 coding) (continued)
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There is a certain degree of elegance in the recursive variant. No loops are exposed in the

routine. Instead, the algorithm is driven by the recursive nature of the method (see the

paper by F. G. Gustavson under “Further Reading”).

 The Recursive LU Algorithm consists of four basic steps, illustrated in Figure 14-2:

1. Split the matrix into two rectangles (m * n/2); if the left part ends up being only a

single column, scale it by the reciprocal of the pivot and return.

2. Apply the LU algorithm to the left part. Apply transformations to the right part

(perform the triangular solve A12 = L-1A12 and matrix multiplication A22=A22 -

A21*A12 ).

3. Apply the LU algorithm to the right part.

Most of the work is performed in the matrix multiplications, which operate on successive

matrices of size n/2, n/4, n/8, etc. The implementation in Example 14-4 can show about a

10 percent improvement in performance over the LAPACK implementation given in

Example 14-3.

In a sense, any of the previous renditions of the LU algorithm could be considered a step

backwards in terms of code elegance. But divide-and-conquer recursion was a tremendous

leap forward (even dismissing the modest performance gains). The recursive algorithm for

matrix factorization can now be taught to students alongside other recursive algorithms,

such as various kinds of sorting methods.

By changing just the size of matrix parts, it is possible to achieve the same memory access

pattern as in LINPACK or LAPACK. Setting nleft to 1 makes the code operate on vectors,

just as in LINPACK, whereas setting nleft to NB>1 makes it behave like LAPACK’s

blocked code. In both cases, the original recursion deteriorates from divide-and-conquer

            a(i,1) = a(1,1)
            a(1,1) = tmp
         else
            info = 1
         end if

      end if

      return
      end

F I G U R E 1 4 - 2 . Recursive LU factorization

E X A M P L E 1 4 - 4 . Recursive variant (Fortran 90 coding) (continued)

L A12

A21 A22
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to the tail kind. The behavior of such variations of the recursive algorithm can be studied

alongside a quicksort algorithm with various partitioning schemes of the sorted array.

Finally, we leave as an exercise to the reader to try to mimic the recursive code without

using recursion and without explicitly handling the recursive call stack—an important

problem to solve if the Fortran compiler cannot handle recursive functions or subroutines.

ScaLAPACK PDGETRF
LAPACK is designed to be highly efficient on vector processors, high-performance “super-

scalar” workstations, and shared-memory multiprocessors. LAPACK can also be used sat-

isfactorily on all types of scalar machines (PCs, workstations, and mainframes). However,

LAPACK in its present form is less likely to give good performance on other types of paral-

lel architectures—for example, massively parallel Single Instruction Multiple Data (SIMD)

machines, or Multiple Instruction Multiple Data (MIMD) distributed-memory machines.

The ScaLAPACK effort was intended to adapt LAPACK to these new architectures.

By creating the ScaLAPACK software library, we extended the LAPACK library to scalable

MIMD, distributed-memory, concurrent computers. For such machines, the memory hier-

archy includes the off-processor memory of other processors, in addition to the hierarchy

of registers, cache, and local memory on each processor.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in

order to minimize the frequency of data movement between different levels of the mem-

ory hierarchy. The fundamental building blocks of the ScaLAPACK library are distributed-

memory versions of the Level-2 and Level-3 BLAS, and a set of Basic Linear Algebra Com-

munication Subprograms (BLACS) for communication tasks that arise frequently in paral-

lel linear algebra computations. In the ScaLAPACK routines, all interprocessor

communication occurs within the distributed BLAS and the BLACS, so the source code of

the top software layer of ScaLAPACK looks very similar to that of LAPACK.

The ScaLAPACK solution to LU factorization is shown in Example 14-5.

E X A M P L E 1 4 - 5 . ScaLAPACK variant (Fortran 90 coding)

     SUBROUTINE PDGETRF( M, N, A, IA, JA, DESCA, IPIV, INFO )
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
      CHARACTER          COLBTOP, COLCTOP, ROWBTOP
      INTEGER            I, ICOFF, ICTXT, IINFO, IN, IROFF, J, JB, JN,
     $                   MN, MYCOL, MYROW, NPCOL, NPROW
      INTEGER            IDUM1( 1 ), IDUM2( 1 )
      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, IGAMN2D, PCHK1MAT, PB_TOPGET,
     $                   PB_TOPSET, PDGEMM, PDGETF2, PDLASWP, PDTRSM, PXERBLA
      INTEGER            ICEIL
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      EXTERNAL           ICEIL
      INTRINSIC          MIN, MOD
*     Get grid parameters
      ICTXT = DESCA( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*     Test the input parameters
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -(600+CTXT_)
      ELSE
         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
         IF( INFO.EQ.0 ) THEN
            IROFF = MOD( IA-1, DESCA( MB_ ) )
            ICOFF = MOD( JA-1, DESCA( NB_ ) )
            IF( IROFF.NE.0 ) THEN
               INFO = -4
            ELSE IF( ICOFF.NE.0 ) THEN
               INFO = -5
            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
               INFO = -(600+NB_)
            END IF
         END IF
         CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, 0, IDUM1, IDUM2, INFO )
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( ICTXT, 'PDGETRF', -INFO )
         RETURN
      END IF
      IF( DESCA( M_ ).EQ.1 ) THEN
         IPIV( 1 ) = 1
         RETURN
      ELSE IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         RETURN
      END IF
*     Split-ring topology for the communication along process rows
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
      CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', ' ' )
*     Handle the first block of columns separately
      MN = MIN( M, N )
      IN = MIN( ICEIL( IA, DESCA( MB_ ) )*DESCA( MB_ ), IA+M-1 )
      JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+MN-1 )
      JB = JN - JA + 1
*     Factor diagonal and subdiagonal blocks and test for exact
*     singularity.
      CALL PDGETF2( M, JB, A, IA, JA, DESCA, IPIV, INFO )
      IF( JB+1.LE.N ) THEN
*        Apply interchanges to columns JN+1:JA+N-1.
         CALL PDLASWP('Forward', 'Rows', N-JB, A, IA, JN+1, DESCA, IA, IN, IPIV )
*        Compute block row of U.
         CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
     $                N-JB, ONE, A, IA, JA, DESCA, A, IA, JN+1, DESCA )

E X A M P L E 1 4 - 5 . ScaLAPACK variant (Fortran 90 coding) (continued)
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In order to simplify the design of ScaLAPACK, and because the BLAS have proven to be

very useful tools outside LAPACK, we chose to build a Parallel BLAS, or PBLAS (described

in the paper by Choi et al; see “Further Reading”), whose interface is as similar to the

BLAS as possible. This decision has permitted the ScaLAPACK code to be quite similar,

and sometimes nearly identical, to the analogous LAPACK code.

*
         IF( JB+1.LE.M ) THEN
*           Update trailing submatrix.
            CALL PDGEMM( 'No transpose', 'No transpose', M-JB, N-JB, JB,
     $                   -ONE, A, IN+1, JA, DESCA, A, IA, JN+1, DESCA,
     $                   ONE, A, IN+1, JN+1, DESCA )
         END IF
      END IF
*     Loop over the remaining blocks of columns.
      DO 10 J = JN+1, JA+MN-1, DESCA( NB_ )
         JB = MIN( MN-J+JA, DESCA( NB_ ) )
         I = IA + J - JA
*
*        Factor diagonal and subdiagonal blocks and test for exact
*        singularity.
*
         CALL PDGETF2( M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO )
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 ) INFO = IINFO + J - JA
*
*        Apply interchanges to columns JA:J-JA.
*
         CALL PDLASWP('Forward', 'Rowwise', J-JA, A, IA, JA, DESCA, I,I+JB-1, IPIV)
         IF( J-JA+JB+1.LE.N ) THEN
*           Apply interchanges to columns J+JB:JA+N-1.
            CALL PDLASWP( 'Forward', 'Rowwise', N-J-JB+JA, A, IA, J+JB,
     $                    DESCA, I, I+JB-1, IPIV )
*           Compute block row of U.
            CALL PDTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
     $                   N-J-JB+JA, ONE, A, I, J, DESCA, A, I, J+JB,
     $                   DESCA )
            IF( J-JA+JB+1.LE.M ) THEN
*              Update trailing submatrix.
               CALL PDGEMM( 'No transpose', 'No transpose', M-J-JB+JA,
     $                      N-J-JB+JA, JB, -ONE, A, I+JB, J, DESCA, A,
     $                      I, J+JB, DESCA, ONE, A, I+JB, J+JB, DESCA )
            END IF
         END IF
   10 CONTINUE
      IF( INFO.EQ.0 ) INFO = MN + 1
      CALL IGAMN2D(ICTXT, 'Rowwise', ' ', 1, 1, INFO, 1, IDUM1,IDUM2, -1,-1, MYCOL)
      IF( INFO.EQ.MN+1 ) INFO = 0
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
      CALL PB_TOPSET( ICTXT, 'Combine', 'Columnwise', COLCTOP )
      RETURN
      END

E X A M P L E 1 4 - 5 . ScaLAPACK variant (Fortran 90 coding) (continued)
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It was our aim that the PBLAS would provide a distributed memory standard, just as the

BLAS provided a shared memory standard. This would simplify and encourage the devel-

opment of high-performance and portable parallel numerical software, as well as provid-

ing manufacturers with just a small set of routines to be optimized. The acceptance of the

PBLAS requires reasonable compromises between competing goals of functionality and

simplicity.

The PBLAS operate on matrices distributed in a two-dimensional block cyclic layout.

Because such a data layout requires many parameters to fully describe the distributed

matrix, we have chosen a more object-oriented approach and encapsulated these parame-

ters in an integer array called an array descriptor. An array descriptor includes:

• The descriptor type

• The BLACS context (a virtual space for messages that is created to avoid collisions

between logically distinct messages)

• The number of rows in the distributed matrix

• The number of columns in the distributed matrix

• The row block size

• The column block size

• The process row over which the first row of the matrix is distributed

• The process column over which the first column of the matrix is distributed

• The leading dimension of the local array storing the local blocks

By using this descriptor, a call to a PBLAS routine is very similar to a call to the corre-

sponding BLAS routine:

      CALL DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA,
                   A( IA, JA ), LDA,
                   B( IB, JB ), LDB, BETA,
                   C( IC, JC ), LDC )

      CALL PDGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
                   A, IA, JA, DESC_A,
                   B, JB, DESC_B, BETA,
                   C, IC, JC, DESC_C )

DGEMM computes C = BETA * C + ALPHA * op( A ) * op( B ), where op(A) is either A or its

transpose depending on TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N.

PDGEMM is the same, with the exception of the way submatrices are specified. To pass the

submatrix starting at A(IA,JA) to DGEMM, for example, the actual argument corresponding

to the formal argument A is simply A(IA,JA). PDGEMM, on the other hand, needs to

understand the global storage scheme of A to extract the correct submatrix, so IA and JA

must be passed in separately.

DESC_A is the array descriptor for A. The parameters describing the matrix operands B and

C are analogous to those describing A. In a truly object-oriented environment, matrices
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and DESC_A would be synonymous. However, this would require language support and

detract from portability.

Using message passing and scalable algorithms from the ScaLAPACK library makes it pos-

sible to factor matrices of arbitrarily increasing size, given machines with more processors.

By design, the library computes more than it communicates, so for the most part, data

stays locally for processing and travels only occasionally across the interconnect network.

But the number and types of messages exchanged between processors can sometimes be

hard to manage. The context associated with every distributed matrix lets implementa-

tions use separate “universes” for message passing. The use of separate communication

contexts by distinct libraries (or distinct library invocations) such as the PBLAS insulates

communication internal to the library from external communication. When more than

one descriptor array is present in the argument list of a routine in the PBLAS, the individ-

ual BLACS context entries must be equal. In other words, the PBLAS do not perform

“inter-context” operations.

In the performance sense, ScaLAPACK did to LAPACK what LAPACK did to LINPACK: it

broadened the range of hardware where LU factorization (and other codes) could run effi-

ciently. In terms of code elegance, the ScaLAPACK’s changes were much more drastic: the

same mathematical operation now required large amounts of tedious work. Both the

users and the library writers were now forced into explicitly controlling data storage intri-

cacies, because data locality became paramount for performance. The victim was the read-

ability of the code, despite efforts to modularize the code according to the best software

engineering practices of the day.

Multithreading for Multi-core Systems
The advent of multi-core chips brought about a fundamental shift in the way software is

produced. Dense linear algebra is no exception. The good news is that LAPACK’s LU fac-

torization runs on a multi-core system and can even deliver a modest increase of perfor-

mance if multithreaded BLAS are used. In technical terms, this is the fork-join model of

computation: each call to BLAS (from a single main thread) forks a suitable number of

threads, which perform the work on each core and then join the main thread of computa-

tion. The fork-join model implies a synchronization point at each join operation.

The bad news is that the LAPACK’s fork-join algorithm gravely impairs scalability even on

small multi-core computers that do not have the memory systems available in SMP sys-

tems. The inherent scalability flaw is the heavy synchronization in the fork-join model

(only a single thread is allowed to perform the significant computation that occupies the

critical section of the code, leaving other threads idle) that results in lock-step execution

and prevents hiding of inherently sequential portions of the code behind parallel ones. In

other words, the threads are forced to perform the same operation on different data. If

there is not enough data for some threads, they will have to stay idle and wait for the rest

of the threads that perform useful work on their data. Clearly, another version of the LU
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algorithm is needed such that would allow threads to stay busy all the time by possibly

making them perform different operations during some portion of the execution.

The multithreaded version of the algorithm recognizes the existence of a so-called critical

path in the algorithm: a portion of the code whose execution depends on previous calcula-

tions and can block the progress of the algorithm. The LAPACK’s LU does not treat this

critical portion of the code in any special way: the DGETF2 subroutine is called by a single

thread and doesn’t allow much parallelization even at the BLAS level. While one thread

calls this routine, the other ones wait idly. And since the performance of DGETF2 is bound

by memory bandwidth (rather than processor speed), this bottleneck will exacerbate scal-

ability problems as systems with more cores are introduced.

The multithreaded version of the algorithm attacks this problem head-on by introducing

the notion of look-ahead: calculating things ahead of time to avoid potential stagnation in

the progress of the computations. This of course requires additional synchronization and

bookkeeping not present in the previous versions—a trade-off between code complexity

and performance. Another aspect of the multithreaded code is the use of recursion in the

panel factorization. It turns out that the use of recursion can give even greater perfor-

mance benefits for tall panel matrices than it does for the square ones.

Example 14-6 shows a factorization suitable for multithreaded execution.

E X A M P L E 1 4 - 6 . Factorization for multithreaded execution (C code)

void SMP_dgetrf(int n, double *a, int lda, int *ipiv, int pw,
                            int tid, int tsize, int *pready,ptm *mtx, ptc *cnd) {
  int pcnt, pfctr, ufrom, uto, ifrom, p;
  double *pa = a, *pl, *pf, *lp;

  pcnt = n / pw; /* number of panels */

  pfctr = tid + (tid ? 0 : tsize); /* first panel that should be factored by this
                     thread after the very first panel (number 0) gets factored */

  /* this is a pointer to the last panel */
  lp = a + (size_t)(n - pw) * (size_t)lda;

  /* for each panel (that is used as source of updates) */
  for (ufrom = 0; ufrom < pcnt; ufrom++, pa += (size_t)pw * (size_t)(lda + 1)){
    p = ufrom * pw; /* column number */

    /* if the panel to be used for updates has not been factored yet; 'ipiv'
       does not be consulted, but it is to possibly avoid accesses to 'pready'*/
    if (! ipiv[p + pw - 1] || ! pready[ufrom]) {

      if (ufrom % tsize == tid) { /* if this is this thread's panel */
        pfactor( n - p, pw, pa, lda, ipiv + p, pready, ufrom, mtx, cnd );
      } else if (ufrom < pcnt - 1) { /* if this is not the last panel */
        LOCK( mtx );
        while (! pready[ufrom]) { WAIT( cnd, mtx ); }
        UNLOCK( mtx );
      }
    }
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The algorithm is the same for each thread (the SIMD paradigm), and the matrix data is

partitioned among threads in a cyclic manner using panels with pw columns in each panel

(except maybe the last). The pw parameter corresponds to the blocking parameter NB of

LAPACK. The difference is the logical assignment of panels (blocks of columns) to threads.

(Physically, all panels are equally accessible, because the code operates in a shared mem-

ory regimen.) The benefits of blocking in a thread are the same as they were in LAPACK:

better cache reuse and less stress on the memory bus. Assigning a portion of the matrix to

a thread seems an artificial requirement at first, but it simplifies the code and the book-

keeping data structures; most importantly, it provides better memory affinity. It turns out

that multi-core chips are not symmetric in terms of memory access bandwidth, so mini-

mizing the number of reassignments of memory pages to cores directly benefits perfor-

mance.

The standard components of LU factorization are represented by the pfactor( ) and

pupdate( ) functions. As one might expect, the former factors a panel, whereas the latter

updates a panel using one of the previously factored panels.

The main loop makes each thread iterate over each panel in turn. If necessary, the panel is

factored by the owner thread while other threads wait (if they happen to need this panel

for their updates).

    /* for each panel to be updated */
    for (uto = first_panel_to_update( ufrom, tid, tsize ); uto < pcnt;
         uto += tsize) {
      /* if there are still panels to factor by this thread and preceding panel
         has been factored; test to 'ipiv' could be skipped but is in there to
         decrease number of accesses to 'pready' */
      if (pfctr < pcnt && ipiv[pfctr * pw - 1] && pready[pfctr - 1]) {
        /* for each panel that has to (still) update panel 'pfctr' */
        for (ifrom = ufrom + (uto > pfctr ? 1 : 0); ifrom < pfctr; ifrom++) {
          p = ifrom * pw;
          pl = a + (size_t)p * (size_t)(lda + 1);
          pf = pl + (size_t)(pfctr - ifrom) * (size_t)pw * (size_t)lda;
          pupdate( n - p, pw, pl, pf, lda, p, ipiv, lp );
        }
        p = pfctr * pw;
        pl = a + (size_t)p * (size_t)(lda + 1);
        pfactor( n - p, pw, pl, lda, ipiv + p, pready, pfctr, mtx, cnd );
        pfctr += tsize; /* move to this thread's next panel */
      }

      /* if panel 'uto' hasn't been factored (if it was, it certainly has been
         updated, so no update is necessary) */
      if (uto > pfctr || ! ipiv[uto * pw]) {
        p = ufrom * pw;
        pf = pa + (size_t)(uto - ufrom) * (size_t)pw * (size_t)lda;
        pupdate( n - p, pw, pa, pf, lda, p, ipiv, lp );
      }
    }
}

E X A M P L E 1 4 - 6 . Factorization for multithreaded execution (C code) (continued)
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The look-ahead logic is inside the nested loop (prefaced by the comment for each panel to

be updated) that replaces DGEMM or PDGEMM from previous algorithms. Before each

thread updates one of its panels, it checks whether it’s already feasible to factor its first

unfactored panel. This minimizes the number of times the threads have to wait because

each thread constantly attempts to eliminate the potential bottleneck.

As was the case for ScaLAPACK, the multithreaded version detracts from the inherent ele-

gance of the LAPACK’s version. Also in the same spirit, performance is the main culprit:

LAPACK’s code will not run efficiently on machines with ever-increasing numbers of

cores. Explicit control of execution threads at the LAPACK level rather than the BLAS

level is critical: parallelism cannot be encapsulated in a library call. The only good news is

that the code is not as complicated as ScaLAPACK’s, and efficient BLAS can still be put to

a good use.

A Word About the Error Analysis and Operation Count
The key aspect of all of the implementations presented in this chapter is their numerical

properties.

It is acceptable to forgo elegance in order to gain performance. But numerical stability is of

vital importance and cannot be sacrificed, because it is an inherent part of the algorithm’s

correctness. While these are serious considerations, there is some consolation to follow. It

may be surprising to some readers that all of the algorithms presented are the same, even

though it’s virtually impossible to make each excerpt of code produce exactly the same

output for exactly the same inputs.

When it comes to repeatability of results, the vagaries of floating-point representation may

be captured in a rigorous way by error bounds. One way of expressing the numerical

robustness of the previous algorithms is with the following formula:

 ||r||/||A|| ≤ ||e|| ≤ ||A-1|| ||r||

where error e = x - y is the difference between the computed solution y and the correct

solution x, and r = Ay - b is a so-called “residual.” The previous formula basically says that

the size of the error (the parallel bars surrounding a value indicate a norm—a measure of

absolute size) is as small as warranted by the quality of the matrix A. Therefore, if the

matrix is close to being singular in numerical sense (some entries are so small that they

might as well be considered to be zero) the algorithms will not give an accurate answer.

But otherwise, a relatively good quality of result can be expected.

Another feature that is common to all the versions presented is the operation count: they

all perform 2/3n3 floating-point multiplications and/or additions. The order of these oper-

ations is what differentiates them. There exist algorithms that increase the amount of

floating-point work to save on memory traffic or network transfers (especially for distrib-

ute-memory parallel algorithms.) But because the algorithms shown in this chapter have

the same operation count, it is valid to compare them for performance. The computational
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rate (number of floating-point operations per second) may be used instead of the time

taken to solve the problem, provided that the matrix size is the same. But comparing com-

putational rates is sometimes better because it allows a comparison of algorithms when

the matrix sizes differ. For example, a sequential algorithm on a single processor can be

directly compared with a parallel one working on a large cluster on a much bigger matrix.

Future Directions for Research
In this chapter we have looked at the evolution of the design of a simple but important

algorithm in computational science. The changes over the past 30 years have been neces-

sary to follow the lead of the advances in computer architectures. In some cases these

changes have been simple, such as interchanging loops. In other cases, they have been as

complex as the introduction of recursion and look-ahead computations. In each case,

however, the code’s ability to efficiently utilize the memory hierarchy is the key to high

performance on a single processor as well as on shared and distributed memory systems.

The essence of the problem is the dramatic increase in complexity that software develop-

ers have had to confront, and still do. Dual-core machines are already common, and the

number of cores is expected to roughly double with each processor generation. But con-

trary to the assumptions of the old model, programmers will not be able to consider these

cores independently (i.e., multi-core is not “the new SMP”) because they share on-chip

resources in ways that separate processors do not. This situation is made even more com-

plicated by the other nonstandard components that future architectures are expected to

deploy, including the mixing of different types of cores, hardware accelerators, and mem-

ory systems.

Finally, the proliferation of widely divergent design ideas shows that the question of how

to best combine all these new resources and components is largely unsettled. When com-

bined, these changes produce a picture of a future in which programmers will have to

overcome software design problems vastly more complex and challenging than those in

the past in order to take advantage of the much higher degrees of concurrency and greater

computing power that new architectures will offer.

So the bad news is that none of the presented code will work efficiently someday. The

good news is that we have learned various ways to mold the original simple rendition of

the algorithm to meet the ever-increasing challenges of hardware designs.
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