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Abstract. Error correction codes defined over real-number field have
been studied and recognized as useful in many applications. However,
most real-number codes in literature are quite suspect in their numer-
ical stability. In this paper, we introduce a class of real-number codes
based on random generator matrices over real-number fields. Codes over
complex-number field are also discussed. Experiment results demonstrate
our codes are numerically much more stable than existing codes in liter-
ature.

1 Introduction

Error correction codes are often defined over finite fields. However, in many
applications, error correction codes defined over finite fields do not work. In-
stead, codes defined over real-number or complex-number fields have to be
used to detect and correct errors. For example, in algorithm-based fault tol-
erance [2, 10, 11, 13] and fault tolerant dynamic systems [8], to provide fault
tolerance in computing, data are first encoded using error correction codes and
then algorithms are re-designed to operate (using floating point arithmetic) on
the encoded data. Due to the impact of the floating-point arithmetic on the
binary representation of these encoded data, codes defined over finite fields do
not work. But codes defined over real-number and complex-number fields can
be used in these applications to correct errors in computing by taking advan-
tage of certain relationships, which are maintained only when real-number (or
complex-number) codes are used.

However, most real-number and complex-number codes in literature are quite
suspect in their numerical stability. Error correction procedures in most error
correction codes involve solving linear system of equations. In computer floating
point arithmetic where no computation is exact due to round-off errors, it is
well known [7] that, in solving a linear system of equations, a condition number
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of 10* for the coefficient matrix leads to a loss of accuracy of about k decimal
digits in the solution. In the generator matrices of most existing real-number
and complex-number codes, there exist ill-conditioned sub-matrices. Therefore,
in these codes, when certain error patterns occur, an ill-conditioned linear system
of equations has to be solved in the error correction procedure, which can cause
the loss of precision of possibly all digits in the recovered numbers.

The numerical issue of the real-number and complex-number codes has been
recognized and studied in some literature. In [2], Vandermonde-like matrix for
the Chebyshev polynomials was introduced to relieve the numerical instability
problem in error correction for algorithm-based fault tolerance. In [5, 6, 9, 12],
the numerical properties of the Discrete Fourier Transform codes were ana-
lyzed and methods to improve the numerical properties were also proposed.
To some extent, these efforts have alleviated the numerical problem of the real-
number and complex-number codes. However, how to construct real-number and
complex-number codes without numerical problem is still an open problem.

In this paper, we introduce a class of real-number and complex-number codes
that are numerically much more stable than existing codes in literature. Our
codes are based on random generator matrices over real-number and complex-
number fields. The rest of this paper is organized as follow: Section 2 specifies
the problem we focus on. In Section 3, we first study the properties of random
matrices and then introduce our codes. Section 4 compares our codes with most
existing codes in both burst error correction and random error correction. Section
5 concludes the paper and discusses the future work.

2 Problem Specification

Let 2 = (21,22, ...,2n8)T € ¢V denote the original information, and G denote
a M by N real or complex matrix. Let y = (y1,%2,...,ym)T € CM, where
M = N+ K, denote the encoded information of # with redundancy. The original
information = and the encoded information y are related through

y = Gx. (1)

Our problem is: how to choose the matrix G such that, after any no more than
K erasures in the elements of the encoded information y, a good approximation
of the original information x can still be reconstructed from y?

When there are at most K elements of y lost, there are at least IV elements of
y available. Let J denote the set of indexes of any IV available elements of y. Let
ys denote a sub-vector of y consisting of the IV available elements of y whose
indexes are in J. Let G; denote a sub-matrix of G consisting of the N rows
whose indexes are in J. Then, from (1), we can get the following relationship
between x and y:

Yyj = GJ,T. (2)

When the matrix G is singular, there are infinite number of solutions to (2).
But, if the matrix G is non-singular, then (2) has one and only one solution,
which is the original information vector x.



In computer real-number and complex-number arithmetic where no compu-
tation is exact due to round-off errors, it is well known [7] that, in solving a
linear system of equations, a condition number of 10* for the coefficient matrix
leads to a loss of accuracy of about k decimal digits in the solution. Therefore,
in order to reconstruct a good approximation of the original information z, G ;
has to be well-conditioned.

For any N by N sub-matrix G; of GG, there is a erasure pattern of y which
requires to solve a linear system with GG ; as the coefficient matrix to reconstruct
an approximation of the original z. Therefore, to guarantee that a reasonably
good approximation of x can be reconstructed after any no more than K erasures
in y , the generator matrix G must satisfy: any N by N sub-matriz of G is well-
conditioned.

3 Real Number Codes Based on Random Matrices

In this section, we will introduce a class of new codes that are able to reconstruct
a very good approximation of the original information with high probability
regardless of the erasure patterns in the encoded information. Our new codes
are based on random matrices over real or complex number fields.

3.1 Condition Number of Random Matrices from Standard Normal
Distribution

In this sub-section, we mainly focus on the probability that the condition num-
ber of a random matrix is large and the expectation of the logarithm of the
condition number. Let G(m, n) be an m x n real random matrix whose elements
are independent and identically distributed standard normal random variables
and G(m,n) be its complex counterpart.

Theorem 1. Let k denote the condition number of G(n,n) , n > 2, and t > 1,

then
0.13 5.60
t"<P(n>t)< t". (3)
Moreover,
E(log(x)) = log(n) + ¢ + n, (4)

where ¢ =~ 1.537, lim,,_oc€p =0,

Proof. The inequality (3) is from Theorem 1 of [1]. The formula (4) can be
obtained from Theorem 7.1 of [3]. O

Theorem 2. Let K denote the condition number of é(n, n), and t > \/n, then

2

1—(1—%)711§P(E>t)§1—(1—£)n_l. (5)

Moreover,
E(log(®)) = log(n) + ¢ + €n, (6)
where ¢ =~ 0.982, lim,,_oc€p =0,



Proof. Let Kp denote the scaled condition number (see [4] for definition) of
G(n,n), then B
P(“—\/’% > 1)< P(R>t) < P(Fp > t). (7)

From Corollary 3.2 in [4], we have

_ n—1
P(5D>t):1—(1——> . 8)
Therefore,

~ n2—-1
KD ~ 1
P(%>t)_P(nD>\/ﬁt)_1—(1—t—2) . 9)
The inequality (5) can be obtained from (7), (8) and (9). The formula (6)
can be obtained from Theorem 7.2 of [3]. O

In error correction practice, all random numbers used are pseudo random
numbers, which have to be generated through a random number generator. Fig.1
shows the empirical probability density functions of the condition numbers of
the pseudo random matrix G(100,100) and G(100,100), where G(100,100) is
generated by randn(100,100) and G(100, 100) is generated by randn (100, 100)+
v/—=1xrandn(100,100) in MATLAB. From these density functions, we know that
most pseudo random matrices also have very small condition numbers. And, for
the same matrix size, the tail of the condition number for a complex random
matrix is thinner than that of a real one.
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Fig. 1. The density functions of the condition numbers of G (100, 100) and 5(100, 100).

We have also tested some other random matrices. Experiments show a lot
of other random matrices, for example, uniformly distributed pseudo random



matrices, also have small condition numbers with high probability. For random
matrices of non-normal distribution, we will report our experiments and some
analytical proofs of their condition number properties in a further coming paper.

3.2 Real Number Codes Based on Random Matrices

In this sub-section, we introduce a class of new codes that are able to reconstruct
a very good approximation of the original information with very high probability
regardless of the erasure patterns in the encoded information.

In the real number case, we propose to use G(M, N) or uniformly distributed
M by N matrices with mean 0 ( denote as U(M, N) ) as our generator matrices
G. In the complex number case, we propose to use (N?(M ,N) or uniformly dis-
tributed M by N complex matrices with mean 0 ( denote as U(M, N) ) as our
generator matrices G.

Take the real-number codes based on random matrix G(M, N) as an exam-
ple. Since each element of the generator matrix G(M, N) is a random number
from the standard normal distribution, so each element of any N x N sub-matrix
(Gr)nxn of G(M,N) is also a random number from the standard normal dis-
tribution. According to the condition number results in Subsection 3.1 , the
probability that the condition number of (G j)nxn is large is very small. Hence,
any N by N sub-matrix (G j)nxn of G is well-conditioned with very high prob-
ability. Therefore, no mater what erasure patterns occur, the error correction
procedure is numerically stable with high probability.

We admit that our real-number and complex-number codes are not perfect.
Due to the probability approach we used, the drawback of our codes is that, no
matter how small the probability is, there is a probability that a erasure pattern
may not be able to be recovered accurately.

However, compared with the existing codes in literature, the probability that
our codes fail to recover a good approximation of the original information is
negligible (see Section 4 for detail). Moreover, in the error correction practice,
we may first generate a set of pseudo random generator matrices and then test
each generator matrix until we find a satisfied one.

4 Comparison with Existing Codes

In the existing codes in literature, the generator matrices mainly include: Vander-
monde matrix (Vander) [8], Vandermonde-like matrix for the Chebyshev poly-
nomials (Chebvand) [2], Cauchy matrix (Cauchy), Discrete Cosine Transform
matrix (DCT), Discrete Fourier Transform matrix (DFT) [6]. These generator
matrices all contain ill-conditioned sub-matrices. Therefore, in these codes, when
certain error patterns occur, an ill-conditioned linear system has to be solved
to reconstruct an approximation of the original information, which can cause
the loss of precision of possibly all digits in the recovered numbers. However,
in our codes, the generator matrices are random matrices. Any sub-matrix of
our generator matrices is still a random matrix, which is well-conditioned with



very high probability. Therefore, no mater what erasure patterns occur, the error
correction procedure is numerically stable with high probability. In this section,
we compare our codes with existing codes in both burst erasure correction and
random erasure correction.

4.1 Burst Erasure Correction

We compare our codes with existing codes in burst error correction using the
following example.

Example 1. Suppose z = (1,1,1,...,1)7 and the length of z is N = 100. G is a
120 by 100 generator matrix. y = Gz is a vector of length 120. Suppose y;, where
i = 101,102, ...120, are lost. We will use y;, where j = 1,2,...100, to reconstruct
x through solving (2) .

Table 1. The generator matrices of different codes

Name The generator matrix G = (gmn )120x100
T00—n—1

Vander ( m+1) )120X100
Chebvand|(Tm—1(1)) 159y 100> Where Trm—1 is the chebyshev polynomial of degree n — 1
Cauchy (m+n 120x100
DCT ( e "<2§;}>’”) _where if m = 0,i = 1, and if m # 0,4 = 2

120%100
DFT (e itgmm ) , where j = /—1

120x100

RandN  |randn(120,100) in MATLAB
RandN-C |randn(120,100) + j * randn(120,100) in MATLAB, where j = /-1
RandU |rand(120,100) - 0.5 in MATLAB
RandU-C |rand(120,100) - 0.5 + j * (rand(120,100) - 0.5) in MATLAB,

Table 1 shows how the generator matrix of each code is generated. Table
2 reports the accuracy of the recovery for each code. All calculations are done
using MATLAB. The machine precision is 16 digits. Table 2 shows our codes are
able to reconstruct the original information x with much higher accuracy than
the existing codes. The reconstructed x from all existing codes lost all of their
16 effective digits. However, the reconstructed x from the codes we proposed in
the last section lost only about 2 effective digits.

4.2 Random Erasure Correction

For any N by N sub-matrix G ; of G, there is a erasure pattern of y which requires
to solve a linear system with G; as the coefficient matrix to reconstruct an



Table 2. Burst erasure recovery accuracy of different codes

Name k(G ) Hgﬁ;m‘z Accurate digits|Number of digits lost
Vander |3.7e+218(2.4e+153 0 16
Chebvand |Inf 1.7e+156 0 16
Cauchy |[5.6e+17 |1.4e+03 0 16
DCT 1.5e+17 [2.5e+02 0 16
DFT 2.0e+16 |1.6e+00 0 16
RandN [7.5e+2 [3.8e-14 14 2
RandN-C |4.5e+2 |[6.8e-14 14 2
RandU |8.6e+2 [3.7e-14 14 2
RandU-C|5.7e+2 [2.6e-14 14 2

approximation of the original x. A random erasure actually results in a randomly
picked N by N sub-matrix of G. In Table 3, we compare the proportion of
100 by 100 sub-matrices whose condition number is larger than 10%, where i =
4,6,8, and 10, for different kind of generator matrices of size 150 by 100. All
generator matrices are defined in Table 1. All results in Table 3 are calculated
using MATLAB based on 1,000,000 randomly (uniformly) picked sub-matrices.

From Table 3, we can see, of the 1,000,000 randomly picked sub-matrices
from any of our random generator matrices, there are 0.000% sub-matrices whose
condition number is larger than 108. However, for all existing codes in literature
that we have tested, there are at least 21.644% sub-matrices whose condition
number is larger than 108. Therefore, our codes are much more stable than the
existing codes in literature.

Table 3. Percentage of 100 by 100 sub-matrices (of a 150 by 100 generator matrix)
whose condition number is larger than 10°, where i = 4,6, 8, and 10.

Name k> 101 k> 10° k> 10%] k > 10™
Vander |100.000%]|100.000%|100.000%]100.000%
Chebvand|100.000%]100.000% |100.000%|100.000%
Cauchy [100.000%]100.000%|100.000%|100.000%
DCT 96.187%| 75.837%| 48.943%| 28.027%
DFT 92.853%| 56.913%]| 21.644%| 5.414%
RandN 1.994%| 0.023%| 0.000%| 0.000%
RandN-C| 0.033%| 0.000%| 0.000%| 0.000%
RandU 1.990%| 0.018%| 0.000%| 0.000%
RandU-C| 0.036%| 0.000%| 0.000%| 0.000%




5 Conclusion and Future Work

In this paper, we have introduced a class of real-number and complex-number
codes based on random generator matrices over real-number and complex-number
fields. we have compared our codes with existing codes in both burst erasure
correction and random erasure correction. Experiment results demonstrate our
codes are numerically much more stable than existing codes in literature.

For the future, we will compare real-number codes based on different random
matrices with different probability distributions. we would also like to investigate
what is the numerically optimal real number codes.
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