
An Effective Empirical Search Method for Automatic
Software Tuning�

Haihang You† Keith Seymour† Jack Dongarra‡

January 21, 2005

Abstract

Empirical software optimization and tuning is an ac-
tive research topic in the high performance com-
puting research community. It is an adaptive sys-
tem to generate optimized software using empirically
searched parameters. Due to the large parameter
search space, an appropriate search heuristic is an es-
sential part of the system. This paper describes an
effective search method that can be generally applied
to empirical optimization. We apply this method to
ATLAS (Automatically Tuned Linear Algebra Soft-
ware), which is a system for empirically optimizing
dense linear algebra kernels. Our experiments on four
different platforms show that the new search scheme
can produce parameters that can lead ATLAS to gen-
erate a library with better performance.

1 Introduction

As CPU speeds double every couple of years follow-
ing Moore’s law[1], memory speed lags behind. Be-
cause of this increasing gap between the speeds of
processors and memory, in order to achieve high per-
formance on modern systems new techniques such as
longer pipeline, deeper memory hierarchy, and hyper
threading have been introduced into the hardware de-
sign. Meanwhile, compiler optimization techniques
have been developed to transform programs written
in high-level languages to run efficiently on modern
architectures[2, 3]. These program transformations
include loop blocking[4, 5], loop unrolling[2], loop
permutation, fusion and distribution[6, 7]. To se-
lect optimal parameters such as block size, unrolling�This work supported in part by the NSF under CNS-0325873.

†Department of Computer Science, University of Tennessee,
Knoxville

‡Department of Computer Science, University of Tennessee,
Knoxville and Oak Ridge National Laboratory

factor, and loop order, most compilers would com-
pute these values with analytical models referred to
as model-driven optimization. In contrast, empir-
ical optimization techniques generate a large num-
ber of code variants with different parameter val-
ues for an algorithm, for example matrix mulplica-
tion. All these candidates run on the target ma-
chine, and the one that gives the best performance
is picked. With this empirical optimization approach
ATLAS[8], PHiPAC[9], and FFTW[10] successfully
generate highly optimized libraries for dense, sparse
linear algebra kernels and FFT respectively. It has
been shown that empirical optimization is more ef-
fective than model-driven optimization[11].

An appropriate search heuristic is one re-
quirement of empirical optimization methodologies,
which automates the search for the most optimal
available implementation [8]. Theoretically the
search space is infinite, but in practice it can be lim-
ited based on specific information about the hard-
ware for which the software is being tuned. For
example, ATLAS bounds NB (blocking size) such
that 16� NB � min(pL1;80), where L1 represents
the L1 cache size, detected by a micro-benchmark.
Usually the bounded search space is still very large
and it grows exponentially as the dimension of the
search space increases. In order to find optimal
cases quickly, certain search heuristics need to be
employed. The goal of our research is to provide a
general search heuristic that can apply to any em-
pirical optimization system. The Nelder-Mead sim-
plex method[12] is a well-known and successful non-
derivative direct search method for optimization. We
have applied this method to ATLAS, replacing the
global search of ATLAS with the simplex method.
Experimental results on four different architectures
show that the library generated using the simplex
search has better performance than the original AT-
LAS.

This paper is organized as follows. In Sec-

1



tion 2, we briefly introduce the Nelder-Mead sim-
plex method. Section 3 describes the implementa-
tion of the algorithm including modifications suitable
for empirical optimization applications. Experimen-
tal results are presented in Section 4. Finally, conclu-
sions are provided in Section 5.

2 Simplex Method

To solve the minimization problem:

min f (x)
Where f : Rn ! R, and gradient information
is not computationally available, Spendley, Hext,
and Himsworth[13] introduced the simplex method,
which is a non-derivative based direct search method.
In an n-dimension spaceR, a simplex is a set of n+1
vertices, thus a triangle inR2 and a tetrahedron inR3.
The simplex contracts to the minimum by repeatedly
comparing function values at n+1 vertices and replac-
ing the vertex with the highest value by reflecting it
through the centroid of the rest of the simplex ver-
tices and shrinking. We illustrate the basic idea of the
simplex method in Figure 1.

r
x

r
x

x
1

x
1

x
2 x

2 x
2

x
3

x
3

x
3x

c

Figure 1: Original simplex inR2 where f (x1) �
f (x2) � f (x3); Reflectx1 throughxc, the centroid of
x2 andx3, to xr; The new simplex consists ofx2, x3

andxr.

Nelder and Mead improved the method by
adding more moves and making the search more ro-
bust and faster. We give the discription of the Nelder-
Mead simplex algorithm [14]:� Initialize a non-degenerate simplex of n+1 ver-

tices onRn, compute function value or do a mea-
surement at each vertex, order n+1 vertices by
value f (xi).

� At iteration k, we have:
f (xk

0)� f (xk
1)� �� � � f (xk

n)� Step 1, Calculate centroid:

xk
c = 1

n

n

∑
i=1

xk
i� Step 2, Reflection:

xk
r = xk

c +ρ(xk
c� xk

n), whereρ > 0

– If f (xk
0)� f (xk

r )< f (xk
n�1), replace xk

n

with xk
r and go to next iteration;

– Else if f (xk
r )< f (xk

0), go to step 3;

– Else if f (xk
r )� f (xk

n�1), go to step 4.� Step 3, Expansion:
xk

e = xk
c +χ(xk

r � xk
c), whereχ > 1

– If f (xk
e)< f (xk

r ), replacexk
n with xk

e and go
to next iteration;

– Else replacexk
n with xk

r and go to next iter-
ation.� Step 4, Contraction:

– If f (xk
r )< f (xk

n),
xk

t = xk
c + γ(xk

r � xk
c), where 0< γ< 1� If f (xk

t )� f (xk
r ), replacexk

n with xk
t

and go to next iteration;� Else go to step 5.

– Else
xk

t = xk
c + γ(xk

n� xk
c), where 0< γ< 1� If f (xk

t )< f (xk
n), replacexk

n with xk
t

and go to next iteration;� Else go to step 5.� Step 5, Shrink:
xk

i = xk
0+σ(xk

i � xk
0), where 0< σ < 1

3 Modified Simplex Search Algo-
rithm

Empirical optimization requires a search heuristic
for selecting the most highly optimized code from
the large number of code variants generated during
the search. Because there are a number of differ-
ent tuning parameters, such as blocking size, un-
rolling factor and computational latency, the resulting
search space is multi-dimensional. The direct search
method, namely Nelder-Mead simplex method [12],
fits in the role perfectly.

2



The Nelder-Mead simplex method is a direct
search method for minimizing a real-valued function
f (x) for x 2 Rn. It assumes the functionf (x) is
continuously differentiable. We modify the search
method according to the nature of the empirical opti-
mization technique:� In a multi-dimensional discrete space, the value

of each vertex coordinate is cast from double
precision to integer.� The search space is bounded by settingf (x) =∞
wherex < l, x > u and l, u, andx 2 Rn. The
lower and upper bounds are determined based
on hardware information.� The simplex is initialized along the diagonal of
the search space. The size of the simplex is cho-
sen randomly.� User defined restriction conditions: If a point vi-
olates the condition, we can simply setf (x) =
∞, which saves search time by skipping code
generation and execution of this code variant.� Create a searchable record of previous execution
timing at each eligible point. Since execution
times would not be identical at the same search
point on a real machine, it is very important to
be able to retrieve the same function value at the
same point. It also saves search time by not hav-
ing to re-run the code variant for this point.� As the search can only find the local optimal
performance, multiple runs are conducted. In
search space ofRn, we start n+1 searches. The
initial simplexes are uniformly distributed along
the diagonal of the search space. With the ini-
tial simplex of the n+1 result vertices of previ-
ous searches, we conduct the final search with
the simplex method.� After every search with the simplex method, we
apply a local search by comparing performance
with neighbor vertices, and if a better one is
found the local search continues recursively.

4 Experiments with ATLAS

Figure 2 depicts the structure of ATLAS [8]. By run-
ning a set of benchmarks, ATLAS detects hardware
information such as L1 cache size, latency for com-
putation scheduling, number of registers and exis-
tence of fused floating-point multiply add instruction.

Detection

Optimal
Parameters

Execution
and
Timing

ATLAS Code
Generator

Matrix Multiply
Source Code

ATLAS SearchHardware Info
L1 Size
Latency
Nreg
FMA

NB, MU, NU, KU
LS, FF, IF, NF
FMA

Figure 2: ATLAS with global search

The search heuristics of ATLAS bound the global
search of optimal parameters with detected hardware
information. For example, NB (blocking size) is one
of ATLAS’s optimization parameters. ATLAS sets
NB’s upper bound to be the minimum of 80 and
square root of L1 cache size, and lower bound as 16,
and NB is a composite of 4. The optimization param-
eters are generated and fed into the ATLAS code gen-
erator, which generates matrix multiply source code.
The code is then compiled and executed on the target
machine. Performance data is returned to the search
manager and compared with previous executions.

ATLAS uses an orthogonal search [11]. For a
optimization problem:

min f (x1;x2; � � � ;xn)
Parametersxi (where 1� i � n) are initialized with
reference values. Fromx1 to xn, orthogonal search
does a linear one-dimension search for the optimal
value ofxi, it uses previously found optimal values
for x1;x2; � � � ;xn�1.

We have replaced the ATLAS global search with
the modified Nelder-Mead simplex search and con-
ducted experiments on four different architectures:
Pentium 4, Itanium 2, Power 4 and Sparc Ultra. The
specifications of these four platforms are shown in
Table 1.

Given values for a set of parameters, the ATLAS
code generator generates a code variant of matrix
multiply. The code gets executed with randomly gen-
erated 1000x1000 dense matrices as input. After ex-
ecuting the search heuristic, the output is a set of pa-
rameters that gives the best performance for that plat-
form. Figure 3 shows the performance of the best ma-
trix multiply code variant selected by each of the two

3



Feature Intel Pentium 4 Intel Itanium 2 IBM Power 4 Sun UltraSparc
Processor Speed 2.4GHz 900MHz 1.3GHz 900MHz
L1 Instruction 12KB 16KB 64KB 32KB
L1 Data 8KB 16KB 32KB 64KB
L2 512KB 256KB 1440KB 8MB
L3 N/A 1.5MB 128MB N/A
FMA no yes yes no
OS Linux Linux AIX 5.1 SunOS 5.9
Compiler gcc 3.3.3 icc 8 xlc 6 gcc 3.2

Table 1: Processor Specifications

search methods on four different platforms. Figure 4
compares the total time spent by each of the search
methods on the search itself. We can see that the sim-
plex method can find parameters with better perfor-
mance. Figures 5 through 8 show the performance of
matrix multiply generated using the Simplex search
compared with the original ATLAS search.

Figure 3: Best performance with input 1000x1000
matrices

5 Conclusion

Empirical optimization has been shown to be an ef-
fective technique for optimizing code for a particu-
lar platform. The search heuristic plays an important
role in the system. All existing software such as AT-
LAS [8], PHiPAC [9], and FFTW [10] each has its
own search heuristic developed. Our research pro-
vides a generic way to search for the optimal param-
eters. Our research can be extended to GA (Genetic
Algorithms) and Direct Search Methods such as pat-
tern search methods, simplex methods and methods
with adaptive sets of search directions [15].

Figure 4: search time

References

[1] Gordon E. Moore. Cramming More Com-
ponents onto Integrated Circuits.Electronics,
38(8):114–117, 19 April 1965.

[2] Randy Allen and Ken Kennedy.Optimizing
Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2002.

[3] David A. Padua and Michael Wolfe. Advanced
Compiler Optimizations for Supercomputers.
Commun. ACM, 29(12):1184–1201, 1986.

[4] Qing Yi, Ken Kennedy, Haihang You, Keith
Seymour, and Jack Dongarra. Automatic Block-
ing of QR and LU Factorizations for Locality.
In 2nd ACM SIGPLAN Workshop on Memory
System Performance (MSP 2004), 2004.

[5] Robert Schreiber and Jack Dongarra. Automatic
Blocking of Nested Loops. Technical Report
CS-90-108, Knoxville, TN 37996, USA, 1990.

4



0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000

m
flo

ps

Matrix Size

ATLAS dgemm -- power4(1.3 GHZ)

ATLAS
Simplex

Figure 5: dgemm on Power 4

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
flo

ps

Matrix Size

ATLAS dgemm -- Itanium2(900MHZ)

ATLAS
Simplex

Figure 6: dgemm on Itanium 2

[6] Kathryn S. McKinley, Steve Carr, and Chau-
Wen Tseng. Improving Data Locality with Loop
Transformations.ACM Trans. Program. Lang.
Syst., 18(4):424–453, 1996.

[7] Utpal Banerjee. A Theory of Loop Permuta-
tions. In Selected Papers of the Second Work-
shop on Languages and Compilers for Paral-
lel Computing, pages 54–74. Pitman Publish-
ing, 1990.

[8] R. Clint Whaley and Jack J. Dongarra. Auto-
matically Tuned Linear Algebra Software. In
SC ’98: Proceedings of the Proceedings of the
IEEE/ACM SC98 Conference, page 38. IEEE
Computer Society, 1998.

[9] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin,
and James Demmel. Optimizing Matrix
Multiply Using PHiPAC: A Portable, High-
Performance, ANSI C Coding Methodology. In

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000

m
flo

ps

Matrix Size

ATLAS dgemm -- Pentium4(2.4GMHZ)

ATLAS
Simplex

Figure 7: dgemm on Pentium 4

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
flo

ps

Matrix Size

ATLAS dgemm -- SparcUltra(900MHZ)

ATLAS
Simplex

Figure 8: dgemm on Sparc

International Conference on Supercomputing,
pages 340–347, 1997.

[10] Matteo Frigo and Steven G. Johnson. FFTW:
An Adaptive Software Architecture for the FFT.
In Proc. 1998 IEEE Intl. Conf. Acoustics Speech
and Signal Processing, volume 3, pages 1381–
1384. IEEE, 1998.

[11] Kamen Yotov, Xiaoming Li, Gang Ren,
Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul
Stodghill, and Peng Wu. A Comparison of
Empirical and Model-driven Optimization. In
PLDI ’03: Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming Lan-
guage Design and Implementation, pages 63–
76. ACM Press, 2003.

[12] J. A. Nelder and R. Mead. A Simplex Method
for Function Minimization. The Computer
Journal, 8:308–313, 1965.

5



[13] W. Spendley, G.R. Hext, and F.R. Himsworth.
Sequential Application of Simplex Designs
in Optimization and Evolutionary Operation.
Technometrics, 4:441–461, 1962.

[14] Jeffrey C. Lagarias, James A. Reeds, Mar-
garet H. Wright, and Paul E. Wright. Conver-
gence Properties of the Nelder–Mead Simplex
Method in Low Dimensions.SIAM J. on Opti-
mization, 9(1):112–147, 1998.

[15] Robert Michael Lewis, Virginia Torczon, and
Michael W. Trosset. Direct Search Methods:
Then and Now.J. Comput. Appl. Math., 124(1-
2):191–207, 2000.

6


