
An Asynchronous Algorithm on NetSolve

Global Computing System

Nahid Emad† S. A. Shahzadeh Fazeli † Jack Dongarra ‡

Abstract

The Explicitly Restarted Arnoldi Method (ERAM) allows to find a few eigenpairs of a large sparse
matrix. The Multiple Explicitly Restarted Arnoldi Method (MERAM) is a technique based upon a multiple
projection of ERAM and accelerates its convergence [3]. The MERAM allows to update the restarting
vector of an ERAM by taking the interesting eigen-information obtained by the other ones into account.
This method is particularly well suited to the GRID-type environments. We present an adaptation of
the asynchronous MERAM for NetSolve global computing system. We point out some advantages and
limitations of this kind of systems to implement the asynchronous hybrid algorithms. We give some results
of our experiments and show that we can obtain a good acceleration of the convergence compared to
ERAM. These results show also the interest of the MERAM-like hybrid methods for the GRID computing
environments.

Keywords: Large eigenproblem, Arnoldi method, Explicit restarting, Global computing, NetSolve.

1 Introduction

The hybrid methods were proposed to accelerate the convergence and/or to improve the accuracy of the solu-
tion of some linear algebra problems. These methods combine several different numerical methods or several
differently parameterized copies of the same method to solve these problems efficiently [2, 6, 5, 13, 14]. The
Multiple Explicitly Restarted Arnoldi Method (MERAM) proposed in [3] is a hybrid method which allows
to approximate a few eigenpairs of a large sparse non-Hermitian matrix. It makes use of several differently
parameterized ERAM for the benefit of the same application.

In this paper we present the application of the asynchronous MERAM to NetSolve global computing system.
We show some advantages and limitations of this kind of systems to implement the asynchronous hybrid
algorithms. We give then an adaptation of the algorithm for NetSolve and show that we can obtain a good
acceleration of the convergence with respect to the Explicitly Restarted Arnoldi method.

Section 2 describes the basic Arnoldi algorithm and Explicitly Restarted Arnoldi Method. Section 3 intro-
duces MERAM and some of its algorithms. We point out the limitations of NetSolve-type systems to implement
the asynchronous algorithm of MERAM and an adaptation of this algorithm for NetSolve in section 4. This
algorithm is evaluated in section 5 by a set of test matrices coming from various application problems. The
concluding remarks in section 6 will contain our perspective on the problem.

2 Explicitly Restarted Arnoldi Method

Let A be a large non-Hermitian matrix of dimension n×n. We consider the problem of finding a few eigenpairs
(λ, u) of A :

Au = λu with λ ∈ C and u ∈ Cn. (1)

Let w1 = v/‖v‖2 be an initial guess, m be an integer with m ¿ n. A Krylov subspace method allows to project
the problem (1) onto a m-dimensional subspace K = span(w1, Aw1, · · ·Am−1w1). The well-known Arnoldi
process is a projection method which generates an orthogonal basis w1, · · · , wm of the Krylov subspace K by

†Laboratoire PRiSM, Université Versailles St-Quentin, 45, av. des États-Unis, 78035 Versailles Cedex, France ((emad,
sas)@prism.uvsq.fr)

‡Computer Science Department, University of Tennessee, Knoxville (dongarra@cs.utk.edu)

1

using the Gram-Schmidt orthogonalization process. Let AR(input : A,m, v; output : Hm, Wm) be such Arnoldi
reduction. The m×m matrix Hm = (hi,j) and the n×m matrix Wm = [w1, · · · , wm] issued from AR algorithm
and the matrix A satisfy the equation:

AWm = WmHm + fmeH
m (2)

where fm = hm+1,mwm+1 and em is the mth vector of the canonical basis of Cm. The s desired Ritz values
(with largest/smallest real part or largest/smallest magnitude) Λm = (λ(m)

1 , · · · , λ(m)
s) and their associate Ritz

vectors Um = (u(m)
1 , · · · , u(m)

s) can be computed as follows1:

Basic Arnoldi Algorithm : BAA(input : A, s,m, v; output : rs, Λm, Um).

1. Compute an AR(input : A,m, v; output : Hm,Wm) step.

2. Compute the eigenpairs of Hm and select the s desired ones: (λ(m)
i , y

(m)
i).

3. Compute the s associate Ritz vectors u
(m)
i = Wmy

(m)
i .

4. Compute rs = (ρ1, · · · , ρs)t with ρi = ‖(A− λ
(m)
i I)u(m)

i ‖2.

If the accuracy of the computed Ritz elements is not satisfactory the projection can be restarted onto a new
K. This new subspace can be defined with the same subspace size and a new initial guess. The method is called
the Explicitly Restarted Arnoldi (ERAM). Starting with an initial vector v, it computes BAA. If the convergence
does not occur, then the starting vector is updated and a BAA process is restarted until the accuracy of the
approximated solution is satisfactory (using appropriate methods on the computed Ritz vectors). This update
is designed to force the vector in the desired invariant subspace. This goal can be reached by some polynomial
restarting strategies proposed in [5] and discussed in section 3.1. An algorithm of Explicitly Restarted Arnoldi
Method is the following:

ERAM Algorithm: ERAM(input : A, s,m, v, tol; output : rs,Λm, Um).

1. Start. Choose a parameter m and an initial vector v.

2. Iterate. Compute a BAA(input : A, s, m, v; output : rs, Λm, Um) step.

3. Restart. If g(rs) > tol then use Λm and Um to update the starting vector v and go to 2.

where tol is a tolerance value and the function g defines the stopping criterion of iterations. Some typical
examples are: g(rs) = ‖rs‖∞ and g(rs) =

∑s
j=1 αjρj where αj are scalar values.

3 Multiple Explicitly Restarted Arnoldi Method

The Multiple Explicitly Restarted Arnoldi Method is a technique based upon an ERAM with multiple projection
processes to accelerate its convergence. In this method several differently parameterized ERAM co-operate to
efficiently compute a solution of a given eigen-problem. The MERAM allows to update the restarting vector of
an ERAM by taking the interesting eigen-information obtained by the other ones into account. The ERAMs
begin with several subspaces spanned by a set of initial vectors and a set of subspace sizes. If the convergence
does not occur for any of them, then the new subspaces will be defined with initial vectors updated by taking
the solutions computed by all the ERAM processes into account. Each of these differently sized subspaces is
defined with a new initial vector v. To overcome the storage dependent shortcoming of ERAM, a constraint
on the subspace size of each ERAM is imposed. More precisely, it has to belong to the discrete interval
Im = [mmin,mmax]. The bounds mmin and mmax may be chosen in function of the available computation and

1We suppose that the eigenvalues and corresponding eigenvectors of Hm are re-indexed so that the first s Ritz pairs are the
desired ones.

2

storage resources and have to fulfill mmin ≤ mmax ¿ n. Let m1 ≤ · · · ≤ m` be a set of ` subspace sizes with
mi ∈ Im (1 ≤ i ≤ `), M = (m1, · · · , m`) and V ` = [v1, · · · , v`] be the matrix of ` starting vectors. An algorithm
of this method to compute s (s ≤ m1) desired Ritz elements of A is the following:

MERAM Algorithm : MERAM(input : A, s,M, V `, tol; output : rs,Λm, Um)

1. Start. Choose a starting matrix V ` and a set of subspace sizes M = (m1, · · · ,m`). Let it = 0.

2. Iterate. For i = 1, · · · , ` do: it = it + 1.

(a) Compute a BAA(input : A, s, mi, v
i; output : ri

s, Λmi
, Umi

) step.
(b) If g(ri

s) ≤ tol then stop all processes.
(c) If (it ≥ ` and (it mod `) 6= 0) then use the results produced

by the ` last BAA processes to update vi+1.

3. Restart. Use the results produced by the ` last BAA processes to update v1 and go to 2.

where ri
s is the vector of the residual norms at the ith iteration.

With the hypothesis that u
(mp)
j is ”better” than u

(mq)
j if ρp

j ≤ ρq
j , an interesting updating strategy would

be to choose vi as a function f of ”the best” Ritz vectors:

vi = f(U best), (3)

where U best = (ubest
1 , · · · , ubest

s) and ubest
j is ”the best” jth Ritz vector. The definition of the function f can be

based onto the techniques proposed by Y. Saad in [5] and will be discussed in section 3.1.

The problem of the above algorithm is that there is no parallelism between the BAA processes. This is be-
cause of the existence of the synchronization points 2.(c) and 3 in the algorithm. In the following algorithm,
proposed in [3], these synchronization points are removed. That means each ERAM process, after its BAA step,
sends its results to all other processes. Let Send Eigen Info represents the task of sending results from an
ERAM process to all other ERAM processes, Receiv Eigen Info be the task of receiving results from one or
more ERAM processes by the current ERAM process and finally, Rcv Eigen Info be a boolean variable that is
true if the current ERAM process has received results from the other ERAM processes. A parallel asynchronous
version of MERAM is the following:

Asynchronous MERAM Algorithm.

1. Start. Choose a starting matrix V ` and a set of subspace sizes M = (m1, · · · ,m`).

2. Iterate. For i = 1, · · · , ` do in parallel (ERAM process):

• Computation process

(a) Compute a BAA(input : A, s,mi, v
i; output : rs,Λmi , Umi) step.

(b) If g(ri
s) ≤ tol stop all processes.

(c) Update the initial guess with
if (Rcv Eigen Info) then hybrid restart strategy
else simple restart strategy

• Communication process

(d) Send Eigen Info
(e) Receiv Eigen Info

The ` ERAM processes defined in step 2 of the above algorithm are all independents and can be run in
parallel. Each of them is constituted by a computation part and a communication part. The computation and

3

the communication can be overlapped inside of an ERAM process. The updating of the initial vector vi can
be done by taking the most recent results of the ERAM processes into account. We recall that, in the above
MERAM algorithm, the ` last results are necessarily the results of the ` ERAM processes.

The above algorithm is fault tolerant. A loss of an ERAM process during MERAM execution does not
interfere with its termination. It has a great potential for dynamic load balancing ; the attribution of ERAM
processes of MERAM to the available resources can be done as a function of their subspace size at run time.
The heterogeneity of computing supports can be then an optimization factor for this method [3]. Because of
all these properties, this algorithm is well suited to the GRID-type environments. In a such environment, the `
ERAM processes constituting a MERAM can be dedicated to ` different servers. Suppose that the ith ERAM
process is dedicated to the server Si. This server keeps the execution control of the ith ERAM process until
the convergence which occurs, in general, by the fastest server. The figure 1 shows an execution scheme of the
asynchronous MERAM with ` = 3 on 3 servers. We notice that the computation and communication parts are
overlapped.

Figure 1: Asynchronous MERAM with ` = 3

3.1 Restarting Strategies

Saad [6] proposed to restart an iteration of ERAM with a vector preconditioning so that it has to be forced
in the desired invariant subspace. It concerns a polynomial preconditioning applied to the starting vector of
ERAM. This preconditioning aims at computing the restarting vector so that its components are nonzero in
the desired invariant subspace and zero in the unwanted invariant subspace:

v(k) = p(A)v (4)

where v(k) is kth restarting vector of ERAM and p is a polynomial in the space of polynomials of degree < m.
One appropriate possibility to define p is a Chebyshev polynomial determined from some knowledge on the
distribution of the eigenvalues of A. This restarting strategy is very efficient to accelerate the convergence of
ERAM and is discussed in detail in [6, 5]. Another possibility to define the polynomial p is to compute the

4

restarting vector with a linear combination of s desired Ritz vectors:

v(k) =
s∑

i=1

αiu
(m)
i (k) (5)

where u
(m)
i (k) denotes ith Ritz vector computed at the iteration k. There are several ways to choose the scalar

values αi in (5). One choice can be αi equal to the ith residual norm. Some other choices can be αi = 1,
αi = i or αi = s− i + 1 for 1 ≤ i ≤ s (see [7] for more details). We propose to make use of the following linear
combination of the s wanted eigenvectors :

v =
s∑

k=1

lk(λ)uk
(m) (6)

where s coefficients lk(λ) are defined by : lk(λ) =
∏s

j=1
j 6=k

(λ−λj
(m)

λk
(m)−λj

(m)), with λ = (λmin + λ̄ − λmin

n)/2 ,

λ̄ =
∑s

k=1
λk

(m)

s and λmin is the eigenvalue with the smallest residual norm. In the experiments of the next
section, we made use of this strategy (i.e., equation (6)) to update the initial vector of the ERAM as well as
the ones of the ERAM processes of MERAM. In the case of MERAM this equation becomes

vi =
s∑

k=1

l
(best)
k (λ)u(best)

k (7)

where u
(best)
k is ”the best” kth eigenvector computed by the ERAM processes of MERAM and l

(best)
k is its

associate coefficient.

4 Asynchronous MERAM on a Global Computing System

4.1 NetSolve Global Computing System

NetSolve system is a Grid Middleware based on the concepts of Remote Procedure Call (RPC) that allows
users to access both hardware and software computational resources distributed across a network. NetSolve
provides an environment that monitors and manages computational resources and allocates the services they
provide to NetSolve enabled client programs. NetSolve uses a load-balancing strategy to improve the use of
the computational resources available. Three chief components of NetSolve are clients, agents and servers. The
semantics of a NetSolve client request are:

1. Client contacts the agent for a list of capable servers.

2. Client contacts server and sends input parameters.

3. Server runs appropriate service.

4. Server returns output parameters or error status to client.

There are many advantages to using a system like NetSolve which can provide access to otherwise unavailable
software/harware. In cases where the software is in hand, it can make the power of supercomputers accessible
from low-end machines like laptop computers. Furthermore, NetSolve adds heuristics that attempt to and the
most expeditious route to a problem’s solution set. NetSolve currently supports the C, FORTRAN, MATLAB,
and Mathematica as languages of implementation for client programs. To solve a problem using NetSolve, a
problem description file (PDF) corresponding to the problem has to be defined [10, 11, 12].

4.2 Asynchronous MERAM on NetSolve System

The servers of NetSolve system can not communicate directly to each other. Consequently, contrarily to
MERAM running schemes presented in figures 1 and 2, a server can’t keep the control of an ERAM process

5

until the convergence. Figure 2 shows asynchronous MERAM algorithm on 3 servers which communicate
directly. Each server runs the steps 2.(a), 2.(b) and 2.(c) of an ERAM and communicates with the other servers
by running the steps 2.(d) and 2.(e) of the algorithm. While figure 3 shows asynchronous MERAM algorithm
on 3 servers of a system such as NetSolve where they can not communicate directly.

Figure 2: Asynchronous MERAM on 3 communicating servers (with ` = 3)

Figure 3: Asynchronous MERAM on 3 non communicating servers (with ` = 3)

Indeed, to adapt the asynchronous MERAM algorithm to NetSolve system a control process centralizing
the information and corresponding to a client component of NetSolve has to be defined. This process has to
request to the computation servers of the system to run the step 2.(a) of ERAM processes of MERAM in RPC
mode. The running of the step 2.(a) of an ERAM occurs asynchronously in respect with the execution of the
same step of the other ERAMs as well as with the execution of the rest of the client algorithm. Once the control
process receives the results of an BAA step, it tests the convergence by running the step 2.(b) of the algorithm.

6

If the convergence is not reached then it updates the initial guess with the available eigen-information on this
control/client server. An adaptation of the asynchronous Multiple Explicitly Restarted Arnoldi Method for
NetSolve is the following:

MERAM-NS(input : A, s, M, V `, tol; output : rs,Λm, Um)

1. Start. Choose a starting matrix V ` and a set of subspace sizes M = (m1, · · · ,m`).
Let iti = 0 (for i = 1, `).

2. For i = 1, · · · , ` do :

(a) Compute a BAA(input : A, s, mi, v
i; output : rs, Λmi

, Umi
) step in RPC mode.

3. Iterate. For i = 1, · · · , ` do :

• If (ready results) then iti = iti + 1

(e
′
) Receive results.

(b) If g(ri
s) ≤ tol stop all processes.

(c) Update the initial guess in function of the available eigen-information.
(a) Compute a BAA(input : A, s,mi, v

i; output : rs,Λmi , Umi) step in RPC mode.

• End if

4. End. it = max(it1, · · · , it`)

Where ready results is a boolean variable which is true if the outputs of the current BAA algorithm are
ready. In other words, if the server computing the ith BAA in RPC mode is ready to send its outputs. We notice
that in this implementation the step 2.(d) of the asynchronous MERAM algorithm is not necessary and the
step 2.(e) is replaced by 3.(e

′
) which consists to receive all eigen-information on the control process. Instead,

we notice that in each computation request in RPC mode, the client program has to send all inputs to the
computation server which accepts this task. That means, in MERAM-NS algorithm, for each restart (i.e.,
iteration) of every ERAM process, the client program has to send the n-order matrix A, and an n-size initial
vector to a computation server. This engenders an intense communication between the client and computation
servers. But this communication is overlapped by the running of the rest of the algorithm. We can notice that
when a computational server finishes the step 2.(a) or 3.(a), it has to return s + 2 n-size output vectors to
the client process. Figure 4 presents the implementation of MERAM-NS algorithm on a NetSolve system with 21
servers2 and ` = 3.

In asynchronous MERAM algorithm, at the end of an iteration each ERAM sends s + 2 n-size vectors to
`−1 other processes. That means, each ERAM has to communicate (`−1)×(s+2)×n data to other processes.
The reception of s + 2 n-size vectors by a process is not determinism and not quantifiable.

5 Numerical experiments

The experiments presented in this section have been done on a NetSolve system whose computation servers
have been located in France (at the university of Versailles and the Institute of Technology of Vélizy sites)
and in U.S.A. and interconnected by internet. We implemented ERAM and MERAM (i.e., MERAM-NS)
algorithms using C and MATLAB for some real matrices on NetSolve system. The client applications are
written in MATLAB while the programs having to run in RPC mode (i.e., ERAM processes) are written in C.
The stopping criterion is g(ri

s) = ‖ri
s‖∞ where ri

s = (ρi
1, · · · , ρi

s) and ρi
j is normalized by ρi

j = ρi
j/‖A‖F for all

j ∈ 1, · · · , s and i ∈ 1, · · · , `. The tolerance value tol is 10−8 in the figures 5, 6, 8 and 10−14 in the figure 7.
For all figures the initial vector is v = zn = (1, · · · , 1)/

√
n and the initial matrix is V ` = [v1 = zn, · · · , v` = zn].

We search a number s = 2 or s = 5 of the eigenvalues with the largest magnitude. The used matrices are
taken from the matrix market [1] and presented in the table 1. The number of non zero elements of a matrix
is denoted by NNZ. In our experiments, we run MERAM-NS with ` = 3 ERAM processes where the steps 2

2This is an image of the system at a given instant. Indeed, since the servers are volatile, the number of the servers in NetSolve
system can change at any moment.

7

Figure 4: MERAM-NS on NetSolve (Ex. of 3 ERAMs processes and 21 servers). Sk is the kth server of the NetSolve

system and Ei
j is the jth restart of the ith ERAM process of MERAM.

Matrix matrix size NNZ

af23560.mtx 23560 484256
mhd4800b.mtx 4800 16160
gre 1107.mtx 1107 5664
west2021.mtx 2021 7353

Table 1: Matrices

and 3.(a) are computed in RPC nonblocking mode. The efficiency of our algorithms on NetSolve are measured
in terms of the number it of the restarts. The number of iterations of MERAM in all of the figures is the
number of iterations of the ERAM process which reaches convergence. It is generally the ERAM process with
the largest subspace size.

5.1 MERAM-NS versus ERAM

In the following figures, we denote by MERAM(m1, · · · , ml) a MERAM with subspaces sizes m1, · · · ,ml and
by ERAM(m) an ERAM with subspace size m. The tables 2 and 3 presents the results obtained with ERAM
and MERAM algorithms on NetSolve and the table 4 presents a comparison between the results obtained by
ERAM and MERAM in term of the number of restarts. We show graphically in Figures 5 to 9 the residual norm
as a function of iteration number to reach convergence using ERAM and MERAM on NetSolve. The results
of our experiments presented in the tables 2, 3 and 4 and in the figures 5 to 9 indicate that our MERAM-NS
algorithm has better performance than ERAM. We notice from these tables that in term of the number of the
restarts MERAM is considerably more efficient than ERAM.

8

0 50 100 150 200 250
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ARNOLDI METHOD

iteration

re
si

du
al

 n
or

m
/n

or
m

f

ERAM−MAX
MERAM

Figure 5: matrix af23560.mtx, MERAM(5, 7, 10) convergence in 74 iterations, ERAM(10) no convergence in 240

iterations

Matrix m s v it Res.Norms Fig
af23560.mtx 10 2 zn 240 No converge 5
mhd4800b.mtx 10 2 zn 41 8.127003e-10 6
mhd4800b.mtx 20 5 zn 19 4.089292e-15 7
gre 1107.mtx 30 2 zn 46 3.389087e-09 8
west2021.mtx 10 2 zn 18 1.742610e-09 9

Table 2: ERAM

6 Conclusion

The standard restarted Arnoldi algorithm and its variants may not be efficient for computing a few selected
eigenpairs of large sparse non-Hermitian matrices. In order to improve the overall performance of Arnoldi type
algorithm, we proposed an adaptation of the Multiple Explicitly Restarted Arnoldi Method for NetSolve system.
We have seen that the Multiple Explicitly Restarted Arnoldi Method accelerates the convergence of Explicitly
Restarted Arnoldi Method. The numerical experiments have demonstrated that this variant of MERAM is
often much more efficient than ERAM. In addition, this concept may be used in some Krylov subspace type
method for the solution of large sparse non symmetric eigenproblem.

We have shown that the MERAM-type asynchronous algorithms are very well adapted to the global com-
puting systems such as NetSolve. Meanwhile, one of the major problems remains the transfer of the matrix from
the client server towards the computation servers. For example, the order of magnitude of the transferred data

Matrix m1,m2,m3 s v1, v2, v3, it Res. Norms Fig
af23560.mtx 5, 7, 10 2 zn, zn, zn 74 9.329017e-10 5
mhd4800b.mtx 5, 7, 10 2 zn, zn, zn 6 4.016027e-09 6
mhd4800b.mtx 10, 15, 20 5 zn, zn, zn 4 2.999647e-15 7
gre 1107.mtx 5, 10, 30 2 zn, zn, zn 32 6.753314e-09 8
west2021.mtx 5, 7, 10 2 zn, zn, zn 14 6.267924e-09 9

Table 3: MERAM

9

0 5 10 15 20 25 30 35 40 45
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ARNOLDI METHOD

iteration

re
si

du
al

 n
or

m
/n

or
m

f

ERAM−MAX
MERAM

Figure 6: matrix mhd4800b.mtx, MERAM(5, 7, 10) convergence in 6 iterations, ERAM(10) convergence in 41 iterations

ERAM MERAM
Matrix Fig. ` m iteration m1, · · · , m` iteration

af23560.mtx 5 3 10 * 5, 7, 10 74
mhd4800b.mtx 6 3 20 19 10, 15, 20 4
mhd4800b.mtx 7 3 10 41 5, 7, 10 6
gre 1107.mtx 8 3 30 46 5, 10, 30 32
west2021.mtx 9 3 10 18 5, 7, 10 14

Table 4: Comparison of ERAM(m) and ERAM(m1, · · · ,m`)

between client and computation servers is O((it1 + · · · + it`) ×NNZ) for MERAM-NS algorithm. Moreover,
the classical evaluation of performances is no more valid in this kind of systems. For example, the execution
response time can not be a good measure of performance for MERAM nor for a comparison between MERAM
and ERAM. This is for the following reasons:

1. the execution time is dependant to the internet load,
2. the servers are volatile; a server can take part in a portion of calculation and disappear afterwards,
3. the servers are transparent; that means, we do not know the server on which a specific process
(such as 2.(a) or 3.(a) steps of MERAM-NS algorithm) will be run,
4. the implementation of the ERAM on NetSolve introduces some artificial communications.

One could think to have a rapid response time it would be better to make use of a classical parallel
supercomputer. But the supercomputers are not easily accessible and moreover, the use of a global computing
system allows to take advantage of the otherwise unavailable software and/or hardware resources.

References

[1] Z.BAI, D. DAY, J. DEMMEL and J. DONGARA, A Test Matrix Collection for Non-Hermitian
Problems, http://math.nist.gov/MatrixMarket.

[2] C. Brézinski and M. R. Zaglia, A hybrid procedure for solving linear systems, Numerische Mathematik,
67, pp. 1-19, 1994.

10

0 2 4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ARNOLDI METHOD

iteration

re
si

du
al

 n
or

m
/n

or
m

f

ERAM−MAX
MERAM

Figure 7: matrix mhd4800b.mtx, MERAM(10, 15, 20) convergence in 4 iterations, ERAM(20) convergence in 19 itera-

tions

[3] N. EMAD, S. Petiton, And G. Edjlali, Multiple Explicitly Restarted Arnoldi Method for Solving
Large Eigenproblems, PRiSM Technical Report 285/52, 2004.

[4] R. Lehoucq, D.C. Sorensen and P.A Vu, ARPACK: Fortran subroutines for solving large scale
eigenvalue problems, Release 2.1, available form netlibornl.gov in the scalapack directory, 1994.

[5] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1993.

[6] Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math. Com.,
42, 567-588, 1984.

[7] Y. Saad, Variations on Arnoldi’s Method for Computing Eigenelements of Large Unsymmetric Matrices,
Linear Algebra Applications, 34, 269-295, 1980.

[8] D.C. Sorensen, Implicitly restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations,
In D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds. Parallel Numerical Algorithms, pages 119-166,
Dordrecht, 1997, Kluwer.

[9] Arnold, D. and Agrawal, S. and Blackford, S. and Dongarra, J. and Miller, M. and
Seymour, K. and Sagi, K. and Shi, Z. and Vadhiyar, S., Users’ Guide to NetSolve v1.4.1, ICL
Technical Report, ICL-UT-02-05, June 25, 2002.

[10] H. Casanova and J. Dongarra , NetSolve: A Network Server for Solving Computational Science Prob-
lems. The International Journal of Supercomputer Applications and High Performance Computing,1997.

[11] H. Casanova and J. Dongarra , NetSolve’s Network Enabled Server: Examples and Applications,
IEEE Computational Science and Engineering, 57-67, 5(3), 1997, 1998.

[12] H. Casanova and J. Dongarra , NetSolve version 1.2: Design and Implementation, UT Department
of Computer Science Technical Report,1998.

[13] G. L. G. Sleijpen and H. A. Van der Vorst , Jacobi-Davidson iteration method for linear Eigenvalue
problems, SIAM Review, 42(2):267-293,2000.

11

0 5 10 15 20 25 30 35 40 45 50
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ARNOLDI METHOD

iteration

re
si

du
al

 n
or

m
/n

or
m

f

ERAM−MAX
MERAM

Figure 8: matrix gre 1107.mtx, MERAM(5, 10, 30) convergence in 32 iterations, ERAM(30) convergence in 46 iterations

[14] G. L. G. Sleijpen and H. A. Van der Vorst , Jacobi Davidson methods. In Zhaojun Bai, James
Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, editors, Templates for the Solution of
Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.

[15] H., User’s Guide to NetSolve V1.4, full reference at http://icl.cs.utk.edu/netsolve

12

0 2 4 6 8 10 12 14 16 18
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ARNOLDI METHOD

iteration

re
si

du
al

 n
or

m
/n

or
m

f

ERAM−MAX
MERAM

Figure 9: matrix west2021.mtx, MERAM(5, 7, 10) convergence in 14 iterations, ERAM(10) convergence in 18 iterations

13

