
Extending the MPI Specification for Process Fault
Tolerance on High Performance Computing Systems

Graham E. Fagg, Edgar Gabriel, George Bosilca,

Thara Angskun, Zhizhong Chen, Jelena Pjesivac-Grbovic, Kevin London
and Jack J. Dongarra

Innovative Computing Laboratory,

Department of Computer Science, 1122 Volunteer Blvd., Suite 413,
University of Tennessee, Knoxville, TN-37996, USA.

{fagg, egabriel, bosilca, angskun, zchen, pjesa, london, dongarra}@cs.utk.edu

1. Motivation

1.1 Trends in High Performance Computing

End-users and application developers of high performance computing systems have today
access to larger machines and more processors than ever. Systems such as the Earth Simulator,
the ASCI-Q machines or the IBM Blue Gene consist of thousands or even tens of thousand of
processors. Machines comprising 100,000 processors are expected for the next years.

A critical issue of systems consisting of such large numbers of processors is the ability of the
machine to deal with process failures. Concluding from the current experiences on the top-end
machines, a 100,000-processor machine will experience a process failure every few minutes[1].
While on earlier massively parallel processing systems (MPPs) crashing nodes often lead to a
crash of the whole system, current architectures are more robust. Typically, the applications
utilizing the failed processor will have to abort, the machine, as an entity is however not affected
by the failure. This robustness has been the result of improvements at the hardware as well as on
the level of system software.

1.2 Current Parallel Programming Paradigms

Current parallel programming paradigms for high-performance computing systems are mainly
relying on message passing, especially on the Message-Passing Interface (MPI) [12][13]
specification. Shared memory concepts (e.g. OpenMP) or parallel programming languages (e.g.
UPC, CoArrayFortran) offer a simpler programming paradigm for applications in parallel
environments, however they either lack the scalability to tens of thousands of processors, or do
not offer a feasible framework for complex, irregular applications. The message-passing
paradigm on the other hand provides a mean to write highly scalable algorithms, abstracting and
hiding many architectural decisions from the application developers.

MPI in its current specification is however not dealing with the situation mentioned above, where
one or more processes are becoming unavailable during runtime. Currently, MPI gives the user
the choice between two possibilities of how to handle failures. The first one, which is also the
default mode of MPI, is to immediately abort the application. The second possibility is just slightly
more flexible, handing the control back to the user application without guaranteeing however, that
any further communication can occur. The latter mode has mainly the purpose to give an
application the possibility to perform local operations before exiting, e.g. closing all files or writing
a local checkpoint.

1.3 Recent developments in MPI

The MPI user and developer community is currently going through dynamic changes. More and
more MPI implementations are meanwhile available, each focusing on different aspects. The
manufacturers of high-performance computing systems focus on improving the performance of
MPI-1 functions as well as on implementing more and more of MPI-2. The two most widespread,
freely available MPI libraries (MPICH[21], LAM/MPI[9]) are both coming closer to support the full
MPI-2 specification.

Many MPI implementations are dealing with aspects of distributed and Grid computing, focusing
on the given hierarchies, security aspects as well as user-friendliness. Examples are PACX-
MPI[3], MPICH-G2[14], Stampi[19], MetaMPICH or GridMPI[8].

Another set of projects is dealing with various aspects of fault-tolerance, e.g. MPI/FT[15], MPI-
FT[17], MPICH-V[5] or LA-MPI[16]. Many of these projects are providing a checkpoint-restart
interface, allowing an application to restart from the last consistent checkpoint in case an error
occurs.

1.4 The need for extending the MPI specification

Summarizing the findings of the introduction so far, there is a mismatch between the capabilities
of current high performance computing systems and the mainly used parallel programming
paradigm. While the machines are getting more and more robust (hardware, network, operating
systems, file systems) the MPI specification does not leave room for fully exploiting the
capabilities of the current architectures. Checkpoint/restart, the only currently available option,
does have its performance and conceptual limitations, if machines with tens of thousand of
processors are considered. In fact, one of the main reasons for many research groups to stick still
to the PVM[4] communication library instead of switching to MPI is the capability of the first one to
handle process failures.

If today’s and tomorrows high performance computing resources shall be used as a means to
perform single, large scale simulations and not solemnly as a platform for high throughput
computing, extending the main communication library of HPC systems, respectively the main
programming paradigm, to deal with aspects of fault-tolerance is inevitable.

Therefore, we present in this document the results of work conducted during the last four years,
which produced:

• A specification called ‘Proposal for Extensions to the Message-Passing Interface for
Process Fault-Tolerance’

• An implementation of this specification
• Numerous application scenarios showing the feasibility of the specification for scientific,

high performance computing.

The rest of the document is organized as follows: Section 2 presents a summary of the
specification for a Fault-Tolerant MPI (FT-MPI). The complete specification is attached as
Appendix A. In section 3 we present some of the architectural decisions on implementing the FT-
MPI specification. Section 4 presents a wide variety of application scenarios using the FT-MPI
specification, ranging from dense linear algebra examples to parallel equation solvers and a
master-slave code. Finally, section 5 summarizes the paper and presents the ongoing work.

2. Extensions to the Message-Passing Interface for Process Fault –Tolerance

This section summarizes the FT-MPI specification. The full document can be found in Appendix
A. Handling fault-tolerance typically consists of three steps: failure detection, notification and
recovery. The FT-MPI specification makes no general assumptions about the first two issues,
with the exception that it assumes, that the run-time environment discovers failing processes and
all processes of the according parallel jobs are notified about the failure events.

The notification of failed processes is passed to the MPI application through the usage of a
special error code. As soon as an application process has received the notification of a death
event through this error code, its general state is changing from no failures to failure
recognized. While in this state, the process is just allowed to execute certain actions. These
actions are depending on various parameters and are detailed later in the document.

The recovery procedure is considered to consist of two steps again: recovering the MPI library
and the run-time environment, and recovering the application. The latter one is considered to be
the responsibility of the application.

The main problems the FT-MPI specification is dealing with are answers to the following
questions:
1. What are the necessary steps and options to start the recovery procedure and therefore

change the state of the processes back to no failure?
2. What is the status of the MPI objects after recovery?
3. What is the status of ongoing communication and messages during and after recovery?

The first question is handled by the so-called recovery mode, the second by the communicator
mode, the third by the message mode respectively the collective communication mode.

The recovery mode defines how the recovery procedure can be started. Currently, there are three
options defined:

• an automatic recovery mode, where the recovery procedure is started automatically by
the MPI library as soon as a failure event has been recognized

• a manual recovery mode, where the application has to start the recovery procedure
through the usage of a special MPI function

• a recovery mode, where the recovery procedure does not have to be initiated at all.
However, any communication to failed processes will raise an error.

The status of MPI objects after the recovery operation is depending on whether they contain
some global information or not. As for MPI-1, the only objects containing global information are
groups and communicators. These objects are ‘destroyed’ during the recovery procedure and
only the objects available after MPI_Init are re-instantiated by the library (MPI_COMM_WORLD
and MPI_COMM_SELF).

Communicators and group can have different formats after recovery operation. Failed processes
can either be replaced (FTMPI_COMM_MODE_REBUILD), or not. In case the failed processes
are not replaced, the user still has two choices: the position of the failed process can be left
empty in groups and communicators (FTMPI_COMM_MODE_BLANK) or the groups and
communicators can shrink such that no gap is left (FTMPI_COMM_MODE_SHRINK). For both
modes a precise description of all MPI-1 functions are given in Appendix A.

Furthermore, the specification has to clarify what the status of currently ongoing messages is
while an error occurs and is recognized. In one mode, all currently ongoing messages are
cancelled by the system. This mode is mainly useful for applications, which on an error roll-back
to the last consistent state in the application. As an example, if an error occurs in iteration 423
and the last consistent state of the application is from iteration 400, than all ongoing messages
from iteration 423 would just confuse the application after having performed the roll-back. The

second mode completes all ongoing messages after the recovery operation, with the exception of
the messages to and from the failed processes. This mode requires, that the application keeps
precisely track of the state of each process, minimizing the roll-back procedure. Similar modes
are available for collective operations, which can either be executed in an atomic or a non-atomic
mode.

3. An Implementation of the FT-MPI specification

The University of Tennessee implemented the specification presented in the previous section.
The current implementation is relying on the HARNESS[2][7] framework. HARNESS
(Heterogeneous Adaptable Reconfigurable Networked SyStems) provides a fault-tolerant,
dynamic run-time environment, which is used by FT-MPI for process management and failure
notification.

UTK’s implementation of the FT-MPI specification proves, that the specification is not just a
theoretical framework, but that it is practically working.

The currently available functionality includes the full MPI-1.2 specification, as well as several
sections of the MPI-2 document. Lots of efforts have been furthermore invested in optimizing the
collective operations and the derived datatype section of MPI. A multi-protocol device supporting
besides TCP/IP also various other protocols (e.g. shared memory, myrinet) is currently in the
testing phase.

UTK’s implementation has proven in various benchmarks and application scenarios, that the
performance of FT-MPI is comparable to the current state-of-the art MPI libraries as long as no
error occurs. This indicates, that the new specification does not harm the performance of
applications in case no error occurs. The results furthermore show, that the FT-MPI specification
is compatible to the current specifications of MPI, since all current MPI applications work without
any modifications with FT-MPI.

Currently ongoing work is also the abstraction of the features needed for implementing the fault-
tolerant features into an abstract device interface (FT-ADI). Thus, different run-time environments
could be used to implement a specification of FT-MPI, e.g. a simple environment relying on
shared files for processing having a common file-system. UTK’s FT-MPI implementation is
available for free download at http://icl.cs.utk.edu/ftmpi/.

4. Usage scenario

Simultaneously to the development of the specification and UTKs implementation of FT-MPI, a
large set of applications have been tested and benchmarked. Most of these rely on a technique
called in-memory checkpoint. This technique avoids writing checkpoint files by distributing
additional information based on encoding techniques like the Reed-Solomon Algorithm on other
processes. In case an error occurs, the application need not be restarted, but the additional
information is used to reconstruct the data of the failed process. Especially for large numbers of
processes, this technique improves the performance of the application dramatically compared to
writing and reading checkpoint files, since it avoids typically slow file operations. Among the
applications using this technique are

• A parallel, preconditioned conjugate gradient solver[6],
• A dense matrix multiplication,
• LU factorization,
• QR factorization and

http://icl.cs.utk.edu/ftmpi/

• A parallel spectral transform Shallow Water Code (PSTSWM)

These applications show, that using the FT-MPI specification one can significantly improve the
performance of the application in case an error occurs. As with most fault-tolerant applications
known in the literature, there is however a trade-off between the additional resources used to
achieve fault-tolerance (memory, processes) and the level of fault-tolerance (e.g. number of
process failures which can be survived by the application).

The in-memory checkpointing technology is a very promising approach even for complex
applications, as shown for the parallel spectral transform shallow water code (PSTSWM). The
reason for the applicability of this technique to complex applications is, that most real-world
simulations have anyway a checkpoint-restart interface built in. To use an in-memory checkpoint
algorithm usually just requires a modification of the checkpoint and restart routines and not of the
whole application.

A fault-tolerant manager-worker framework has been furthermore developed, which does not use
in-memory checkpointing[6]. The key point of this framework is to show, that all applications,
which can be written using a master-slave paradigm (e.g. parameter sweep studies) can easily be
adapted to FT-MPI. The current implementation of the framework can make use of all three
communicator modes (rebuild, blank and shrink).

Recent work by Geist and Engelman[1] present new algorithms for solving partial differential
equations, which are called ‘naturally fault tolerant algorithms’. Based on mesh-less methods and
chaotic relaxation, Geist and Engelman show, that the algorithm still converges correctly, as long
as a marginal number of processes are failing, which do not have to be replaced (e.g. using the
blank mode). A marginal number of processes in this context can still be 100 process failures in a
100,000-processor job.

The specification has proven to be powerful enough to support not just one of a kind applications,
but to support various approaches to handle fault-tolerance and leave room for users to handle
fault-tolerance according to the requirements of their applications.

5. Summary

We have presented in this paper an extension to the MPI specification for handling process fault
tolerance. Together with the specification, the FT-MPI team at the Innovative Computing
Laboratory of the University of Tennessee has developed an implementation of the specification
and various application scenarios.

The current specification is in the spirit of the MPI-1 and MPI-2 documents: similarly to MPI-1 and
MPI-2, which do not restrict the application developers by offering different data decomposition
techniques, FT-MPI does not specify how to handle fault-tolerance on the application level.
Instead, FT-MPI offers a rich set of techniques for failing MPI processes and defines the status of
MPI objects in case a failure occurs, leaving the applications room for implementing their
preferred way to handle fault-tolerance.

Acknowledgments
This material is based upon work supported by the Department of Energy under Contract No. DE-
FG02-02ER25536. The NSF CISE Research Infrastructure program EIA-9972889 supported the
infrastructure used in this work.

6. References

[1] Al Geist and Christian Engelmann: Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors, Journal of Parallel and Distributed Computing, to
be published.

[2] Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, P.
Papadopoulous, S. Scott, V. Sunderam, "HARNESS: a next generation distributed virtual
machine", Journal of Future Generation Computer Systems, (15), Elsevier Science B.V.,
1999.

[3] Edgar Gabriel, Michael Resch, and Roland Ruehle, Implementing MPI with Optimized
Algorithms for Metacomputing, in Anthony Skjellum, Purushotham V. Bangalore,
Yoginder S. Dandass, ‘Proceedings of the Third MPI Developer’s and User’s
Conference’, MPI Software Technology Press, Starkville, Mississippi, 1999.

[4] G. Geist, J. Kohl, R. Manchel, and P. Papadopolous, New Features of PVM 3.4 and
Beyond, PVM Euro User’s Group Meeting, pp. 1-10, September, 1995.

[5] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cecile
Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette,
Vincent Neri, Anton Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPI for
Volatile Nodes”, In Proceedings of SuperComputing 2002. IEEE, Nov.,2002.

[6] Graham E. Fagg, Edgar Gabriel, Zhizhong Chen, Thara Angskun, George Bosilca,
Antonin Bukovsky and Jack J. Dongarra: ’Fault Tolerant Communication Library and
Applications for High Performance Computing’, LACSI Symposium 2003, Santa Fe,
October 27-29, 2003.

[7] Graham Fagg, Antonin Bukovsky, and Jack Dongarra, HARNESS and Fault Tolerant
MPI, Parallel Computing, Volume 27, Number 11, pp 1479-1496, October 2001, ISSN
0167-8191

[8] GridMPI: http://www.gridmpi.org,
[9] Jeffrey M. Squyres and Andrew Lumsdain, ‘A Component Architecture for LAM/MPI, in

in Jack J. Dongarra, Domenico Laforenza, Salvatore Orlande (Eds.), 'Recent Advances
in Parallel Virtual Machine and Message Passing Interface', Lecture Notes in Computer
Science vol. 2840, 2003.

[10] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra. MPI-
The Complete Reference. Volume 1, The MPI Core, second edition (1998).

[11] Message Passing Interface Fofum:’MPI-2 Journal of Development’, http://www.mpi-
forum.org, 1997.

[12] Message Passing Interface Forum:’MPI: A Message Passing Interface Standard’,
http://www.mpi-forum.org, 1995.

[13] Message Passing Interface Forum:’MPI-2: Extensions to the Message Passing Interface
Standard’, http://www.mpi-forum.org, 1997

[14] N. Karonis, B. Toonen, and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface, Journal of Parallel and Distributed Computing, to appear
2003.

[15] R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A. Skjellum, Y. Dandass, and M. Apte,
MPI/FT: Architecture and taxonomies for fault-tolerant, message-passing middleware for
performance-portable parallel computing, in Proceedings of the 1st IEEE International
Symposium of Cluster Computing and the Grid, held in Melbourne, Australia, 2001.

[16] Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald G.
Minnich, Craig E. Rasmussen, L. Dean Risinger and Mitchel W. Sukalski, A Network-
Failure-Tolerant Message-Passing System For Terascale Clusters, ICS02, June 22-26,
2002, New York, New York, USA.

[17] Soulla Louca, Neophytos Neophytou, Adrianos Lachanas, Paraskevas Evripidou, “MPI-
FT: A portable fault tolerance scheme for MPI”, Proc. of PDPTA ’98 International
Conference, Las Vegas, Nevada 1998.

[18] T. Bemmerl: MetaMPICH: Flexible Coupling of Heterogeneous MPI Systems}.
http://www.lfbs.rwth-aachen.de/~martin/MetaMPICH/metaframe.html August 2001.

http://www.gridmpi.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.lfbs.rwth-aachen.de/~martin/MetaMPICH/metaframe.html

[19] T. Imamura, Y. Tsujita, H. Koide, H. Takemiya, An Architecture of Stampi: MPI library
on a cluster of parallel computers, in J. Dongarra, P. Kacsuk, N. Podhorszki (Eds.) ‘
Recent Advances in Parallel Virtual Machine and Message Passing Interface’, Lecture
Notes in Computer Science vol. 1908, pp. 200-207, Springer, Berlin 2000.

[20] T. Kielmann, R.F.H. Hofman, H.E. Bal, MagPIe: MPI’s collective communication
operations for clustered wide area systems, ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP’99), pp.131-140, ACM, 1999.

[21] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel Computing,
22(6):789-828, September 1996.

[22] William Gropp and Ewing Lusk, Fault Tolerance in MPI Programs, to appear in Journal
of High Performance Computing and Applications, 2003.

Appendix A
FT-MPI: Proposal for Extentions to the Message-Passing

Interface for Process Fault-Tolerance

February 16, 2004

Innovative Computing Laboratory,
Computer Science Department,

University of Tennessee, Knoxville

Abstract

This document describes extentions to the MPI-1.2 and MPI-2 standards
for introducing process fault-tolerance in MPI.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Organization of this Document 3

2 Basic fault-tolerance issues 4

3 Recovery Modes 7
3.1 Pathological failures . 8

4 Communicator modes 9
4.1 FTMPI COMM MODE BLANK 11
4.2 FTMPI COMM MODE SHRINK 13

5 Message modes 14
5.1 Non-deterministic communication in MPI 16
5.2 Collective operations . 18

6 Miscellany 20
6.1 New Attributes . 20
6.2 New return code for MPI Init 21
6.3 Fault tolerance and error-handlers 21

7 Conclusions 23

1

Chapter 11

Introduction2

1.1 Background3

Application developers and end-users of high performance computing sys-4

tems have today access to larger machines and more processors than ever5

before. High-end systems consist nowadays of thousands of processors. Ad-6

ditionally, not only the individual machines are getting bigger, but with the7

recently increased network capacities, users have access to higher number of8

machines and computing resources. Concurrently using several computing9

resources, often referred to as Grid- or Metacomputing, further increases the10

number of processors used in each single job as well as the overall number11

of jobs, which a user can launch.12

With increasing number of processors however, the probability, that an13

application is facing a node or link failure is also increasing. While on14

earlier massively parallel processing systems (MPPs), a crashing node often15

was identical to a system crash, current systems are more robust. Usually,16

the application running on this node has to abort, however, the system17

in general is not effected by a processor failure. In Grid environments,18

a system may additionally become unavailable for a certain time due to19

network problems, leading to a similar problem from the application point20

of view like a crashing node on a single system.21

The Message Passing Interface (MPI) [1, 2] is the de-facto standard for22

the communication in scientific applications. However, MPI in its current23

specification gives the user no possibility to handle the situation mentioned24

above, where one or more processors are becoming unavailable during run-25

time. Current MPI specifications give the user the choice between two pos-26

sibilities of how to handle a failure. The first possibility is the default mode,27

INTRODUCTION 3

which is to immediately abort the application. The second possibility is to1

hand the control back to the user application (if possible) without guaran-2

teeing, that any further communication can occur. The latter mode mainly3

has the purpose of giving the application the possibility to close all files4

properly, write maybe a per-process based checkpoint etc., before exiting5

the application.6

The goal of this document is to bridge the gap between the more and7

more robust, fault-tolerant hardware which has evolved over the last years8

and the main programing paradigm used by scientific application, which9

does not offer process fault-tolerance in its current specifications.10

1.2 Organization of this Document11

This document is organized as follows: in chapter 2 we introduce the basic12

terminologies and definitions used throughout the document. The following13

chapters 3, 4, 5 specify the different failure recovery models supported by14

FT-MPI. Chapter 6 defines various other minor improvements, which help15

writing fault-tolerant applications using the FT-MPI specification.16

Chapter 21

Basic fault-tolerance issues2

Fault tolerance usually covers three steps:3

• Fault detection4

• Notification5

• Recovery6

Fault detection is the process of discovering that one or several processes7

have failed. While the FT-MPI specification makes no statement about how8

faulty processes are discovered, it assumes that they are discovered by the9

run-time environment. FT-MPI makes no assumption about when faulty10

processes are discovered. FT-MPI does furthermore not specify when a11

process is considered to have failed.12

Notification deals with the problem of how the other MPI processes of13

parallel job get informed about the failure event. FT-MPI makes no assump-14

tions when the processes are notified nor does it assume, that all processes15

are notified simultaniously. FT-MPI just specifies, that all processes of a16

parallel job are receiving a notification about death events.17

The notification of failed processes are passed to the MPI application18

through a special error code. For achieving the largest possible conformance19

to the MPI-1 and MPI-2 specification, FT-MPI is not introducing a new20

error code, but defines, that MPI ERR OTHER is just to be used to signal21

the MPI application, that some processes have unexpectedly left the run-22

time environment.23

As soon as an application process has received the notification of a death24

event through the MPI error code MPI ERR OTHER, its general state has25

changed from ’NO FAILURES’ to ’FAILURE RECOGNIZED’. While in this26

BASIC FAULT-TOLERANCE ISSUES 5

state, the process is just allowed to execute certain actions. These actions1

are depending on various other parameters and are detailed later in the2

document.3

Rationale: While the introduction of a new error-code indicating
failed processes would have been desirable, currently we consider
the requirement to have an FT-MPI specification, which allows to
run an application written according to the FT-MPI specification
on any regular non FT-MPI conformant implementation of MPI
as more important than a ’cleaner’ solution at this point. It is
however still desirable to introduce a separate error-code in future
specifications. A future of FT-MPI will furthermore deal with the
problem of whom to notify in dynamic MPI-2 environments.4

5

Advice to implementors: A high quality implementation of the
FT-MPI specification shall distinguish to the largest possible ex-
tent, whether a process has died due to an error in the application
(e.g. segmentation violation) or because of a failure in the hard-
ware or run-time environment.6

7

The recovery procedure is the superset of steps necessary to move the8

status of MPI application processes and the MPI run-time environment from9

’FAILURE RECOGNIZED’ back to ’NO FAILURE’. Most of the FT-MPI10

specification is dealing with the problem how to move processes back into11

the ’NO FAILURE’ mode, and what options are given to the user.12

The recovery procedure is considered to have two steps:13

1. Recovering the MPI run-time environment and the MPI library. This14

step will be handled in great details in the following sections.15

2. Recover the application and application data: this step is considered16

to be the responsibility of the application and not of the MPI library.17

The FT-MPI specification makes no assumptions or statements about18

how an application recovers data from one or several lost processes.19

Rationale: in contrary to many currently available projects, FT-
MPI does not provide an interface for checkpointing and recovering
user data. Such an interface might be added in later versions of
the FT-MPI specification, is however not considered in the current
version.20

21

BASIC FAULT-TOLERANCE ISSUES 6

The FT-MPI specification gives answers to the following questions re-1

lated to the recovery process:2

1. What are the required steps and/or options to start the recovery proce-3

dure once the processes are in the ’FAILURE RECOGNIZED’ status?4

2. What is the status of MPI objects and processes after recovery?5

3. What is the status of ongoing communication (point-to-point com-6

munication as well as collective operations) after recovering from a7

failure?8

The first question is handled by the recovery mode (FTMPI RECOVERY-9

MODE), the second by the communicator mode(FTMPI COMM MODE)10

and the third by the message mode(FTMPI MSG MODE) respectiveley11

the collective communication mode (FTMPI COLL MODE).12

Chapter 31

Recovery Modes2

The user has three possibilities how the recovery procedure can be started:3

1. FTMPI RECOVERY MODE AUTO: as soon as the MPI library re-4

alizes, that a death event has occured, it automatically starts the re-5

covery process. No interaction from the application is required. Af-6

ter the recovery has been successfully finished, the error handler of7

MPI COMM WORLD is called, since other communicators are not8

available after recovery. The state of communicators, groups and other9

objects are defined in later sections.10

2. FTMPI RECOVERY MODE MANUAL: like on any other error, the11

MPI library calls the error handler attached to the current commu-12

nicator. The user is however not allowed to call any MPI function13

involving communication before the recovery has been started.14

To start the recovery, the user has to call MPI Comm dup on MPI-15

COMM WORLD. The input argument of MPI Comm dup should be16

MPI COMM WORLD, the output argument is undefined and should17

be ignored by the application.18

oldcomm = MPI_COMM_WORLD;19

MPI_Comm_dup (oldcomm, &newcomm);20

21

Rationale: The semantics chosen to initiate the recovery proce-
dure manually has once again been driven by the desire to avoid
introducing a new MPI function. Introducing a separate function
in later version to avoid the dual functionality of MPI Comm dup
is highly recommended.22

RECOVERY MODES 8

1

3. FTMPI RECOVERY MODE IGNORE: in this mode, the recovery2

procedure does not have to be initiated at all, as long as no communi-3

cation with the dead processes are required. Communication involving4

dead processes (point-to-point operations, collective operations as well5

as communicator creations) will raise an error and will not be executed.6

Rationale: This mode has been designed with two things in mind.
First, since the recovery procedure is a collective operation, it can
be desireable to avoid this collective operation for large numbers of
processors (e.g. 100,000). Second, there is a class of applications
often refered to as ’naturaly fault-tolerant’ which do not require
any special handling on the application level to deal with failed
processes.7

8

3.1 Pathological failures9

An MPI library can still abort if a pathological failure has occured from10

which it can not recovery. Typical reasons for pathological failures could be:11

• All processes of an MPI job have failed before a recovery operation12

could be started.13

• The MPI library has no ’room left’ where to respawn processes.14

Chapter 41

Communicator modes2

This section defines the status of MPI processes and objects after a recovery3

operation. As a rule of thumb, all MPI objects containing non local infor-4

mation are destroyed and have to be re-established by the application. The5

following objects do not contain non-local information and will be therefore6

available on surviving processes after recovery:7

• Datatypes (MPI Datatype)8

• Operations (MPI Op)9

• Error handlers (MPI Errhandler)10

• Info objects (MPI Info, MPI-2)11

The following list shows the objects which are destroyed during the re-12

covery procedure:13

• Groups (MPI Group)14

• Communicators (MPI Comm)15

• Windows (MPI Win, MPI-2)16

• Files (MPI File, MPI-2)17

Requests are in this context ’special’ object, their behaviour is depending18

on the message mode and is explained in section 5. Windows and Files will19

be handled in more details in later versions of the specification.20

COMMUNICATOR MODES 10

Rationale: Although groups are considered to be local objects
in MPI, they contain usually a list of participating processes.
Since this list might have changed during recovery, all user de-
fined groups are considered to be potentially out of date.1

2

After the recovery operation, the user has access to the same non-local3

operations like after MPI Init. These are:4

• Groups: none5

• Communicators: MPI COMM WORLD and MPI COMM SELF.6

Rationale: It would be theoretically possible to modify non-local
objects on the surviving processes such, that they contain the
up-to-date information of the run-time environment. However,
assuming that failed processes are replaced by the run-time envi-
ronment (see the following section) there is no MPI function call
to pass the additional handles to the re-spawned processes in a
portable, MPI conforming manner.7

8

Groups and Communicators can have different formats after the recovery9

procedure, depending on the communicator mode. The communicator mode10

specifies, how the run-time environment should treat failed processes. Four11

modes are currently defined:12

1. FTMPI COMM MODE ABORT: like in MPI-1 and MPI-2, the MPI13

library will abort the execution if one or several processes have failed.14

This mode is available for backward compatibility.15

2. FTMPI COMM MODE REBUILD: failed processes will be replaced16

by the run-time environment. Surviving processes will retain their17

rank in MPI COMM WORLD. No assumptions are made within the18

FT-MPI specification where the new processes are placed.19

3. FTMPI COMM MODE BLANK: failed processes will not be replaced,20

the size of MPI COMM WORLD will remain unchanged. However,21

the failed processes are blanked out and treated similarly to MPI-22

PROC NULL. Detailed specifications about operations using blank23

processes can be found in the next subsections.24

4. FTMPI COMM MODE SHRINK: failed processes will not be replaced.25

The size of MPI COMM WORLD will be adjusted to the number of26

COMMUNICATOR MODES 11

surviving processes. This includes also, that the ranks of some pro-1

cesses in MPI COMM WORLD will change. FT-MPI requires that2

the sequence of surviving processes is identical before and after recov-3

ery. Figure 4.1 is showing an example, where two out of four processes4

fail, how the ranks are assigned after recovery.5

21 10

10

MPI_COMM_WORLD
size=4

recovery
procedure

MPI_COMM_WORLD
size = 2

Figure 4.1: Example of the communicator mode
FTMPI COMM MODE SHRINK.

FTMPI COMM MODE ABORT and FTMPI COMM MODE REBUILD6

require no changes to the MPI-1 and MPI-2 specification after recovery.7

The communicator modes FTMPI COMM MODE BLANK and FTMPI-8

COMM MODE SHRINK introduce some new aspects to MPI and are de-9

tailed in the following.10

4.1 FTMPI COMM MODE BLANK11

Point-to-point operations A blank process is defined to behave like12

MPI PROC NULL in the MPI-1 specification. This includes, that sending13

a message to a blank process will not raise an error, however no data is14

transmitted. Receive operations from a blank processes will return a null-15

status (see section 3.11 in MPI-1), the receiver buffer is unchanged.16

Collective operations For collective operations, two different issues have17

to be taken into account for the blank mode. If the root of one of the rooted18

collective operations (MPI Bcast, MPI Reduce, MPI Gather(v), MPI Scatter(v))19

is a blank process all processes will return immediatly. No input or output20

buffer is modified.21

COMMUNICATOR MODES 12

If a non-root process of the same operations is blank, this process will not1

contribute to the result of the collective operation. This means especially:2

• Bcast: no data will be sent to the blank process(es).3

• Reduce: blank processes do not contribute to the global result. Special4

care has to be taken not to assume predefined values for the blank5

processes, since this could alter the result (e.g. using zero for a blank6

process in MIN, MAX or PROD operations). It is invalid to return7

a blank process as the result of a reduce operation using MAXLOC8

and MINLOC. User defined operations will not be called for blank9

processes.10

• Gather(v): in the receive buffer of the root, the data segements as-11

signed to the blank process(es) will be untouched.12

• Scatter(v): no data will be sent to the blank process(es).13

The rules for non-rooted operations can be directly derived from the14

rules for rooted operations. The implementation has to ensure, that for15

operations, which are implemented as a combination of other collective op-16

erations (e.g. MPI Allreduce implemented as an MPI Reduce followed by an17

MPI Bcast) a temporary root node is chosen, which is not a blank process.18

Group and Communicator creation functions All operations defined19

in MPI-1 and MPI-2 for deriving new groups and communicators are valid20

for blank processes aswell. This includes:21

• it is valid to split communicators containing blank processes22

• it is valid to derive a group from a communicator which contains blank23

processes24

• it is valid to include/exclude a blank processes from a group25

• it is valid to generate new communicators from groups containing or26

excluding blank processes.27

The group and commmunicator comparison functions MPI Group compare28

and MPI Comm compare need not be able to distinguish between two blank29

processes.30

All topology functions might include blank processes. The outcome of31

the topology functions returning the ranks of neighbor processes might be32

a blank process.33

COMMUNICATOR MODES 13

Rationale: it would be possible to modify the semantics of
MPI Cart shift and MPI Graph neighbors such that they return
the first non-blank process according to the user settings. How-
ever, this would be equal to ignoring the ’distance’ argument pro-
vided by the user, or at least a redefinition of it.1

2

4.2 FTMPI COMM MODE SHRINK3

In this communicator mode, the ranks of MPI processes before and after4

recovery might change, as well as the size of MPI COMM WORLD does5

change. The appealing part of this communicator mode however is, that all6

functions specified in MPI-1 and MPI-2 are still valid without any further7

modification, since groups and communicators do not have wholes and blank8

processes.9

Chapter 51

Message modes2

This section explaines the expected behavior of messages before, during and3

after recovery. The major problem arises from the fact, that typically some4

messages will be ’within the system’ while an error occurs. In this section,5

we define the behavior of messages which are on the fly why an error occurs.6

Two general rules apply for all message modes:7

1. All messages from and to dead processes are discarded, independent8

of recovery, communicator or message mode.9

2. All collective operations will stop immediatly and all messages ini-10

tiated by collective operations will be discarded, independent of the11

recovery, communicator or message mode. In the following subsecion,12

we will furthermore discuss the behavior of collective operations while13

an error occurs.14

For explaining the difference between the two message modes provided15

by the FT-MPI specification, we would like to introduce the terminology16

of a generation count for communicators. If MPI COMM WORLD has a17

generation count of x before a process failes, MPI COMM WORLD will18

have a generation count of y after recovery, with y > x. A generation count19

is not a feature an end-user has to be aware of, but the term eases the20

definition of the following two message modes:21

• FTMPI MSG MODE RESET: This mode specifies, that a message22

sent from process a to process b using a communicator with a gen-23

eration count x cannot be received with any communicator having24

the generation count y, even if the processes a and b are both sur-25

viving processes. This mode basically implies, that all ongoing and26

MESSAGE MODES 15

posted messages are discarded as soon as a recovery operation has1

been started.2

Rationale: This message mode is usefull for all applications, which
on error go back to the last consistent state in the application. As
an example, going from iteration 432 (when the error occured)
back to iteration 400 (the last checkpoint) implies that any mes-
sage from iteration 432 would disturb and be misplaced.3

4

• FTMPI MSG MODE CONT: in this mode, the generation count is5

not used for message matching. Thus, a message sent from process6

a to process b before a failure occured, will be delivered after the7

recovery operation. All operations, which returned MPI SUCCESS to8

a non failing process will be finished successfully after recovery.9

Rationale: This message mode is usefull for applications, which
keep precisly track of the current state of each process and would
like to minimize the roll-back necessary after recovery.10

11

Advice to users: If an application would like to receive a message
which has been initiated before an error occured after the recovery
operation, it has to reconstruct the communicators in the very
same order like previously.12

13

Advice to implementors: An MPI implementation has to insure,
that two sequences creating communicators in an identical manner
in different generation counts will produce the same communica-
tor/context ID’s.14

15

Blocking operations: A send operation which returned MPI SUCCESS16

will deliver the data, even if a failure occurs before the data could17

reach the destination. If the return code of the send operation is18

MPI ERR OTHER, the operation will have to be repeated after the19

recovery procedure.20

Non-blocking operations: if a non-blocking point-to-point operation21

returned MPI SUCCESS to a process, which has not failed, than the22

operations will be finished successfully. If the according Wait/Test23

operations returns MPI ERR OTHER, the user will have to re-post24

the Wait/Test operation after recovery.25

MESSAGE MODES 16

Advice to users: For MPI Waitall/Waitsome/Testome the user
might have to check the error code in the status of the according
operations to determine, which Wait/Test operations have to be
reposted.1

2

For discussion: If a non-blocking operation to a failed pro-
cess has been initiated, the request of this operation is ’in-
valid’. Any operation involving this request will return the er-
ror MPI ERR REQUEST. The same holds for persistent request
operations.3

4

When using the communicator mode FTMPI COMM MODE SHRINK,5

the Wait/Test operation after recovery will contain the rank of the6

sender after recovery. Thus, a user might have posted the non-blocking7

receive operation to rank x, but the status after recovery will show,8

that the message is from rank y.9

Operations using persistent requests are automatically ’corrected’ to10

the new ranks of the according process.11

Rationale: For the message delivery using the communicator mode
FTMPI COMM MODE SHRINK, it is best to think of processes
having a unique process ID. Thus, a communication always occurs
between pairs of processes. The rank in MPI COMM WORLD
(or any derived communicators) is in this case just the result of
a mapping between process ID and the position of the process in
the process sequence of the according communicator.12

13

Figure 5.1 shows once again the relation ship between messages and14

generation counts of communicators.15

5.1 Non-deterministic communication in MPI16

To discuss:Difficulties can arise in communication patterns using the mes-17

sage mode FTMPI MSG MODE CONT, if the application has a non-deter-18

ministic communication behaviour, e.g. through the usage of MPI ANY-19

SOURCE. It is the responsibility of the application developer to avoid20

deadlocks in this case, since the MPI library can not recognize and cancel21

operations as long as it can not determine the destination/source process.22

MESSAGE MODES 17

210

210

recovery
procedure

gen. count 1
MPI_COMM_WORLD

MPI_COMM_WORLD
gen. count 0

Figure 5.1: Example for a message sent and received in the same communi-
cator however with different generation counts

Imagine for example the case, that process a posts a non-blocking receive1

operation from process b. Process b fails, before the data transmission can be2

finished. If the receive operation has been posted using a specified sender,3

the MPI-library can ’cancel’ this operation and declare the request to be4

invalid. However, if the receive operation has been posted using MPI ANY-5

SOURCE and no other process is sending a message which can match the6

posted receive, the application will deadlock.7

Advice to users: The usage of MPI ANY SOURCE should be
avoided to the greates possible extent when using the message
mode FTMPI MSG MODE CONT.8

9

For discussion: A possibility would be to give the user an at-
tribute after the recovery operation, which contains all request-
handles which the system could not dissolve, especially the ones
which have been posted using MPI ANY SOURCE. It is than the
responsibility of the user to either cancel the request or let the
communication continue.10

11

MESSAGE MODES 18

5.2 Collective operations1

This section discusses the various options available for collective operations.2

While it possible to define, when a point-to-point operation has failed or3

succeeded, it is a lot more difficult to make a similar definition for collective4

operations. The major question is dealing with the problem what guarantee5

the MPI library is making to the application with respect to the fact, that6

• everybody has the same return code for the collective operation (e.g.7

everybody succeeds or every process returns an error)8

• the recv data buffers are either correct on all processes or not touched9

on any of them.10

Therefore, FT-MPI specifies two different modes how to handle collective11

operations:12

1. FTMPI COLL MODE ATOMIC: this mode gives strong guarantees,13

that either every process reports an error or none.14

2. FTMPI COLL MODE NONATOMIC: no guarantee is given, that all15

processes involved in the collective operation are returning the same16

code. Some processes might report, that the operation has succeeded,17

while others report an error.18

Advice to users: The atomic mode seems very appealing to end-
users, because of the strong guarantees it is giving. Users should
however be aware of, that this strong guarantee is coming at the
price of higher memory consumption and higher execution time
for the collective operations.19

20

Two features make the non-atomic mode still usable in fault tolerant21

applications:22

• First, the definition of collective operations in MPI-1 and MPI-2 is23

such that, the input buffers are not modified in a collective operation.24

Thus, a collective operation can easily be repeated by the application.25

Exception: the usage of the MPI IN PLACE argument of MPI-2.26

• Second, a similar behavior like the atomic mode can be achieved by27

adding a barrier operation after a collective operation. Using this tech-28

nique, the user has the choice to ’define’ which operations he would29

need having atomic behaviour and which not. This might have dra-30

matic impact on the application performance.31

MESSAGE MODES 19

Advice to users: It is highly recommended not to use
MPI IN PLACE for the non-atomic collective mode.1

2

Advice to implementors: All MPI collective operations can be
implemented by allocating internally a temporary receive buffer,
executing the collective operations using the temporary receive
buffer, executing a two-phase commit algorithm to ensure that ev-
ery process has finished successfully and just copy in case that ev-
ery process succeeded the result from the temporary receive buffer
into the user-provided buffer. However, there are faster algorithms
for some operations available.3

4

Chapter 61

Miscellany2

6.1 New Attributes3

The FT-MPI specification introduces some new attributes, reflecting the ex-4

tended functionality of this specifications. These attributes can be retrieved5

for the default communicators MPI COMM WORLD and MPI COMM SELF,6

and can not be altered by the user.7

• FTMPI RECOVERY MODE: This attribute returns the current re-8

covery mode.9

• FTMPI COMM MODE: This attribute returns the current communi-10

cator mode.11

• FTMPI MSG MODE: This attribute returns the current message mode.12

• FTMPI COLL MODE: This attribute returns the current collective13

communication mode.14

• FTMPI NUM FAILED PROCS: This attribute returns the number of15

failed processes since the last recovery operation.16

• FTMPI ERROR FAILURE: This attribute returns an error code. Us-17

ing MPI Error string and the error code provided in the attribute, the18

user can retrieve a string containing the ranks of the failed processes19

in MPI COMM WORLD. As with the previous attribute, the values20

provided by these attributes are always replaced by a new one, every21

time the recovery function is called.22

MISCELLANY 21

Rationale: In might be desireable in later versions of the specifi-
cation to add functionality to control the recovery, communicator,
message and collective modes. Once again, the current specifica-
tion tries to avoid the introduction of new functions to the largest
possible extent.1

2

6.2 New return code for MPI Init3

To give an MPI process the possibility to discover, whether it is a replace-4

ment for another process (e.g. in case of the communicator mode FTMPI-5

COMM MODE REBUILD), MPI Init returns on these processes instead of6

MPI SUCCESS the new return code MPI INIT RESTARTED NODE;7

Advice to users: If users want to avoid the usage of this new
constant, they can retrieve the same information using a static
constant and executing an allgather operation after the initializa-
tion (for the new processes) and after recovery (for the surviving
processes) respectively.8

9

6.3 Fault tolerance and error-handlers10

For discussion:One of the major features of MPI is its ability to write li-11

braries independently of certain applications. One of the key aspects in the12

specification of FT-MPI is to give library developers the possibility to write13

fault-tolerant libraries independent without having a specific application in14

mind.15

MPI supports the concept of error-handlers. An application can register16

a function as an error-handler, which is than called in case an error occurs17

with the communicator, to which the error handler has been attached to.18

While the concept of error handlers is very convinient in MPI-1 and MPI-2,19

it is just partially convinient to write fault tolerant libraries. It’s major20

drawback is, that just one error handler can be registered at a time.21

Imagine a simple example: an application generates a subcommunicator22

of MPI COMM WORLD to perform certain operations. This subset of pro-23

cesses is using a library, which makes a duplicate of the subcommunicator24

to avoid interfering with the application messages. In case a process failes,25

all subcommunicators are ’destroyed’, thus the user might want to write26

an error handler, which regenerates its subcommunicator ’automatically’27

MISCELLANY 22

for him. The library again would like to register its own error-handler to1

generate the duplicate of the subcommunicator. By doing this, the library2

however replaces the error-handler instantiated by the application.3

An improved version of error-handlers would allow to register a sequence4

of functions, which are called according to the order how they have been5

registered. Since neither MPI-1 nor MPI-2 are providing such a mechanism,6

the current FT-MPI specification suggests the following model.7

As the last step of the recovery procedure, the MPI library will call8

all attribute delete functions attached to MPI COMM WORLD. Since the9

deletion of this communicator is erroneous, there is no danger that these10

functions are accidentally called when freeing the communicator.11

Rationale: A similar mechanism is provided in MPI-2 to allow
user defined functions to be executed in MPI Finalize (similarly
to the UNIX atexit() command). In contrary to this specification
MPI-2 uses however MPI COMM SELF. The attribute copy func-
tions can not be used for the discussed purpose, since duplicating
MPI COMM WORLD is allowed.12

13

Advice to implementors: Although not clearly specified in MPI-1
and MPI-2, the sequence of calling the attribute delete functions
should match the order of how they have been registered.14

15

Chapter 71

Conclusions2

Bibliography1

[1] MPI Forum: MPI: A Message-Passing Interface Standard. Document2

for a Standard Message-Passing Interface, University of Tennessee,3

1995.4

[2] MPI Forum: MPI2: Extentions to the Message-Passing Interface Stan-5

dard. Document for a Standard Message-Passing Interface, University6

of Tennessee, 1997.7

24

	Motivation
	Acknowledgments
	6. References

