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1. Introduction 
More than two decades of exponential growth 

in the supply of the basic computing resources, rapid 
progress in the deployment of high performance 
networks, and escalating requirements for distributed 
collaboration in Computational Science, has caused 
expectations of the benefits of distributed systems 
and grid computing environments to soar [1]. It is 
unsettling, therefore, to recognize that the critical 
problem of managing the data and process state in 
such systems [2], especially in the wide area, remains 
unsolved, and that its effects continue to raise chronic 
performance and scalability issues for all types of 
network computing applications. More than five 
years ago, an NSF workshop on Distributed State 
Management concluded the following: 

“Given the extensive advances in distributed 
systems technology that have occurred over the 
last two decades, the number of different 
distributed applications that have been deployed 
has been surprisingly small. One reason for this 
is that many difficult problems (e.g., 
consistency management, fault tolerance, 
security, location transparency, scalability, and 
performance) must be addressed to build a 
complex distributed application, and there is 
very little infrastructure available to ease the 
effort. In addition, the amount of bandwidth 
being consumed on the Internet for the WWW 
is increasing exponentially. Both of these 
observations suggest that a serious effort to 
build an infrastructure for wide-area state 
sharing is highly recommended.” [3]  

A general solution to this problem has yet to be 
found. Moreover, the advent of data intensive 
computing exacerbates the situation. To amass the 
storage and compute services required to manage the 
flows of state involved in data-intensive applications, 
current distributed systems must either utilize 
application specific resources, or, as with most grid 
applications, leverage a shared “grid fabric” of 
metacomputing resources [4] via least common 
denominator middleware. In this context what 
distinguishes our research program in Logistical 
Computing and Internetworking (LoCI), and the 
work on Logistical Networking (LN) [5] at its core, is 
our insistence on the idea that this fabric itself must 
be rethought and rearchitected to overcome the 

constraints imposed by entrenched legacy designs 
[6].  

For the past few years, we have been 
investigating this idea in a collaborative research 
effort having two complementary strands. One strand 
is focused on research and development of LN 
technology; the other is centered on exploring LN’s 
power to enhance the functionality and performance 
of NetSolve, a flexible, powerful, and easy to use 
grid computing environment. Together they provide 
an ideal vehicle for investigating an approach to grid 
computing based on a type of grid fabric specially 
adapted to deal with the logistics of distributed data 
management, i.e. one that uses LN. 

LN brings data transmission and storage within 
one framework, much as military or industrial 
logistics treat transportation lines and storage depots 
as coordinate elements of one infrastructure. Its main 
challenge has been to realize this idea without 
sacrificing network-style scalability.  Following two 
enduring examples of successful system architecture 
— the Internet protocol and the Unix OS kernel 
interface — we have created a new type of shared 
network storage that can scale globally [7].  LN 
builds on a generic, best effort network storage 
service based on the Internet Backplane Protocol 
(IBP) [8] to infuse the network itself with storage 
resources that can be shared, scaled up, and exposed 
for external scheduling much as IP datagram service 
is.  

The NetSolve grid environment [9, 10] provides 
an excellent context for exploring the use of LN’s 
storage service to manage the logistics of data and 
process state in distributed applications [11]. Though 
NetSolve is more advanced than other “network 
enabled server” approaches to grid computing in its 
ease of use and the range of scientific software 
libraries it supports, the brokered remote procedure 
call (RPC) mechanism at its core is focused primarily 
on the selection of trusted computational server, the 
transfer of arguments from the client to the server, 
the invocation and monitoring of the remote call-out 
and the transfer of results back to the client.  Taken 
naively, this mechanism leaves out an important 
component of distributed applications: the 
management of state before, during and after any 
single call.  

State management is important when an RPC is 
not made in isolation, but is part of a larger 
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application. The context of a larger application can 
allow the call-out to be anticipated before the actual 
call is made, and perhaps when some arguments are 
already available.  Movement of some arguments in 
advance of the call can then allow a type of 
“logistical” quality of service to be obtained [11]. 
When a sequence of RPCs is made with data 
dependences between them, the results of one call 
serves as the input to another call (flow dependence), 
or the input to one call is identical to the input to 
another (input dependence). Similar advantages can 
be gained when a long-running call generates a 
checkpoint, which is, in effect, a large “early” result 
that may be passed to another call, which is the 
resumption of the original call. 

In all these cases, state management requires 
the use of storage (albeit temporary), and this storage 
must be in proximity to the NetSolve computational 
servers. Now according to the usual approach to grid 
computing, which was embodied by the early 
versions of NetSolve, the only physical storage 
available in the grid fabric is in that part we 
distinguish as the metacomputing fabric. The 
metacomputing fabric is composed of those resources 
in computer centers, and departmental clusters, which 
are shared in a highly controlled way, among a 
relatively select community, with authentication, 
access control and even pure use accounting as 
leading design issues. By contrast, the elements of 
the network resource fabric are designed to be shared 
on the model of IP datagram service, i.e. in a 
relatively unbrokered manner among the entire 
community, minimizing admission and accounting 
restrictions as much as possible. On the prevailing 
model, this part of grid fabric is composed primarily 
of cables and routers, with no open access to storage 
resources. The absence of any storage which is 
shared Internet style, and the corresponding 
requirement that trusted (and sometimes substantial) 
storage be available from the metacomputing fabric 
in the relevant locations, represents a significant 
inhibitor to the deployability of grid services such as 
NetSolve. 

By implementing an Internet-like model of 
resource sharing for storage [12], IBP enables LN to 
put a scalable storage service into the network 
resource fabric. With this foundation, the diverse 
state management requirements of NetSolve 
applications are a perfect match for the use of LN. 
Since LN infrastructure need not be trusted and is 
inherently temporary in nature, it can be deployed 
much more scalably. In turn, unbrokered access to 
ubiquitous storage services makes NetSolve and its 
applications much more deployable. This natural fit 
has led to the integration of LN storage mechanisms 
into the data management layer of recent releases of 

NetSolve. Substantial results have been obtained 
from experiments with this grid environment in the 
prestaging of inputs in advance of calls [13], in the 
resolution of data dependences [14] and in supporting 
temporary files of all kinds[15, 16], including 
checkpoints [17].  

But although the success of LN as a scalable 
mechanism for state management in NetSolve is a 
starting point, it in no way addresses the complete 
state management needs of NetSolve or of other grid 
computing environments. That is because state 
management requires more than simple storage; it 
requires active management of data, meaning that 
stored data must be moved and must be transformed. 
The active nature of state management is often 
obscured by the fact that the processing is hidden in 
conventional storage systems, being performed in 
operating systems, disk controllers or even in manual 
or semi-automated administrative procedures.  Thus, 
to the user of file systems and other high level 
storage-based services, data seems to be maintained 
through a purely passive but somehow incredibly 
reliable and high performance service.  Examples of 
active components of storage systems are: 
o Redundant encoding of data and striping across 

disks. 

o Recovery of data in the face of failure and 
restoration of necessary levels of hardware 
provisioning 

o Backup of data to highly reliable and massive 
storage systems and restoration to fast media on 
demand. 

In distributed applications, the active nature of 
storage management is more acute because of 
changing circumstances. For instance, data may not 
be encoded in the same way when being transferred 
across the network as when it is stored over long 
periods on disk. 

Grid Computing environments require the 
active component of state management just as much 
as conventional Data Centers do, and absent a generic 
computing service in the network resource fabric, this 
work must be done by resources in the 
metacomputing part of the fabric. For example, the 
specialized storage management components of 
projects such as Condor can provide this service [18], 
but this increases the balkanization of services 
produced by the provisioning of storage in such 
components.  Another approach might be to use 
available clusters and supercomputers. This is usually 
overkill, however, as a means of implementing the 
simple operations needed for active state 
management; it also requires that data be moved to 
the locations where trusted computational servers are 
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provisioned. But the most common approach is 
simply to make use of large, centralized systems such 
as HPSS. This approach, unfortunately, relegates 
Grid state management to the same centralized 
environments from which users were supposed to be 
liberated by Grid Computing. 

In Active Logistical State Management 
(ALSM), we extend the Internet paradigm from 
storage to state management, making data 
transformation a sharable part of the network. Our 
hypothesis is as follows: 

If, by adhering to end-to-end principles, a 
generic, best effort computing service can be 
integrated into a globally scalable logistical 
network, then a programmable resource fabric 
can be created that is capable of providing the 
kind of active state management that grid 
applications require. 
To test this hypothesis we have created a new 

abstraction of processor resources and a primitive 
computing service, called the Network Functional 
Unit (NFU) [19]. Like IP and IBP, the NFU is 
designed for global scalability so that it can be 
implemented as part of the enriched network resource 
fabric that LN has already created. Our test 
environment is a new version of NetSolve, called 
GridSolve/L. Using GridSolve/L, we are working 
with a distributed application that is well suited to 
drive ALSM application requirements, in the area of 
scientific visualization.  Below we explain the 
background and motivation for ALSM and describe 
the initial application work we are doing to explore 
its potential and its limitations.  
2. A Generic Data Transformation 

Service for ALSM 
Since computation is inherently more complex 

than storage because of the variety of services and 
operations that can be applied, research on ALSM is 
inherently more challenging than our previous work 
on LN. It is important to note at the outset, however, 
the success of LN research on network storage 
supplies the work on network computation for ALSM 
with a tremendous advantage that previous efforts in 
this general area have not possessed — a generic 
storage service, exposed for application scheduling 
and scalable to the wide area. The presence of such a 
storage element in the network resource fabric opens 
up the possibility of attacking the problem of globally 
scalable network processing in a new way [19].  

LN architecture [7, 20, 21] provides essential 
context for ALSM for GridSolve/L.In designing a 
scalable network data transformation service for 
ALSM, we follow a methodology that is simple, but 
which reverses the typical order of thought in the 
design of distributed systems. Rather than starting 

with an idea of what level of functionality we require 
of the network, or what sort of intermediate nodes we 
want to build, we start with the requirement that the 
system scale, using adherence to the end-to-end 
principles as the means by which such scalability can 
be achieved. This requirement is stringent enough to 
dictate most of the features of the basic service. 

In particular, conformity to the end-to-end 
principles requires that the semantics of such a 
service be simple and weak [22].  If the semantics are 
too complex, it will fail the requirement that services 
implemented at intermediate nodes be generic.  
Likewise, if the service makes guarantees that are too 
strong, then it will not compose with a scalable 
communication network, like the Internet, without 
breaking. This approach was followed in the design 
of IP for wide area communication, and in the design 
of the Internet Backplane Protocol (IBP) for wide 
area storage services [7]. The crucial step is to define 
the right basic abstraction of the physical resource to 
be shared at the lowest levels of the stack.  

We call the new abstraction of computational 
resources, which is to be added as an orthogonal 
extension to the functionality of IBP, the Network 
Functional Unit (NFU). The name “Network 
Functional Unit” was chosen to fit the pattern 
established by other components of the LN 
infrastructure. This pattern expresses an underlying 
vision of the network as a primitive computing 
platform with exposed resources that are externally 
scheduled by endpoints.  The archetype here is a 
more conventional network: the system bus of a 
single computer (historically implemented as a 
backplane bus), which provides a uniform fabric for 
storing and moving data.  This analysis inspired the 
name for LN’s fundamental protocol for data transfer 
and storage, the “Internet Backplane Protocol.”  
Extending the analogy to include processing, we 
looked for that component of a computer that has no 
part in data transfer or storage, serving only to 
transform data placed within its reach.  The 
Arithmetic Logic Unit (ALU) seemed a good model, 
with its input and output latches serving as its only 
interfaces to the larger system.  Hence the component 
of an IBP depot that transforms data stored at that 
depot is called the Network Functional Unit. 

Just as IP is a more abstract service based on 
link layer datagram delivery, and IBP is a more 
abstract service based on “access layer” block 
storage, the NFU is a more abstract service based on 
“execution layer” computational fragments (e.g. OS 
time slices) that are managed as generic “operations.” 
“Execution layer” is our term for the data 
transformation service at the local level, including all 
the different possible execution platforms and all 
their various individual attributes, e.g. fixed time 
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slice, differing failure modes, local architecture and 
operating system. In all three cases, the generic 
service is made independent of the particular 
attributes of the underlying link/access/execution 
layer services beneath it by adopting semantics that 
hide the particularities of the units of service, failure 
models, and addressing schemes which belong to the 
services in the lower layers.   

Just as IP datagram service and IBP byte-array 
service allow a uniform model to be applied globally 
to transmission and storage resources respectively, 
the higher level “operation” abstraction allows a 
uniform NFU model to be applied to processor 
resources globally.  This step is essential to creating 
the most important difference between execution 
layer computation slices and NFU operation service: 
Through the use of the NFU operation service, any 
participant in an ALSM network can make use of any 
execution layer computational resource in the 
network regardless of who owns it. The use of IP 
networking, supplemented by IBP storage, to access 
NFU processor resources creates a global data 
transformation service. 
2.1 A Best-effort Data 

Transformation Service for ALSM 
Whatever the strengths of this application of the 

Internet paradigm to data transformation, however, it 
leads directly to two problems. First, the chronic 
vulnerability of IP networks and Logistical 
Networking to Denial of Service (DoS) attacks on 
bandwidth and storage resources respectively applies 
equally to the NFU’s computational resources. 
Second, the classic definition of a time slice 
execution service is based on execution on a local 
processor, so it includes strong semantics that are 
difficult to implement in the wide area network. 
Following the example of the Internet and LN, we 
address, or at least partially address, both of these 
issues through special characteristics of the IBP/NFU 
allocation strategy: by default the NFU offers only a 
time limited unit of service and provides only best 
effort availability. In specifying the service semantics 
of the different dimensions of NFU service, we can 
use corresponding design aspects of IP and IBP as 
guides because they are all based on the same model. 
Accordingly, the five dimensions of the NFU’s 
weakened service semantics to be addressed are 
fragmentation, availability, statelessness, correctness 
and security. 
o Fragmentation — Scalable services for data 

transmission, storage, and transformation in wide 
area systems must place limitations on the 
maximum size of their unit of service, and 
therefore inherently involve service 
fragmentation. In all these cases, the reason for 

limiting the maximum unit of service is that 
otherwise it is much more difficult to share the 
resources of the intermediate node, and hence 
much more difficult to make the service scale up 
in terms of the number of nodes and users.  
Unlike the traditional model of computation, 
fragmentation means that we must view our 
ALSM service as transforming stored state 
within the NFU enabled depot, or active depot, 
perhaps completing only a part of the “job” or 
“call” ultimately intended by the end user.  To 
complete extended operations, multiple 
computational fragments will have to be applied, 
either at a single active depot or using many 
depots, with attendant movement of state for 
fault tolerance and possibly parallelism. Dealing 
with the consequences of fragmentation, in 
particular in overcoming operation latencies 
through caching of control structures and 
pipelining calls, forms a significant part our 
research challenge. 

o Availability — As with IP and IBP, a best-effort 
data transformation service has to allow for the 
unavailability of a given service node.  In order 
for the work to proceed when a particular node 
becomes unavailable, redundant resources must 
be used to perform the transformation on some 
other node.  This means that the data on which 
the service acts must be accessible even in the 
presence of failures in nodes that may both store 
and process; such state-management strategies 
fall into the domain of LN.  Although the need to 
find alternate active nodes and retrieve stored 
data from remote sources means that applications 
cannot rely on predictable delays, the service 
seen by end-users must be acceptably reliable 

o Statelessness — The ability of Internet endpoints 
to use the best-effort services of routers to 
construct stronger services end-to-end relies 
partly on the fact that intermediate nodes are 
stateless, so that the construction of an alternate 
route affects only performance characteristics 
seen at the end-points.  Following a similar 
philosophy, the only state a depot maintains is 
the state required in order to implement its basic 
services —allocation of storage, writing and 
reading. It maintains no additional state visible to 
the endpoint, so that depots appear 
interchangeable to the endpoint, except for the 
data that they actually store.  Endpoints carry 
only the burden of keeping track of data stored at 
depots, not of managing any other visible state. 
Like storage, the transformation of stored state 
can only be performed at an intermediate node 
that can maintain persistent state.  This is the 
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reason that the NFU is a natural extension of the 
IBP depot. To minimize control state, however, 
the active services implemented there must not 
maintain any visible state other than that which 
they transform.   

o Correctness and Security — Trustworthiness of 
intermediate nodes in network services is an 
important issue.  The fewer assumptions that are 
made about the trust placed in intermediate 
nodes, the more scalable the resulting network.  
An IP network represents an extreme case: it 
makes only probabilistic correctness assumptions 
and no security assumptions, but then checks 
correctness through end-to-end checksums and 
assures privacy through end-to-end encryption.  
In some cases, these same techniques can apply 
to ALSM; but in cases where complex data 
transformations are implemented at the active 
depot, some level of trustworthiness must be 
assumed.  This will reduce the scalability of the 
LN component of our system to some degree.  

We have several ways to minimize this effect.  
One approach is to try and push data transformations 
onto a GridSolve server that is authenticated and 
trusted.  Another is to replicate data and perform 
transformations redundantly, checking the results; 
this is done in some peer-to-peer computing systems 
[23, 24].  Sometimes, applications-specific checks 
can be applied, but this approach places a burden on 
the application programmer.  All of these techniques 
allow us to work with less trustworthy depots when 
that is an important consideration. 

If the key to developing scalable ALSM is 
fragmentation and weakening of the data 
transformation service provided at an active depot, 
then the complementary research program must 
consist in building up the necessary strong services 
and guarantees at the endpoints.  The fundamental 
tools of such aggregation are the reduction of high 
level application algorithms to sets of operations and 
necessary communication, respecting the 
dependences between them.  Further research topics 
involve increasing reliability through redundant 
operations.  Overall, the limits of expressiveness and 
performance must be probed and mapped, to 
ultimately discover the limitations as well as the 
promise of a scalable ALSM.  
3. Active Depot and Middleware 

Research 
3.1.1 Design of a Computational 

Intermediate Node: The NFU-
enabled Depot 

 The NFU is a module that is added to an IBP 
storage depot in order to transform stored data 

(Figure 1). We call a depot so modified an active 
depot. Restricting an operation to data held in RAM 
forces any necessary movement between disk and 
RAM to be explicitly directed by the end-point using 
IBP, just as in data movement between depots. In this 
section we give a conceptual overview of a possible 
NFU interface.   

The NFU implements a single additional 
operation, IBP_nfu_op: 

IBP_nfu_op(depot, 
  opcode, nPara, 
 *paras, timeout) 

The IBP_nfu_op call in this simplified form is 
used to invoke an 
operation at the IBP 
depot, specified by the IP 
address and port it binds 
to.  The operation is 
specified as an integer 
argument, whose 
meaning is set by a 
global registry of 
operation numbers.  The 
arguments to the 
operations consist of a 
list of IBP capabilities 
(cryptographically secure 
names) for storage allocations on the same depot on 
which the operations are being performed.  Thus, 
there is no implicit network communication 
performed by a given depot in response to an 
IBP_nfu_op call. A flag indicates whether the 
operation is soft (using only idle cycles). The 
capabilities specified in this call can enable reading 
or writing, and the limitations of each are reflected in 
the allowed use of the underlying storage as input or 
output parameters.  The number and type of each 
capability are part of the signature of the operation, 
specified at the time the operation number is 
registered.  Any violation of this type information 
(for instance, passing a read capability for an output 
parameter) may cause a runtime error, but it is not 
checked by the implementation of IBP_nfu_op at 
the client side.  Such effects as aliasing between 
capabilities are also not detected.   

There are a number of important and obvious 
refinements to this call that give it more structure and 
can in some instances make correct use and 
efficiency more likely (such as handling scalar 
arguments and storage capabilities differently). They 
have been omitted for brevity and clarity. An 
important difference between IBP_nfu_op and 
remote procedure call mechanisms is that since data 
is assumed to already be stored in capabilities, all 
issues of data representation and type are pushed onto 

 
Figure 1: Active IBP 
Depot 
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the end points and operations themselves, rather than 
being part of the IBP_nfu_op call. 
The behavior of the active depot in response to an 
IBP_nfu_op operation is to map the specified 
capabilities in to an address space, look up the 
operation in a library of dynamically invoked calls, 
and invoke it.  The set of operations implemented at 
each depot is determined by local policy.  Because 
the storage allocations are local to the depot, simple 
memory mapping operations can be used, obviating 
the need for any data movement when invoking an 
operation.  This optimization limits the 
implementation of IBP_nfu_op to active depots 
implemented in RAM or running on operating 
systems that can map disk storage directly to a 
process address space. The fragmented nature of the 
operation can be enforced in two ways: by refusing to 
add to the active depot library any call that does not 
provide a strict limit on resource use, and/or by 
monitoring resource use and terminating execution 
when the limit is reached.  
3.1.2 A Data Structure for the Flexible 

Aggregation of Network 
Computation  

From the point of view of the Network 
Computing community, it is likely that one of the 
most striking features of ALSM is the way it appears 
to simply jettison the well known methods of usage 
for computation, viz. processes invoked to run 
programs or execute procedure calls to completion. 
These familiar abstractions can be supported in the 
logistical paradigm, but that support must conform to 
its “exposed-resource” design philosophy embodied 
in the end-to-end principles. As with IBP-based 
storage, implementing computing abstractions with 
strong properties — reliability, fast access, 
unbounded size, etc.— involves creating a construct 
at a higher layer that aggregates more primitive NFU 
operations below it, where these operations and the 
state they transform are often distributed at multiple 
locations. For example, when data is stored 
redundantly using a RAID-like encoding, it is 
fragmented and stripped across depots and parity 
blocks are computed and stored also (see Section 
3.1.3).  All of the storage allocation and metadata 
representing their structure is stored in an XML 
encoded data structure called an exNode [7].  In the 
event that data is lost, the exNode is consulted and 
data movement and XOR operations are issued to 
reconstruct it. 

To apply the principle of aggregation to 
exposed computations, however, it is necessary to 
maintain control state that represents such an 
aggregation, just as the sequence numbers and timers 
are maintained to keep track of the state of a TCP 

session. In the case of logistical storage allocations, 
we followed the traditional, well-understood model 
of the Unix file system’s inode, the data structure 
used to implement aggregation disk blocks to create 
files, in designing a data structure called the external 
node, or exNode, to manage aggregate IBP 
allocations [25].  Rather than aggregating blocks on a 
single disk volume, the exNode aggregates byte 
arrays in IBP depots to form something like a file. 
(ExNodes, for example, lack user metadata that files 
typically have.) The exNode supports the creation 
storage abstractions with stronger properties, such as 
a network file, which can be layered over IBP-based 
storage in a way that is completely consistent with 
the exposed resource approach. 

The case of aggregating NFU operations to 
implement a complete data transformation service is 
similar because, like a file, a process has a data extent 
that must be built up out of constituent storage 
resources.  In a uniprocessor operating system like 
Unix, the data structure used to implement such 
aggregation is the memory map within the process 
control block, which includes both page addresses for 
RAM resources and block addresses for disk 
resources.  In fact, process extents and files are very 
closely related, as can be seen by the existence of 
system calls, like mmap, that identify the storage 
extent of a 
file with part 
of the data 
extent of a 
process. 

Exposin
g the 
primitive 
nature of 
RAM and 
disk as 
storage 
resources has 
the 
simplifying 
effect of 
unifying the 
data extent of 
a file with the 
data extent of 
a process; 
both can be described by the exNode (Fig.2).  
However, each must be augmented with additional 
state to implement either a full-fledged network file 
or a full-fledged network process.  Thus, the closely 
related services of file caching/backup/replication 
and process paging/checkpoint/migration can be 
unified into a single set of state management tools. 

 
Figure 2: The exNode provides a 
uniform view of data and process state 
in ALSM 
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3.1.3 Encoding for Fault-tolerance 
Assuming that the NFU Logistical Runtime 

System (LoRS) tools may involve partitioning a task 
into discrete units with temporal and data 
dependencies between them, executing them in a 
fault-tolerant manner can be straightforward or 
complex. As with functional or idempotent remote 
procedure calls, failed (or indeterminately slow) 
executions may be aborted and retried [26, 27].  
While this is straightforward and general, it is prone 
to be inefficient, since the period between initial 
invocation and retry is useless to the progress of the 
computation.   

One solution to this problem that fits naturally 
in the ALSM paradigm is checkpointing.  Since NFU 
operations are required to be time-limited, one 
natural output parameter of such an operation will be 
a checkpoint. For example, a matrix multiply 
operation may be defined to complete partially, and 
record its progress as an output parameter so that the 
same NFU may continue the operation, or so that the 
entire operation may be migrated to a different NFU. 

Building further, execution units may be 
replicated among multiple NFUs, much like data may 
be replicated among multiple IBP depots.  The LoRS 
tools scheduling the computation may perform 
replication aggressively (e.g. every execution is 
attempted simultaneously) or use some kind of 
bounded retry to strike a balance between 
computational progress and overuse of resources.  
Interestingly, this bears resemblance to the LoRS 
download operation from replicated sources, which 
may partition the download into many smaller 
downloads that can be replicated or retried [28]. We 
anticipate that as in the download operation, the 
bounded retry will perform best in practice. 

If the computation is partitioned into a graphical 
representation of discrete execution units linked by 
temporal and data dependencies, we may leverage the 
work on the fault-tolerant execution of such graphs in 
[29-32] 

Finally, our exposed approach can also support 
more application-specific solutions to fault-tolerance.  
For example, consider the act of creating a parity 
encoding for an exNode.  As long as the integrity of 
the entire data set is maintained through a checksum, 
then the correctness and success of creating the parity 
encoding is not vital.  The probability of correctness 
and success merely needs to be high.   Similarly, 
consider a structured computation such as matrix 
factorization, which can not only be partitioned 
among multiple execution nodes, but which may also 
be enriched with encoding information so that as long 
as some subset of execution instances complete 
correctly, the answer may be both reconstructed and 
verified to a degree of error tolerance. Again, as long 

as the probability of each instance's correct 
completion is high enough, the computation may be 
performed efficiently [33]. 
3.2 ALSM and Distributed 

Visualization 

3.2.1 Visualization in a Grid Environment 
As a main driver application for exploring 

ALSM and GridSolve/L as an effective computing 
paradigm, we are working  on distributed 
visualization.  Visualization users routinely deal with 
data sets which require large-scale parallel computing 
in order to be analyzed and rendered. On the cutting 
edge of complexity, volume data sets now come with 
a number of scalars, vectors and even tensor matrices 
on each voxel. The output size of some routine 
simulation or data captures already frequently goes 
beyond gigabytes. Unfortunately, computing 
resources capable of dealing with such data sets are 
not commonly available to the researchers who need 
them. To this end, the Grid computing paradigm as 
implemented by ALSM and GridSolve/L provides 
the proper resource suite and computing 
methodology. 

To give an example of a driving visualization 
scenario author Huang has close collaboration with 
Vanderbilt Medical School on human brain research. 
Understanding the morphology, structure, and 
function of the human brain and their underlying 
relationship is a grand goal of medical research, with 
far-reaching potential impact on all human beings. As 
a cornerstone, advanced imaging modalities 
including Diffusion Tensor MRI (DT-MRI) [34] and 
Functional MRI (fMRI) [35] have been developed. 
DT-MRI provides the first and only non-invasive 
way to obtain physical measurements to distinguish 
nerve bundles within the brain’s gray matter and 
possibly reveal the interconnections bewteen various 
functional areas on the cerebral cortex. fMRI is the 
sole approach to quantitatively distinguish in vivo the 
functional differences of various areas on the cerebral 
cortex. Combining DT-MRI and fMRI 
measurements, groundbreaking scientific discovery 
of how brain function relates to brain morphology 
and structure are expected. However, unfortunately, 
processing and visualization of DT-MRI and fMRI 
data sets for such study require a great amount of 
computing and storage resources that medical schools 
around the globe do not have. 

To better appreciate the computation involved, 
we here briefly introduce DT-MRI and fMRI. In DT-
MRI, on each voxel a 33×  matrix is stored [34]. On 
each voxel, dozens of correlation coefficients are 
stored. Such fMRI information is used in the 
visualization process to allow hypothesis driven 
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queries to establish the existence and nature of 
connections among ROIs   The production of a 
typical visualization takes about 10 minutes on 30 
parallel processors. Obviously, when real medical 
hypothesis-driven study is underway, scores of these 
visualizations will be required on each member of a 
study, and studies typically consist of dozens of 
members. 

Additionally, there is a second and potentially 
direr problem. The radiologists and neurologists need 
to have an easy to use computational tool for their 
research, and Matlab is currently the universal tool 
they use. Indeed, for many of them, Matlab is the sole 
programming tool they know how to use. C 
programming, system libraries, TCP/IP, and parallel 
processing are beyond their specialization. Thus, 
unless the grid computing environment can be 
invoked from a problem solving interface such as 
Matlab, it will be useless for this class of researchers. 
3.2.2 The Visualization Pipeline and Our 

Methodology 
The visualization pipeline associated with this 

process has three natural stages: selection and 
preconditioning of data before it is processed by the 
parallel computer, the main computational phase, and 
then postprocessing to match the specific 
visualization environment and requirements of the 
user, including implementation of a prioritized data 
movement algorithm, such as occlusion culling or 
level-of-detail (LoD), to ensure minimum latency for 
the viewer.  This pipeline maps naturally into 
GridSolve/L, with the pre- and post-processing stages 
being mapped onto depots, with data transformation 
being performed using the Network Functional Unit, 
and the major computational stage being 
implemented on a cluster using the NetSolve server 
as its front end.  The entire pipeline will in fact 
appear to the user as a GridSolve/L call, with the 
NetSolve server taking responsibility for directing the 
functions of the depots used in all stages except the 
initial upload and prioritized download of data, which 
are the responsibility of the user application. 

With the advent of ALSM, different distributed 
visualization algorithms can be categorized in a 
straightforwared way, as follows:  

o those that pre-compute all results that may be 
requested and use the service provider as a static 
database. A simple movie or static iso-surface 
streaming algorithms are good examples. 

o those that maintain raw data on-the-fly, and,  
compute view/predicate-dependent query results, 
which are then transmitted to clients during run-
time. Examples include view-dependent 
streaming techniques, such as view-dependent 

LoD iso-surfaces and image-based streaming, or 
schematic non-photo-realistic rendering methods 
using strokes or stippling. 

o those that transform raw data into various 
intermediate forms, which then get converted to 
other forms useful to a specific client interaction 
during run-time. Examples include new transfer 
function sensitive streaming methods and 
temporal-spatial coherence based wavelet 
compression/reconstructions, etc. 
Just using simple LoRS tools, the first category 

can be implemented indexing or addressing, as we 
have shown in our paper [21]. Pre-computed results 
can be staged on a local depot so close to client that 
the network performance between the depot and 
client never fails the requirement. The second 
category requires some relatively complicated 
operations, such as occlusion computation using 
depth sorting, a software opacity buffer (a 2D array), 
and array operations like summation, averaging, etc. 
Image-based techniques may require a numerical 
integration operation using the Riemann sum. The 
shading procedures, used in non-photo-realistic 
drawings, would use dot product, cos() and pow() 
functions. All of these operations are ideal as NFU 
data transformation primitives that are part of ALSM. 

The third category is, the most challenging and 
most useful. A GridSolve server library needs to 
developed on the whole infrastructure. This library 
will need to collect intermediate results from peer 
depots before performing their main computations, 
and the computations will need to be performed, 
storing results on the IBP depots for post-processing.  
A goal of our on-going research is to design and 
build a suite of core GridSolve libraries for each of 
the major area of visualization, including medical 
visualization, volume rendering, iso-surfacing, flow 
visualization, as well as time-varying multi-variate 
visualization. 

Using GridSolve/L, this visualization paradigm 
can be applied in order to implement the DT-MRI 
and fMRI visualization pipeline required to support 
author Huang’s Vanderbilt collaborators.  After a 
subject has been scanned, a radiologist opens up his 
Matlab client and invokes a Netsolve function to 
construct the nerve network among a dozen regions 
of interest (ROIs). The data moves to computation 
nodes, where the brain nerve bundles connecting the 
ROIs are computed in parallel. The raw imaging data 
sets are not necessarily large, ranging between 50 to 
100 MB per patient. However, the visualization 
models of the nerve fibers can be so detailed that 
more than 500 MB of visualization data are 
generated. Matlab is not a tool that can comfortably 
handle geometric data sets of such sizes. This then 
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becomes a remote visualization problem as discussed 
above. View-dependent and image-resolution 
dependent data streaming, level-of-detail streaming, 
occlusion culling, etc. would all be performed using 
ALSM as the data is streamed back to radiologists at 
Vanderbilt. The use of ALSM provides the 
application developer significant control over how 
data is transferred and buffered within the network. 
The visualization component of the whole pipeline 
can be the Matlab visualization toolkit or a custom-
made plug-in viewer. 
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