
 1

Active Logistical State Management in GridSolve/L
Micah Beck, Jack Dongarra, Jian Huang, Terry Moore and James S. Plank

{mbeck, dongarra, huangj, tmoore, plan}@cs.utk.edu
Computer Science Dept., University of Tennessee

1122 Volunteer Blvd, Suite 203, Knoxville, TN, 37996-3450

1. Introduction
More than two decades of exponential growth

in the supply of the basic computing resources, rapid
progress in the deployment of high performance
networks, and escalating requirements for distributed
collaboration in Computational Science, has caused
expectations of the benefits of distributed systems
and grid computing environments to soar [1]. It is
unsettling, therefore, to recognize that the critical
problem of managing the data and process state in
such systems [2], especially in the wide area, remains
unsolved, and that its effects continue to raise chronic
performance and scalability issues for all types of
network computing applications. More than five
years ago, an NSF workshop on Distributed State
Management concluded the following:

“Given the extensive advances in distributed
systems technology that have occurred over the
last two decades, the number of different
distributed applications that have been deployed
has been surprisingly small. One reason for this
is that many difficult problems (e.g.,
consistency management, fault tolerance,
security, location transparency, scalability, and
performance) must be addressed to build a
complex distributed application, and there is
very little infrastructure available to ease the
effort. In addition, the amount of bandwidth
being consumed on the Internet for the WWW
is increasing exponentially. Both of these
observations suggest that a serious effort to
build an infrastructure for wide-area state
sharing is highly recommended.” [3]

A general solution to this problem has yet to be
found. Moreover, the advent of data intensive
computing exacerbates the situation. To amass the
storage and compute services required to manage the
flows of state involved in data-intensive applications,
current distributed systems must either utilize
application specific resources, or, as with most grid
applications, leverage a shared “grid fabric” of
metacomputing resources [4] via least common
denominator middleware. In this context what
distinguishes our research program in Logistical
Computing and Internetworking (LoCI), and the
work on Logistical Networking (LN) [5] at its core, is
our insistence on the idea that this fabric itself must
be rethought and rearchitected to overcome the

constraints imposed by entrenched legacy designs
[6].

For the past few years, we have been
investigating this idea in a collaborative research
effort having two complementary strands. One strand
is focused on research and development of LN
technology; the other is centered on exploring LN’s
power to enhance the functionality and performance
of NetSolve, a flexible, powerful, and easy to use
grid computing environment. Together they provide
an ideal vehicle for investigating an approach to grid
computing based on a type of grid fabric specially
adapted to deal with the logistics of distributed data
management, i.e. one that uses LN.

LN brings data transmission and storage within
one framework, much as military or industrial
logistics treat transportation lines and storage depots
as coordinate elements of one infrastructure. Its main
challenge has been to realize this idea without
sacrificing network-style scalability. Following two
enduring examples of successful system architecture
— the Internet protocol and the Unix OS kernel
interface — we have created a new type of shared
network storage that can scale globally [7]. LN
builds on a generic, best effort network storage
service based on the Internet Backplane Protocol
(IBP) [8] to infuse the network itself with storage
resources that can be shared, scaled up, and exposed
for external scheduling much as IP datagram service
is.

The NetSolve grid environment [9, 10] provides
an excellent context for exploring the use of LN’s
storage service to manage the logistics of data and
process state in distributed applications [11]. Though
NetSolve is more advanced than other “network
enabled server” approaches to grid computing in its
ease of use and the range of scientific software
libraries it supports, the brokered remote procedure
call (RPC) mechanism at its core is focused primarily
on the selection of trusted computational server, the
transfer of arguments from the client to the server,
the invocation and monitoring of the remote call-out
and the transfer of results back to the client. Taken
naively, this mechanism leaves out an important
component of distributed applications: the
management of state before, during and after any
single call.

State management is important when an RPC is
not made in isolation, but is part of a larger

 2

application. The context of a larger application can
allow the call-out to be anticipated before the actual
call is made, and perhaps when some arguments are
already available. Movement of some arguments in
advance of the call can then allow a type of
“logistical” quality of service to be obtained [11].
When a sequence of RPCs is made with data
dependences between them, the results of one call
serves as the input to another call (flow dependence),
or the input to one call is identical to the input to
another (input dependence). Similar advantages can
be gained when a long-running call generates a
checkpoint, which is, in effect, a large “early” result
that may be passed to another call, which is the
resumption of the original call.

In all these cases, state management requires
the use of storage (albeit temporary), and this storage
must be in proximity to the NetSolve computational
servers. Now according to the usual approach to grid
computing, which was embodied by the early
versions of NetSolve, the only physical storage
available in the grid fabric is in that part we
distinguish as the metacomputing fabric. The
metacomputing fabric is composed of those resources
in computer centers, and departmental clusters, which
are shared in a highly controlled way, among a
relatively select community, with authentication,
access control and even pure use accounting as
leading design issues. By contrast, the elements of
the network resource fabric are designed to be shared
on the model of IP datagram service, i.e. in a
relatively unbrokered manner among the entire
community, minimizing admission and accounting
restrictions as much as possible. On the prevailing
model, this part of grid fabric is composed primarily
of cables and routers, with no open access to storage
resources. The absence of any storage which is
shared Internet style, and the corresponding
requirement that trusted (and sometimes substantial)
storage be available from the metacomputing fabric
in the relevant locations, represents a significant
inhibitor to the deployability of grid services such as
NetSolve.

By implementing an Internet-like model of
resource sharing for storage [12], IBP enables LN to
put a scalable storage service into the network
resource fabric. With this foundation, the diverse
state management requirements of NetSolve
applications are a perfect match for the use of LN.
Since LN infrastructure need not be trusted and is
inherently temporary in nature, it can be deployed
much more scalably. In turn, unbrokered access to
ubiquitous storage services makes NetSolve and its
applications much more deployable. This natural fit
has led to the integration of LN storage mechanisms
into the data management layer of recent releases of

NetSolve. Substantial results have been obtained
from experiments with this grid environment in the
prestaging of inputs in advance of calls [13], in the
resolution of data dependences [14] and in supporting
temporary files of all kinds[15, 16], including
checkpoints [17].

But although the success of LN as a scalable
mechanism for state management in NetSolve is a
starting point, it in no way addresses the complete
state management needs of NetSolve or of other grid
computing environments. That is because state
management requires more than simple storage; it
requires active management of data, meaning that
stored data must be moved and must be transformed.
The active nature of state management is often
obscured by the fact that the processing is hidden in
conventional storage systems, being performed in
operating systems, disk controllers or even in manual
or semi-automated administrative procedures. Thus,
to the user of file systems and other high level
storage-based services, data seems to be maintained
through a purely passive but somehow incredibly
reliable and high performance service. Examples of
active components of storage systems are:
o Redundant encoding of data and striping across

disks.

o Recovery of data in the face of failure and
restoration of necessary levels of hardware
provisioning

o Backup of data to highly reliable and massive
storage systems and restoration to fast media on
demand.

In distributed applications, the active nature of
storage management is more acute because of
changing circumstances. For instance, data may not
be encoded in the same way when being transferred
across the network as when it is stored over long
periods on disk.

Grid Computing environments require the
active component of state management just as much
as conventional Data Centers do, and absent a generic
computing service in the network resource fabric, this
work must be done by resources in the
metacomputing part of the fabric. For example, the
specialized storage management components of
projects such as Condor can provide this service [18],
but this increases the balkanization of services
produced by the provisioning of storage in such
components. Another approach might be to use
available clusters and supercomputers. This is usually
overkill, however, as a means of implementing the
simple operations needed for active state
management; it also requires that data be moved to
the locations where trusted computational servers are

 3

provisioned. But the most common approach is
simply to make use of large, centralized systems such
as HPSS. This approach, unfortunately, relegates
Grid state management to the same centralized
environments from which users were supposed to be
liberated by Grid Computing.

In Active Logistical State Management
(ALSM), we extend the Internet paradigm from
storage to state management, making data
transformation a sharable part of the network. Our
hypothesis is as follows:

If, by adhering to end-to-end principles, a
generic, best effort computing service can be
integrated into a globally scalable logistical
network, then a programmable resource fabric
can be created that is capable of providing the
kind of active state management that grid
applications require.
To test this hypothesis we have created a new

abstraction of processor resources and a primitive
computing service, called the Network Functional
Unit (NFU) [19]. Like IP and IBP, the NFU is
designed for global scalability so that it can be
implemented as part of the enriched network resource
fabric that LN has already created. Our test
environment is a new version of NetSolve, called
GridSolve/L. Using GridSolve/L, we are working
with a distributed application that is well suited to
drive ALSM application requirements, in the area of
scientific visualization. Below we explain the
background and motivation for ALSM and describe
the initial application work we are doing to explore
its potential and its limitations.
2. A Generic Data Transformation

Service for ALSM
Since computation is inherently more complex

than storage because of the variety of services and
operations that can be applied, research on ALSM is
inherently more challenging than our previous work
on LN. It is important to note at the outset, however,
the success of LN research on network storage
supplies the work on network computation for ALSM
with a tremendous advantage that previous efforts in
this general area have not possessed — a generic
storage service, exposed for application scheduling
and scalable to the wide area. The presence of such a
storage element in the network resource fabric opens
up the possibility of attacking the problem of globally
scalable network processing in a new way [19].

LN architecture [7, 20, 21] provides essential
context for ALSM for GridSolve/L.In designing a
scalable network data transformation service for
ALSM, we follow a methodology that is simple, but
which reverses the typical order of thought in the
design of distributed systems. Rather than starting

with an idea of what level of functionality we require
of the network, or what sort of intermediate nodes we
want to build, we start with the requirement that the
system scale, using adherence to the end-to-end
principles as the means by which such scalability can
be achieved. This requirement is stringent enough to
dictate most of the features of the basic service.

In particular, conformity to the end-to-end
principles requires that the semantics of such a
service be simple and weak [22]. If the semantics are
too complex, it will fail the requirement that services
implemented at intermediate nodes be generic.
Likewise, if the service makes guarantees that are too
strong, then it will not compose with a scalable
communication network, like the Internet, without
breaking. This approach was followed in the design
of IP for wide area communication, and in the design
of the Internet Backplane Protocol (IBP) for wide
area storage services [7]. The crucial step is to define
the right basic abstraction of the physical resource to
be shared at the lowest levels of the stack.

We call the new abstraction of computational
resources, which is to be added as an orthogonal
extension to the functionality of IBP, the Network
Functional Unit (NFU). The name “Network
Functional Unit” was chosen to fit the pattern
established by other components of the LN
infrastructure. This pattern expresses an underlying
vision of the network as a primitive computing
platform with exposed resources that are externally
scheduled by endpoints. The archetype here is a
more conventional network: the system bus of a
single computer (historically implemented as a
backplane bus), which provides a uniform fabric for
storing and moving data. This analysis inspired the
name for LN’s fundamental protocol for data transfer
and storage, the “Internet Backplane Protocol.”
Extending the analogy to include processing, we
looked for that component of a computer that has no
part in data transfer or storage, serving only to
transform data placed within its reach. The
Arithmetic Logic Unit (ALU) seemed a good model,
with its input and output latches serving as its only
interfaces to the larger system. Hence the component
of an IBP depot that transforms data stored at that
depot is called the Network Functional Unit.

Just as IP is a more abstract service based on
link layer datagram delivery, and IBP is a more
abstract service based on “access layer” block
storage, the NFU is a more abstract service based on
“execution layer” computational fragments (e.g. OS
time slices) that are managed as generic “operations.”
“Execution layer” is our term for the data
transformation service at the local level, including all
the different possible execution platforms and all
their various individual attributes, e.g. fixed time

 4

slice, differing failure modes, local architecture and
operating system. In all three cases, the generic
service is made independent of the particular
attributes of the underlying link/access/execution
layer services beneath it by adopting semantics that
hide the particularities of the units of service, failure
models, and addressing schemes which belong to the
services in the lower layers.

Just as IP datagram service and IBP byte-array
service allow a uniform model to be applied globally
to transmission and storage resources respectively,
the higher level “operation” abstraction allows a
uniform NFU model to be applied to processor
resources globally. This step is essential to creating
the most important difference between execution
layer computation slices and NFU operation service:
Through the use of the NFU operation service, any
participant in an ALSM network can make use of any
execution layer computational resource in the
network regardless of who owns it. The use of IP
networking, supplemented by IBP storage, to access
NFU processor resources creates a global data
transformation service.
2.1 A Best-effort Data

Transformation Service for ALSM
Whatever the strengths of this application of the

Internet paradigm to data transformation, however, it
leads directly to two problems. First, the chronic
vulnerability of IP networks and Logistical
Networking to Denial of Service (DoS) attacks on
bandwidth and storage resources respectively applies
equally to the NFU’s computational resources.
Second, the classic definition of a time slice
execution service is based on execution on a local
processor, so it includes strong semantics that are
difficult to implement in the wide area network.
Following the example of the Internet and LN, we
address, or at least partially address, both of these
issues through special characteristics of the IBP/NFU
allocation strategy: by default the NFU offers only a
time limited unit of service and provides only best
effort availability. In specifying the service semantics
of the different dimensions of NFU service, we can
use corresponding design aspects of IP and IBP as
guides because they are all based on the same model.
Accordingly, the five dimensions of the NFU’s
weakened service semantics to be addressed are
fragmentation, availability, statelessness, correctness
and security.
o Fragmentation — Scalable services for data

transmission, storage, and transformation in wide
area systems must place limitations on the
maximum size of their unit of service, and
therefore inherently involve service
fragmentation. In all these cases, the reason for

limiting the maximum unit of service is that
otherwise it is much more difficult to share the
resources of the intermediate node, and hence
much more difficult to make the service scale up
in terms of the number of nodes and users.
Unlike the traditional model of computation,
fragmentation means that we must view our
ALSM service as transforming stored state
within the NFU enabled depot, or active depot,
perhaps completing only a part of the “job” or
“call” ultimately intended by the end user. To
complete extended operations, multiple
computational fragments will have to be applied,
either at a single active depot or using many
depots, with attendant movement of state for
fault tolerance and possibly parallelism. Dealing
with the consequences of fragmentation, in
particular in overcoming operation latencies
through caching of control structures and
pipelining calls, forms a significant part our
research challenge.

o Availability — As with IP and IBP, a best-effort
data transformation service has to allow for the
unavailability of a given service node. In order
for the work to proceed when a particular node
becomes unavailable, redundant resources must
be used to perform the transformation on some
other node. This means that the data on which
the service acts must be accessible even in the
presence of failures in nodes that may both store
and process; such state-management strategies
fall into the domain of LN. Although the need to
find alternate active nodes and retrieve stored
data from remote sources means that applications
cannot rely on predictable delays, the service
seen by end-users must be acceptably reliable

o Statelessness — The ability of Internet endpoints
to use the best-effort services of routers to
construct stronger services end-to-end relies
partly on the fact that intermediate nodes are
stateless, so that the construction of an alternate
route affects only performance characteristics
seen at the end-points. Following a similar
philosophy, the only state a depot maintains is
the state required in order to implement its basic
services —allocation of storage, writing and
reading. It maintains no additional state visible to
the endpoint, so that depots appear
interchangeable to the endpoint, except for the
data that they actually store. Endpoints carry
only the burden of keeping track of data stored at
depots, not of managing any other visible state.
Like storage, the transformation of stored state
can only be performed at an intermediate node
that can maintain persistent state. This is the

 5

reason that the NFU is a natural extension of the
IBP depot. To minimize control state, however,
the active services implemented there must not
maintain any visible state other than that which
they transform.

o Correctness and Security — Trustworthiness of
intermediate nodes in network services is an
important issue. The fewer assumptions that are
made about the trust placed in intermediate
nodes, the more scalable the resulting network.
An IP network represents an extreme case: it
makes only probabilistic correctness assumptions
and no security assumptions, but then checks
correctness through end-to-end checksums and
assures privacy through end-to-end encryption.
In some cases, these same techniques can apply
to ALSM; but in cases where complex data
transformations are implemented at the active
depot, some level of trustworthiness must be
assumed. This will reduce the scalability of the
LN component of our system to some degree.

We have several ways to minimize this effect.
One approach is to try and push data transformations
onto a GridSolve server that is authenticated and
trusted. Another is to replicate data and perform
transformations redundantly, checking the results;
this is done in some peer-to-peer computing systems
[23, 24]. Sometimes, applications-specific checks
can be applied, but this approach places a burden on
the application programmer. All of these techniques
allow us to work with less trustworthy depots when
that is an important consideration.

If the key to developing scalable ALSM is
fragmentation and weakening of the data
transformation service provided at an active depot,
then the complementary research program must
consist in building up the necessary strong services
and guarantees at the endpoints. The fundamental
tools of such aggregation are the reduction of high
level application algorithms to sets of operations and
necessary communication, respecting the
dependences between them. Further research topics
involve increasing reliability through redundant
operations. Overall, the limits of expressiveness and
performance must be probed and mapped, to
ultimately discover the limitations as well as the
promise of a scalable ALSM.
3. Active Depot and Middleware

Research
3.1.1 Design of a Computational

Intermediate Node: The NFU-
enabled Depot

 The NFU is a module that is added to an IBP
storage depot in order to transform stored data

(Figure 1). We call a depot so modified an active
depot. Restricting an operation to data held in RAM
forces any necessary movement between disk and
RAM to be explicitly directed by the end-point using
IBP, just as in data movement between depots. In this
section we give a conceptual overview of a possible
NFU interface.

The NFU implements a single additional
operation, IBP_nfu_op:

IBP_nfu_op(depot,
 opcode, nPara,
 *paras, timeout)

The IBP_nfu_op call in this simplified form is
used to invoke an
operation at the IBP
depot, specified by the IP
address and port it binds
to. The operation is
specified as an integer
argument, whose
meaning is set by a
global registry of
operation numbers. The
arguments to the
operations consist of a
list of IBP capabilities
(cryptographically secure
names) for storage allocations on the same depot on
which the operations are being performed. Thus,
there is no implicit network communication
performed by a given depot in response to an
IBP_nfu_op call. A flag indicates whether the
operation is soft (using only idle cycles). The
capabilities specified in this call can enable reading
or writing, and the limitations of each are reflected in
the allowed use of the underlying storage as input or
output parameters. The number and type of each
capability are part of the signature of the operation,
specified at the time the operation number is
registered. Any violation of this type information
(for instance, passing a read capability for an output
parameter) may cause a runtime error, but it is not
checked by the implementation of IBP_nfu_op at
the client side. Such effects as aliasing between
capabilities are also not detected.

There are a number of important and obvious
refinements to this call that give it more structure and
can in some instances make correct use and
efficiency more likely (such as handling scalar
arguments and storage capabilities differently). They
have been omitted for brevity and clarity. An
important difference between IBP_nfu_op and
remote procedure call mechanisms is that since data
is assumed to already be stored in capabilities, all
issues of data representation and type are pushed onto

Figure 1: Active IBP
Depot

 6

the end points and operations themselves, rather than
being part of the IBP_nfu_op call.
The behavior of the active depot in response to an
IBP_nfu_op operation is to map the specified
capabilities in to an address space, look up the
operation in a library of dynamically invoked calls,
and invoke it. The set of operations implemented at
each depot is determined by local policy. Because
the storage allocations are local to the depot, simple
memory mapping operations can be used, obviating
the need for any data movement when invoking an
operation. This optimization limits the
implementation of IBP_nfu_op to active depots
implemented in RAM or running on operating
systems that can map disk storage directly to a
process address space. The fragmented nature of the
operation can be enforced in two ways: by refusing to
add to the active depot library any call that does not
provide a strict limit on resource use, and/or by
monitoring resource use and terminating execution
when the limit is reached.
3.1.2 A Data Structure for the Flexible

Aggregation of Network
Computation

From the point of view of the Network
Computing community, it is likely that one of the
most striking features of ALSM is the way it appears
to simply jettison the well known methods of usage
for computation, viz. processes invoked to run
programs or execute procedure calls to completion.
These familiar abstractions can be supported in the
logistical paradigm, but that support must conform to
its “exposed-resource” design philosophy embodied
in the end-to-end principles. As with IBP-based
storage, implementing computing abstractions with
strong properties — reliability, fast access,
unbounded size, etc.— involves creating a construct
at a higher layer that aggregates more primitive NFU
operations below it, where these operations and the
state they transform are often distributed at multiple
locations. For example, when data is stored
redundantly using a RAID-like encoding, it is
fragmented and stripped across depots and parity
blocks are computed and stored also (see Section
3.1.3). All of the storage allocation and metadata
representing their structure is stored in an XML
encoded data structure called an exNode [7]. In the
event that data is lost, the exNode is consulted and
data movement and XOR operations are issued to
reconstruct it.

To apply the principle of aggregation to
exposed computations, however, it is necessary to
maintain control state that represents such an
aggregation, just as the sequence numbers and timers
are maintained to keep track of the state of a TCP

session. In the case of logistical storage allocations,
we followed the traditional, well-understood model
of the Unix file system’s inode, the data structure
used to implement aggregation disk blocks to create
files, in designing a data structure called the external
node, or exNode, to manage aggregate IBP
allocations [25]. Rather than aggregating blocks on a
single disk volume, the exNode aggregates byte
arrays in IBP depots to form something like a file.
(ExNodes, for example, lack user metadata that files
typically have.) The exNode supports the creation
storage abstractions with stronger properties, such as
a network file, which can be layered over IBP-based
storage in a way that is completely consistent with
the exposed resource approach.

The case of aggregating NFU operations to
implement a complete data transformation service is
similar because, like a file, a process has a data extent
that must be built up out of constituent storage
resources. In a uniprocessor operating system like
Unix, the data structure used to implement such
aggregation is the memory map within the process
control block, which includes both page addresses for
RAM resources and block addresses for disk
resources. In fact, process extents and files are very
closely related, as can be seen by the existence of
system calls, like mmap, that identify the storage
extent of a
file with part
of the data
extent of a
process.

Exposin
g the
primitive
nature of
RAM and
disk as
storage
resources has
the
simplifying
effect of
unifying the
data extent of
a file with the
data extent of
a process;
both can be described by the exNode (Fig.2).
However, each must be augmented with additional
state to implement either a full-fledged network file
or a full-fledged network process. Thus, the closely
related services of file caching/backup/replication
and process paging/checkpoint/migration can be
unified into a single set of state management tools.

Figure 2: The exNode provides a
uniform view of data and process state
in ALSM

 7

3.1.3 Encoding for Fault-tolerance
Assuming that the NFU Logistical Runtime

System (LoRS) tools may involve partitioning a task
into discrete units with temporal and data
dependencies between them, executing them in a
fault-tolerant manner can be straightforward or
complex. As with functional or idempotent remote
procedure calls, failed (or indeterminately slow)
executions may be aborted and retried [26, 27].
While this is straightforward and general, it is prone
to be inefficient, since the period between initial
invocation and retry is useless to the progress of the
computation.

One solution to this problem that fits naturally
in the ALSM paradigm is checkpointing. Since NFU
operations are required to be time-limited, one
natural output parameter of such an operation will be
a checkpoint. For example, a matrix multiply
operation may be defined to complete partially, and
record its progress as an output parameter so that the
same NFU may continue the operation, or so that the
entire operation may be migrated to a different NFU.

Building further, execution units may be
replicated among multiple NFUs, much like data may
be replicated among multiple IBP depots. The LoRS
tools scheduling the computation may perform
replication aggressively (e.g. every execution is
attempted simultaneously) or use some kind of
bounded retry to strike a balance between
computational progress and overuse of resources.
Interestingly, this bears resemblance to the LoRS
download operation from replicated sources, which
may partition the download into many smaller
downloads that can be replicated or retried [28]. We
anticipate that as in the download operation, the
bounded retry will perform best in practice.

If the computation is partitioned into a graphical
representation of discrete execution units linked by
temporal and data dependencies, we may leverage the
work on the fault-tolerant execution of such graphs in
[29-32]

Finally, our exposed approach can also support
more application-specific solutions to fault-tolerance.
For example, consider the act of creating a parity
encoding for an exNode. As long as the integrity of
the entire data set is maintained through a checksum,
then the correctness and success of creating the parity
encoding is not vital. The probability of correctness
and success merely needs to be high. Similarly,
consider a structured computation such as matrix
factorization, which can not only be partitioned
among multiple execution nodes, but which may also
be enriched with encoding information so that as long
as some subset of execution instances complete
correctly, the answer may be both reconstructed and
verified to a degree of error tolerance. Again, as long

as the probability of each instance's correct
completion is high enough, the computation may be
performed efficiently [33].
3.2 ALSM and Distributed

Visualization

3.2.1 Visualization in a Grid Environment
As a main driver application for exploring

ALSM and GridSolve/L as an effective computing
paradigm, we are working on distributed
visualization. Visualization users routinely deal with
data sets which require large-scale parallel computing
in order to be analyzed and rendered. On the cutting
edge of complexity, volume data sets now come with
a number of scalars, vectors and even tensor matrices
on each voxel. The output size of some routine
simulation or data captures already frequently goes
beyond gigabytes. Unfortunately, computing
resources capable of dealing with such data sets are
not commonly available to the researchers who need
them. To this end, the Grid computing paradigm as
implemented by ALSM and GridSolve/L provides
the proper resource suite and computing
methodology.

To give an example of a driving visualization
scenario author Huang has close collaboration with
Vanderbilt Medical School on human brain research.
Understanding the morphology, structure, and
function of the human brain and their underlying
relationship is a grand goal of medical research, with
far-reaching potential impact on all human beings. As
a cornerstone, advanced imaging modalities
including Diffusion Tensor MRI (DT-MRI) [34] and
Functional MRI (fMRI) [35] have been developed.
DT-MRI provides the first and only non-invasive
way to obtain physical measurements to distinguish
nerve bundles within the brain’s gray matter and
possibly reveal the interconnections bewteen various
functional areas on the cerebral cortex. fMRI is the
sole approach to quantitatively distinguish in vivo the
functional differences of various areas on the cerebral
cortex. Combining DT-MRI and fMRI
measurements, groundbreaking scientific discovery
of how brain function relates to brain morphology
and structure are expected. However, unfortunately,
processing and visualization of DT-MRI and fMRI
data sets for such study require a great amount of
computing and storage resources that medical schools
around the globe do not have.

To better appreciate the computation involved,
we here briefly introduce DT-MRI and fMRI. In DT-
MRI, on each voxel a 33× matrix is stored [34]. On
each voxel, dozens of correlation coefficients are
stored. Such fMRI information is used in the
visualization process to allow hypothesis driven

 8

queries to establish the existence and nature of
connections among ROIs The production of a
typical visualization takes about 10 minutes on 30
parallel processors. Obviously, when real medical
hypothesis-driven study is underway, scores of these
visualizations will be required on each member of a
study, and studies typically consist of dozens of
members.

Additionally, there is a second and potentially
direr problem. The radiologists and neurologists need
to have an easy to use computational tool for their
research, and Matlab is currently the universal tool
they use. Indeed, for many of them, Matlab is the sole
programming tool they know how to use. C
programming, system libraries, TCP/IP, and parallel
processing are beyond their specialization. Thus,
unless the grid computing environment can be
invoked from a problem solving interface such as
Matlab, it will be useless for this class of researchers.
3.2.2 The Visualization Pipeline and Our

Methodology
The visualization pipeline associated with this

process has three natural stages: selection and
preconditioning of data before it is processed by the
parallel computer, the main computational phase, and
then postprocessing to match the specific
visualization environment and requirements of the
user, including implementation of a prioritized data
movement algorithm, such as occlusion culling or
level-of-detail (LoD), to ensure minimum latency for
the viewer. This pipeline maps naturally into
GridSolve/L, with the pre- and post-processing stages
being mapped onto depots, with data transformation
being performed using the Network Functional Unit,
and the major computational stage being
implemented on a cluster using the NetSolve server
as its front end. The entire pipeline will in fact
appear to the user as a GridSolve/L call, with the
NetSolve server taking responsibility for directing the
functions of the depots used in all stages except the
initial upload and prioritized download of data, which
are the responsibility of the user application.

With the advent of ALSM, different distributed
visualization algorithms can be categorized in a
straightforwared way, as follows:

o those that pre-compute all results that may be
requested and use the service provider as a static
database. A simple movie or static iso-surface
streaming algorithms are good examples.

o those that maintain raw data on-the-fly, and,
compute view/predicate-dependent query results,
which are then transmitted to clients during run-
time. Examples include view-dependent
streaming techniques, such as view-dependent

LoD iso-surfaces and image-based streaming, or
schematic non-photo-realistic rendering methods
using strokes or stippling.

o those that transform raw data into various
intermediate forms, which then get converted to
other forms useful to a specific client interaction
during run-time. Examples include new transfer
function sensitive streaming methods and
temporal-spatial coherence based wavelet
compression/reconstructions, etc.
Just using simple LoRS tools, the first category

can be implemented indexing or addressing, as we
have shown in our paper [21]. Pre-computed results
can be staged on a local depot so close to client that
the network performance between the depot and
client never fails the requirement. The second
category requires some relatively complicated
operations, such as occlusion computation using
depth sorting, a software opacity buffer (a 2D array),
and array operations like summation, averaging, etc.
Image-based techniques may require a numerical
integration operation using the Riemann sum. The
shading procedures, used in non-photo-realistic
drawings, would use dot product, cos() and pow()
functions. All of these operations are ideal as NFU
data transformation primitives that are part of ALSM.

The third category is, the most challenging and
most useful. A GridSolve server library needs to
developed on the whole infrastructure. This library
will need to collect intermediate results from peer
depots before performing their main computations,
and the computations will need to be performed,
storing results on the IBP depots for post-processing.
A goal of our on-going research is to design and
build a suite of core GridSolve libraries for each of
the major area of visualization, including medical
visualization, volume rendering, iso-surfacing, flow
visualization, as well as time-varying multi-variate
visualization.

Using GridSolve/L, this visualization paradigm
can be applied in order to implement the DT-MRI
and fMRI visualization pipeline required to support
author Huang’s Vanderbilt collaborators. After a
subject has been scanned, a radiologist opens up his
Matlab client and invokes a Netsolve function to
construct the nerve network among a dozen regions
of interest (ROIs). The data moves to computation
nodes, where the brain nerve bundles connecting the
ROIs are computed in parallel. The raw imaging data
sets are not necessarily large, ranging between 50 to
100 MB per patient. However, the visualization
models of the nerve fibers can be so detailed that
more than 500 MB of visualization data are
generated. Matlab is not a tool that can comfortably
handle geometric data sets of such sizes. This then

 9

becomes a remote visualization problem as discussed
above. View-dependent and image-resolution
dependent data streaming, level-of-detail streaming,
occlusion culling, etc. would all be performed using
ALSM as the data is streamed back to radiologists at
Vanderbilt. The use of ALSM provides the
application developer significant control over how
data is transferred and buffered within the network.
The visualization component of the whole pipeline
can be the Matlab visualization toolkit or a custom-
made plug-in viewer.

4. Bibliography
[1] I. Foster and C. Kesselman, "The Grid:

Blueprint for a New Computing
Infrastructure," Morgan Kaufman
Publishers, 1999, pp. 677.

[2] J. Ousterhout, "The Role of Distributed
State," in CMU Computer Science: a 25th
Anniversary Commemorative, R. F. Rashid,
Ed.: Addison-Wesley, 1991, pp. 199--217.

[3] J. Carter, P. Cao, M. Dahlin, M. Scott, M.
Shapiro, and W. Zwaenepoel, "Distributed
State Management," Report of the NSF
Workshop on Future Directions for Systems
Research,, July 31, 1997.

[4] I. Foster, C. Kesselman, and S. Tuecke,
"The Anatomy of the Grid: Enabling
Scalable Virtual Organizations,"
International Journal of SuperComputer
Applications, vol. 15, no. 3, 2001.

[5] M. Beck, T. Moore, J. Plank, and M. Swany,
"Logistical Networking: Sharing More Than
the Wires," in Active Middleware Services,
vol. 583, The Kluwer International Series in
Engineering and Computer Science, S.
Hariri, C. Lee, and C. Raghavendra, Eds.
Boston: Kluwer Academic Publishers, 2000.

[6] M. Beck, T. Moore, and J. S. Plank,
"Exposed vs. Encapsulated Approaches to
Grid Service Architecture," in Grid
Computing -- GRID 2001, LNCS 2242, C.
Lee, Ed. Denver, CO: Springer Verlag,
2001, pp. 124-132.

[7] M. Beck, T. Moore, and J. S. Plank, "An
End-to-end Approach to Globally Scalable
Network Storage," in Proceedings of ACM
Sigcomm 2002. Pittsburgh, PA: Association
for Computing Machinery, 2002, pp. 339-
346.

[8] J. S. Plank, A. Bassi, M. Beck, T. Moore, M.
Swany, and R. Wolski, "Managing Data
Storage in the Network," IEEE Internet
Computing, vol. 5, no. 5, pp. 50-58,
September/October, 2001.

[9] H. Casanova and J. Dongarra, "Applying
NetSolve's Network Enabled Server," IEEE
Computational Science & Engineering, vol.
5, no. 3, pp. 57-66,1998.

[10] D. C. Arnold and J. Dongarra, "The
NetSolve Environment: Progressing
Towards the Seamless Grid," in Proceedings
of the 2000 ICPP Workshops, P.
Sadayappan, Ed. Toronto, Canada: IEEE
Computer Society, 2000, pp. 199-206.

[11] M. Beck, F. Berman, H. Casanova, J.
Dongarra, T. Moore, J. Plank, and R.
Wolski, "Logistical Quality of Service in
NetSolve," Computers and
Communications, vol. 22 pp. 1034-
1044,1999.

[12] A. Bassi, M. Beck, G. Fagg, T. Moore, J.
Plank, M. Swany, and R. Wolski, "The
Internet Backplane Protocol: A Study in
Resource Sharing," in IEEE International
Symposium on Cluster Computing and the
Grid (CCGrid 2002). Berlin, Germany:
IEEE, 2002.

[13] W. Elwasif, J. Plank, and R. Wolski, "Data
Staging in Wide Area Task Farming
Applications," in IEEE International
Symposium on Cluster Computing and the
Grid. Brisbane, Australia, 2001, pp. 122-29.

[14] D. C. Arnold, S. S. Vahdiyar, and J.
Dongarra, "On the Convergence of
Computational and Data Grids," Parallel
Processing Letters, vol. 11, no. 2, pp. 187-
202, June/September, 2001.

[15] H. Casanova, A. Legrand, D. Zagorodnov,
and F. Berman, "Heuristics for Scheduling
Parameter Sweep Applications in Grid
Environments," in 9th Heterogeneous
Computing Workshop (HCW'00). Cancun,
Mexico, 2000, pp. 349-363.

[16] H. Casanova, F. Berman, G. Orbertelli, and
R. Wolski, "The AppLeS Parameter Sweep
Template: User-Level Middleware for the
Grid," in Proceedings of Supercomputing
2000 (SC2000). Dallas, TX, 2000.

[17] A. Agbaria and J. S. Plank, "Design,
Implementation, and Performance of
Checkpointing in NetSolve," in
International Conference on Dependable
Systems and Networks (FTCS-30 and
DCCA-8): IEEE, 2000, pp. 49-54.

[18] D. Thain, J. Basney, S.-C. Son, and M.
Livny, "The Kangaroo Approach to Data
Movement on the Grid," in Proceedings of
the Tenth IEEE Symposium on High
Performance Distributed Computing
(HPDC10), 2001.

 10

[19] M. Beck, T. Moore, and J. S. Plank, "An
End-to-End Approach to Globally Scalable
Programmable Networking," presented at
Future Directions in Network Architecture
(FDNA-03), an ACM SIGCOMM 2003
Workshop, Karlsruhe, Germany, August 25-
29, 2003.

[20] J. S. Plank, S. Atchley, Y. Ding, and M.
Beck, "Algorithms for High Performance,
Wide-area Distributed File Downloads,"
Parallel Processing Letters, vol. 13, no. 2,
pp. 207-224, June, 2003.

[21] J. Ding, J. Huang, M. Beck, S. Liu, T.
Moore, and S. Soltesz, "Remote
Visualization by Browsing Image Based
Databases with Logistical Networking," in
Proceedings of SC2003. Pheonix, AZ, 2003.

[22] D. P. Reed, J. H. Saltzer, and D. D. Clark,
"Comment on Active Networking and End-
to-End Arguments," IEEE Network, vol. 12,
no. 3, pp. 69-71, May/June, 1998.

[23] L. F. G. Sarmenta and S. Hirano,
"Bayanihan: building and studyingWeb-
based volunteer computing systems using
Java," Future Generation Computer
Systems, vol. 15, no. 5-6, pp. 675-686,1999.

[24] L. F. G. Sarmenta, "Sabotage-tolerance
mechanisms for volunteer computing
systems," Future Generation Computer
Systems, vol. 18, no. 4, pp. 561-572,2002.

[25] A. Bassi, M. Beck, and T. Moore, "Mobile
Management of Network Files," in Third
Annual International Workshop on Active
Middleware Services (AMS 2001). San
Franscisco, CA: Kluwer Academic
Publishers, 2001, pp. 106-115.

[26] J. S. Plank, H. Casanova, M. Beck, and J.
Dongarra, "Deploying Fault Tolerance and
Task Migration with NetSolve," Future
Generation Computer Systems, vol. 15, no.
5-6, pp. 745-755,1999.

[27] S. Sekiguchi, M. Sato, H. Nakada, S.
Matsuoka, and U. Nagashima, "Ninf :
Network based Information Library for
Globally High Performance Computing,"
presented at Proc. of Parallel Object-
Oriented Methods and Applications
(POOMA), Santa Fe, NM, 1996.

[28] J. S. Plank, S. Atchley, Y. Ding, and M.
Beck, "Algorithms for High Performance,
Wide-Area, Distributed File Downloads,"
Department of Computer Science,
University of Tennessee, Knoxville,
Technical Report, UT-CS-02-485, October,
2002.

[29] A. Beguelin, J. J. Dongarra, G. A. Geist, R.
Manchek, and V. S. Sunderam, "HeNCE:
Graphical Development Tools for Network-
Based Concurrent Computing," in
Proceedings SHPCC-92, 1992, pp. 129-136.

[30] D. Cummings and L. Alkalaj,
"Checkpoint/rollback in a distributed system
using coarse-grained dataflow," presented at
24th International Symposium on Fault-
Tolerant Computing, Austin, TX, 1994.

[31] C. R. Johnson, S. Parker, D. Weinstein, and
S. Heffernan, "Component-Based Problem
Solving Environments for Large-Scale
Scientific Computing," Journal on
Concurrency and Computation: Practice
and Experience, vol. 14 pp. 1337-
1349,2002.

[32] W. Bausch, C. Pautasso, R. Schaeppi, and
G. A. . "BioOpera: Cluster-aware
Computing," in Proc. of the 4th IEEE
International Conference on Cluster
Computing (Cluster 2002). Chicago, IL,
2002.

[33] D. Boley, G. H. Golub, S. Makar, N.
Saxena, and E. J. McCluskey, "Floating
Point Fault Tolerance with Backward Error
Assertions," IEEE Transactions on
Computers, vol. 44, no. 2, pp. 302-11,
February, 1995.

[34] P. J. Basser, J. Mattiello, and D. Le Bihan,
"MR diffusion tensor spectroscopy and
imaging," Biophysics Journal, vol. 66 pp.
259-267,1994.

[35] D. J. Heeger and D. Ress, "What does fMRI
tell us about neuronal activity?," Nature
Reviews Neuroscience, vol. 3 pp. 142-
151,2002.

