
Accurate Cache and TLB Characterization

Using Hardware Counters

Jack Dongarra, Shirley Moore, Philip Mucci, Keith Seymour, and Haihang You

Innovative Computing Laboratory, University of Tennessee
Knoxville, TN 37996-3450 USA

fdongarra,shirley,mucci,seymour,youg@cs.utk.edu

Abstract. We have developed a set of microbenchmakrs for accurately
determining the structural characteristics of data cache memories and
TLBs. These characteristics include cache size, cache line size, cache as-
sociativity, memory page size, number of data TLB entries, and data
TLB associativity. Unlike previous microbenchmarks that used time-
based measurements, our microbenchmarks use hardware event counts
to more accurately and quickly determine these characteristics while re-
quiring fewer limiting assumptions.

1 Introduction

Knowledge of data cache memory and data TLB characteristics is becoming in-
creasingly important in performance optimization and modeling. Cache-conscious
algorithmic design is the basis of tuned numerical libraries, such as the BLAS
and LAPACK and has been shown to improve full application performance sig-
ni�cantly [4, 5]. Compilers and automatically tuned software systems such as
ATLAS [10] and PHiPAC [2] need accurate information about cache and TLB
characteristics to generate optimal code. This information is also important for
performance modeling techniques such as those described in [7, 8]. In [8], it is
hypothesized that much of the error in the miss surfaces used for the perfor-
mance modeling lies in the creation of the cache characterization surfaces. This
and other performance modeling work would bene�t from more accurate cache
characterization for new architectures.

Published information about detailed cache and TLB characteristics can be
diÆcult to �nd or may be inaccurate or out-of-date. Thus, it will often be nec-
essary to determine or verify this information empirically. This paper describes
a methodology of instrumenting some microbenchmark codes that exercise the
cache and memory subsystem to collect hardware counter data for cache and
memory events. These data can then be used to give accurate numbers for cache
and TLB characteristics. We describe how our methodology builds on and ex-
tends previous work based on timings of microbenchmarks, give results for the
Itanium2 processor, and discuss ideas for future work and applications of the
results.



2 Methodology

Previous work measured the time to execute simple memory-bound loops on
arrays of di�erent sizes and with di�erent strides, and estimated the cache and
TLB characteristics from the results [6, 9]. The data cache and TLB character-
istics can be calculated once the number of memory references and the number
of cache and TLB misses are known for the di�erent array sizes and strides.
Previous work inferred the numbers of misses from the timing results. In [6], an
analytical model is developed for a single cache that identi�es four cases that
show up as four distinct regions on the timing curves. The model assumes a sin-
gle blocking cache with an LRU replacement policy, and it can determine cache
size, cache line size, and cache associativity from the timing results. The same
model is used for TLB characterization, and the values for the array size and
stride at which the TLB phenomena occur are di�erent enough from those for
the cache phenomena that the e�ects can be isolated from one another.

In [9], the analytical model from [6] is �rst extended from four to six cases to
include transitional portions of the timing curves. The model is further extended
to a system with two caches. The two-cache model assumes that the second-
level cache includes the �rst-level, that both caches have the same block size,
that associativity is non-decreasing, that there is not prefetching, and that the
replacement policy for both caches is LRU. Six cases are identi�ed and some
fairly complicated timing formulas are given that allow the cache characteristics
of the two caches to be calculated from timing results for the microbenchmarks.
Next the model is extended to a two-cache system with a TLB. Some assumptions
on the TLB operation are made, seven cases are identi�ed, and another set of
formulas is given.

The above approaches break down when the simplifying assumptions do not
hold { e.g., in the presence of non-blocking caches or prefetching. In some newer
processors, the assumption of cache inclusivity does not always hold. These fac-
tors, combined with variability in timing results, make it diÆcult to obtain cache
and TLB characteristics accurately on new architectures using the above ap-
proaches.

Our approach uses hardware counters to obtain precise values for the number
of misses at di�erent levels of data cache and for the data TLB. The cache
characteristics can then be directly inferred from the miss counts, rather than
indirectly from timing data. To collect these data, we use the PAPI portable
interface to hardware performance counters [3]. PAPI de�nes both a standard
set of routines for accessing the counters and a standard set of events. As many
as possible of the PAPI standard events are mapped to native events on a given
platform. On processors where they are available, we measure PAPI standard
events shown in Table 1 for our microbenchmarks. We then plot separate curves
for each of these events. The cache and TLB characteristics can be read directly
o� each curve as well as being determined exactly by the numerical results.

For processors on which one or more of the above events are not available, we
can use those events that are available to accurately determine the cache char-



PAPI L1 DCM Level 1 data cache misses

PAPI L2 DCM Level 2 data cache misses

PAPI L3 DCM Level 3 data cache misses

PAPI TLB DM Data TLB misses

Table 1. PAPI standard cache and TLB events

acteristics for those levels and then deduce the remaining characteristics using
the formulas from [9]. On some platforms, another event may be available that
is closely correlated to the missing event and thus can be used as a substitute.

Due to the fact that cache and TLB miss events exhibit little or no variability
from run to run, whereas timing measurements are more variable, our hardware
counter approach requires fewer trials to achieve accurate results. This savings
in time is important for applications such as automatically tuned software that
need to generate optimal code in a reasonable amount of time.

We have developed two microbenchmarks:

{ papi cacheSize which increases the size of the array being referenced with
stride one until it exceeds the capacities of the various levels of cache mem-
ory. Both integer and 
oating point type data are tested, since on some
architectures, such as the Itanium 2, these types are treated di�erently by
the cache and memory system. The loop is timed and the number of cache
misses at each level measured for each array size. A sharp increase in the
number of cache misses occurs when the cache size is exceeded.

{ papi cacheBlockwhich increases the stride with which an array of �xed size
is being referenced (with the array size chosen depending on the cache size)
by powers of two from stride one to stride equal to the array size. Again, both
integer and 
oating point data are tested. The total number of iterations is
held constant. A sharp increase in the number of misses occurs at the cache
line size, and a drop to zero occurs when the total number of array items
referenced �ts within one cache set.

For analysis of the papi cacheBlock results, we consider the following cases,
where C is the cache size, N is the array size, s is the stride, b is the cache block
or line size, and a is the cache associativity:

1. N > C and 1 � s � b
There is one miss every b/s accesses. Since we double the number of iterations
as we double the stride, the total number of misses also doubles.

2. N > C and b � s < N=a
There is one miss every access. We reduce the number of di�erent cache lines
accessed by a factor of two every time we double the stride in this region,
but since we also reduce the number of cache congruence classes in use by
the same factor, the number of misses stays constant in this region.

3. N > C and N=a � s � N
Only N=s � a array elements are accessed. Since all of them �t in a single
cache set, there are no more misses.



3 Results

In this section, we show representative results for the Itanium 2 platform. Similar
results can be obtained on any of the platforms on which PAPI is implemented,
which include IBM POWER3/4, MIPS R10K/R12K/R14K/R16K, Sun Ultra-
Sparc, HP Alpha, Pentium, Opteron, and Cray X1, although on some of these
platfomrs we are limited by the availability of hardware counter events for di�er-
ent levels of cache and TLB. We show the results in graphical form for illustrative
purposes.

Our results for the Itanium 2 are shown in Figures 1-6. Figure 1 shows the
results of running the papi cacheSize microbenchmark instrumented to count
the PAPI L1 DCM, PAPI L2 DCM, and PAPI L3 DCM events in addition to
timing the execution of the loop for di�erent array sizes up to 8 megabytes using
integer data type. The curves show the L1 data cache size of 16KB, the L2
cache size of 256KB, and the L3 cache size of 1.5MB. Figure 2 shows the results
for the events PAPI L2 DCM and PAPI L3 DCM for double precision real data
type. L1 data cache misses are not shown for double precision real data type,
because 
oating point loads bypass the L1 data cache and L1 DTLB. The faster
time for real data is most likely due to the high bandwidth data paths to and
from the L2 cache and the 
oating point register �le and the L1 cache bypass
for 
oating point data. Figure 3 shows the papi cacheSize microbenchmark
instrumented to count L1 DTLB misses and PAPI TLB DM (which is mapped
to native L2DTLB MISSES) using integer data type. The L1 DTLB misses are
generated by adding the counts for the native events L1DTLB TRANSFER
(L1DTLB misses hit in L2DTLB) and L2DTLB MISSES. Because the L1 DTLB
is a strict subset of the L2 DTLB, a L2 DTLB miss is also a L1 DTLB miss. We
see that the L1 DTLB has 32 entries since L1 DTLB misses begin to occur at
an array size of 32� 4K = 217 bytes (see papi cacheBlock results below for the
page size). Similarly, we see that the L2 DTLB has 128 entries since the page
size is 16K and misses begin to occur at an array size of 128� 16K = 221 bytes.

Figure 4 shows the results of running the papi cacheBlockmicrobenchmark
instrumented to count the PAPI L1 DCM and native L1 DTLB miss events for
the integer data type. We can see that the L1 cache line size is 27 = 128 bytes
and that the L1 cache has 4-way associativity. We can also see that the L1
DTLB page size is 212 = 4K bytes and that the L1 DTLB is fully associative.
Figure 5 shows the results of runnning the papi cacheBlock microbenchmark
instrumented to count the PAPI L2 DCM and PAPI TLB DM (which is mapped
to native L2DTBL MISSES) events for integer data type, and Figure 6 shows
the same results for double precision real data type. We can see that the L2
cache line size is 27 = 128 bytes and that the L2 cache has 8-way associativity.
We can also see that the page size is 16K bytes and that the L2 DTLB is fully
associative. Note that the curves for Figures 5 and 6 have the same shape but
that the execution time in Figure 6 is less. Again, this di�erence is most likely
due to the high bandwidth data paths to and from the L2 cache and the 
oating
point register �le and the L1 cache bypass for 
oating point data. The reason
for the di�erence in pages sizes for the L1 DTLB and L2 DTLB is that the L1



DTLB has a �xed page size of 4KB. Larger page sizes are supported by allocating
additional L1 DTLB entries as a 4KB portion of the larger page [1].

4 Conclusions and Future Work

We have shown how hardware counter measurements can be used to generate
accurate information about data cache and TLB characteristics on modern mi-
croprocessors. Even for processors where non-blocking caches, prefetching, and
other latency-hiding techniques can make determining cache and TLB character-
istics from timing results diÆcult, hardware counter measurements can produce
accurate results.

We plan to release the papi cacheSize and papi cacheBlock microbench-
marks as part of PAPI 3.0. Scripts will be included for analyzing and plotting the
data. The most portable and eÆcient means available will be used for determin-
ing the cache and TLB characteristics, starting with PAPI standard cache and
TLB events. Next native cache and TLB events will be used, and �nally other
hardware events and timing results from which cache and TLB characteristics
can be inferred.

We plan to use automated determination of cache and TLB information in
our research to extend semi-automatic tuning, already demonstrated for the
BLAS [10] to higher level libraries, including sparse methods. The information
will also be used to generate more accurate machine signatures for performance
modeling e�orts in which we are collaborating.

For more information about PAPI, including software and documentation,
see the PAPI web site at http://icl.cs.utk.edu/papi/.

References

1. Intel Itanium 2 Processor Reference Manual. http://developer.intel.com/, Apr.
2003.

2. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply
using PhiPAC: a portable high-performance ANSI C coding methodology. In Proc.
International Conference on Supercomputing, Vienna, Austria, 1997.

3. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. International Journal
of High Performance Computing Applications, 14(3):189{204, 2000.

4. T. M. Chilimbi, M. D. Hill, and J. D. Larus. Cache-conscious structure layout.
In Proc. 1999 ACM SIGPLAN Conference on Programming Languages and Imple-
mentation (PLDI), pages 1{12, 1999.

5. W. Jalby and C. Lemuet. Exploring and optimizing Itanium2 cache performance for
scienti�c computing. In Proc. 2nd Workshop on EPIC Architectures and Compiler
Technology, Istanbul, Turkey, Nov. 2002.

6. R. H. Saavedra and A. J. Smith. Measuring cache and TLB performance and their
e�ect on benchmark runtimes. IEEE Transactions on Computers, 44(10):1223{
1235, 1995.



7. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A
framework for performance modeling and prediction. In Proc. SC2002, Baltimore,
MD, Nov. 2002.

8. E. S. Sorenson and J. K. Flanagan. Cache characterization surfaces and predicting
workload miss rates. In Proc. 4th IEEE Workshop on Workload Characterization,
pages 129{139, Austin, Texas, Dec. 2001.

9. C. Thomborson and Y. Yu. Measuring data cache and TLB parameters under
Linux. In Proc. 2000 Symposium on Performance Evaluation of Computer and
Telecommunication Systems, pages 383{390. Society for Computer Simulation In-
ternational, July 2000.

10. R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of
software and the ATLAS project. Parallel Computing, 27(1-2):3{25, 2001.

6.1e-08

6.2e-08

6.3e-08

6.4e-08

6.5e-08

6.6e-08

6.7e-08

6.8e-08

6.9e-08

1 4 16 64 256 1024 4096

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e 
(s

)

L1
 L

2 
L3

 M
is

se
s

Array Size (KB, logscale)

papi_cacheSize -- Itanium2(900MHZ)

Avg Mem Access Time
L1 Misses
L2 Misses
L3 Misses

Fig. 1. Itanium2 Cache Sizes with Integer Data Type



4.6e-08

4.8e-08

5e-08

5.2e-08

5.4e-08

5.6e-08

5.8e-08

6e-08

6.2e-08

0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e 
(s

)

L2
 L

3 
C

ac
he

 M
is

se
s

Array Size (KB)

papi_cacheSize -- Itanium2(900MHZ)

Avg Mem Access Time
L2 Misses
L3 Misses

Fig. 2. Itanium2 Level 2 and 3 Cache Sizes with Real Data Type

6.1e-08

6.2e-08

6.3e-08

6.4e-08

6.5e-08

6.6e-08

6.7e-08

6.8e-08

6.9e-08

0 500 1000 1500 2000 2500 3000 3500 4000

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e(
s)

L1
 L

2 
D

T
LB

 M
is

se
s

Array Size (KB)

papi_cacheSize -- Itanium2(900MHZ)

Avg Mem Access Time
DTLB1 Misses
DTLB2 Misses

Fig. 3. Itanium2 Level 1 and 2 DTLB Sizes with Integer Data Type



5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

0 5 10 15 20 25

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e

L1
 C

ac
he

/T
LB

 M
is

se
s

Stride Size(power of 2)

papi_cacheBlock -- Itanium2(900MHZ)

Avg Mem Access Time
L1 Misses

TLB1 Misses

Fig. 4. Itanium2 Level 1 Cache and TLB Characteristics with Integer Data Type

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

0 5 10 15 20 25

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e

L2
 C

ac
he

/T
LB

 M
is

se
s

Stride Size(power of 2)

papi_cacheBlock -- Itanium2(900MHZ)

Avg Mem Access Time
L2 Misses

TLB2 Misses

Fig. 5. Itanium2 Level 2 Cache and TLB Characteristics with Integer Data Type



4e-08

6e-08

8e-08

1e-07

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

2.2e-07

2.4e-07

2.6e-07

0 5 10 15 20 25

A
vg

 M
em

or
y 

A
cc

es
s 

T
im

e

L2
 C

ac
he

/T
LB

 M
is

se
s

Stride Size(power of 2)

papi_cacheBlock -- Itanium2(900MHZ)

Avg Mem Access Time
L2 Misses

TLB2 Misses

Fig. 6. Itanium2 Level 2 Cache and TLB Characteristics with Real Data Type


