
The LAPACK for Clusters Project: an Example of Self Adapting
Numerical Software∗

Zizhong Chen† Jack Dongarra‡† Piotr Luszczek† Kenneth Roche†

June 14, 2003

Abstract

This article describes the context, design, and recent de-
velopment of the LAPACK for Clusters (LFC) project. It
has been developed in the framework of Self-Adapting
Numerical Software (SANS) since we believe such an
approach can deliver the convenience and ease of use of
existing sequential environments bundled with the power
and versatility of highly-tuned parallel codes that execute
on clusters. Accomplishing this task is far from trivial as
we argue in the paper by presenting pertinent case studies
and possible usage scenarios.

1 Introduction

Driven by the desire of scientists for ever higher lev-
els of detail and accuracy in their simulations, the size
and complexity of required computations is growing at
least as fast as the improvements in processor technol-
ogy. Scientific applications need to be tuned to extract
near peak performance especially as hardware platforms
change underneath them. Unfortunately, tuning even the
simplest real-world operations for high performance usu-
ally requires an intense and sustained effort, stretching
over a period of weeks or months, from the most techni-

∗This work is partially supported by the DOE LACSI - Subcontract
#R71700J-29200099 from Rice University and by the NSF NPACI –
P.O. 10181408-002 from University of California Board of Regents via
Prime Contract #ASC-96-19020.

†Innovative Computing Laboratory, Computer Sci-
ence Department, University of Tennessee Knoxville,
{dongarra,luszczek,roche,zchen}@cs.utk.edu

‡Computational Science and Mathematics Division, Oak Ridge Na-
tional Laboratory, Tennessee

cally advanced programmers, who are inevitably in very
scarce supply. While access to necessary computing
and information technology has improved dramatically
over the past decade, the efficient application of scientific
computing techniques still requires levels of specialized
knowledge in numerical analysis, mathematical software,
computer architectures, and programming languages that
many working researchers do not have the time, the en-
ergy, or the inclination to acquire. With good reason sci-
entists expect their computing tools to serve them and not
the other way around. And unfortunately, the growing
desire to tackle highly interdisciplinary problems using
more and more realistic simulations on increasingly com-
plex computing platforms will only exacerbate the prob-
lem. The challenge for the development of next genera-
tion software is the successful management of the com-
plex computing environment while delivering to the sci-
entist the full power of flexible compositions of the avail-
able algorithmic alternatives and candidate hardware re-
sources.

Self-Adapting Numerical Software (SANS) systems
are intended to meet this significant challenge [1]. In par-
ticular, the LAPACK For Clusters (LFC) project, that we
describe in this paper, focuses on issues related to solv-
ing linear systems for dense matrices on highly parallel
computers. Empirical studies [2] of computing solutions
to linear systems of equations demonstrated the viability
of the method finding that (on the clusters tested) there is
a problem size that serves as a threshold. For problems
greater in size than this threshold, the time saved by the
self-adaptive method scales with the parallel application
justifying the approach. In other words, the user saves
time employing the self-adapting software.

This paper is organized as follows. Section 2 provides a

1



general discussion of self adaptation and its relation to nu-
merical software and algorithms. Section 3 introduces and
gives some details on LFC while sections 4 and 5 describe
the design and implementation of LFC in much greater
detail. Section 6 attempts to substantiate the claims from
the preceding sections with experimental data. Finally,
sections 7 and 8, respectively, conclude the paper and ac-
knowledge those that helped in its preparation.

2 Related Work

Achieving optimized software in the context described
here is anN P -hard problem [3, 4, 5, 6, 7, 8, 9]. Nonethe-
less, self-adapting software attempts to tune and approx-
imately optimize a particular procedure or set of proce-
dures according to details about the application and the
available means for executing the application.

The ability to adapt to various circumstances may be
perceived as choosing from a collection of algorithms
and parameters to solve a problem. Such a concept has
been appearing in the literature [10] and currently is be-
ing used in a wide range of numerical software compo-
nents. The ATLAS [11] project started as a “DGEMM op-
timizer” [12] but continues to successfully evolve by in-
cluding tuning for all levels of Basic Linear Algebra Sub-
routines (BLAS) [13, 14, 15, 16] and LAPACK [17] as
well as by making decisions at compilation and execution
time. Similar to ATLAS, but perhaps more limited, func-
tionality was included in the PHiPAC [18] project. Itera-
tive methods and sparse linear algebra operations are the
main focus of numerous efforts. Some of them [19, 20]
target convergence properties of iterative solvers in a par-
allel setting while others [21, 22, 23, 24, 25] optimize
the most common numerical kernels or provide intelli-
gent algorithmic choices for the entire problem solving
process [26, 27]. In the area of parallel computing, re-
searchers are offering automatic tuning of generic collec-
tive communication routines [28] or specific ones as in
the HPL project [29]. Automatic optimization of the Fast
Fourier Transform (FFT) kernel has also been under in-
vestigation by many scientists [30, 31, 32]. In grid com-
puting environments [33], holistic approaches to software
libraries and problem solving environments such as de-
fined in the GrADS project [34] are actively being tested.
Proof of concept efforts on the grid employing SANS

components exist [35] and have helped in forming the ap-
proach followed in LFC.

3 LFC Overview

With this paper we develop the concept of Self-Adapting
Numerical Software for numerical libraries that execute
in the cluster computing setting. The central focus is the
LFC software which supports a serial, single processor
user interface, but delivers the computing power achiev-
able by an expert user working on the same problem who
optimally utilizes the resources of a cluster. The basic
premise is to design numerical library software that ad-
dresses both computational time and space complexity is-
sues on the user’s behalf and in a manner transparent to
the user. The software intends to allow users to either link
against an archived library of executable routines or ben-
efit from the convenience of prebuilt executable programs
without the hassle of resolving linker dependencies. The
user is assumed to call one of the LFC routines from a
serial environment while working on a single processor
of the cluster. The software executes the application. If
it is possible to finish executing the problem in less time
by mapping the problem into a parallel environment, then
this is the thread of execution taken. Otherwise, the appli-
cation is executed locally with the best choice of a serial
algorithm. The details for parallelizing the user’s prob-
lem such as resource discovery, selection, and allocation,
mapping the data onto (and off of) the working cluster
of processors, executing the user’s application in paral-
lel, freeing the allocated resources, and returning con-
trol to the user’s process in the serial environment from
which the procedure began are all handled by the soft-
ware. Whether the application was executed in a parallel
or serial environment is presumed not to be of interest to
the user but may be explicitly queried. All the user knows
is that the application executed successfully and, hope-
fully, in a timely manner.

LFC addresses user’s problems that may be stated in
terms of numerical linear algebra. The problem may oth-
erwise be dealt with one of the LAPACK [17] routines
supported in LFC. In particular, suppose that the user has
a system ofn linear equations withn unknowns,Ax= b.
Three common factorizations apply for such a system and
are currently supported by LFC (see Table 1 for details).

2



LFC assumes that only a C compiler, an Message Pass-
ing Interface (MPI) [36, 37, 38] implementation such as
MPICH [39] or LAM MPI [40], and some variant of the
BLAS routines, be it ATLAS or a vendor supplied imple-
mentation, is installed on the target system. Target sys-
tems are intended to be “Beowulf-like” [41].

4 LFC’ Selection Processes

Given that decompositional techniques are methods of
choice for dense linear systems [42], LFC follows a two-
step procedure to obtain a solution: it first factorizes the
system matrix and then performs substitution with the fac-
tors.

Currently, LFC chooses its factorization algorithm
among the following:

• piped-recursive (serial environment),

• in-memory blocked (serial environment),

• distributed memory, right-looking (parallel environ-
ment).

In the sequential environment, a stand-alone variant of
the relevant LAPACK routines form the backbone of the
serial applications in LFC. Achieving high performance
in a sequential environment might seem trivial for expert
users. Thus, we provide linker interface to enable such
users to take advantage their favorite BLAS library. How-
ever, less experienced users could possibly have problems
while dealing with linker dependencies. For such users,
we provide an executable binary that is correctly built and
capable of solving a linear system in a child process with
data submitted through a system pipe. Two overheads re-
sult from such an approach: the time spent infork(2)
andexec(3) system calls and copying the data between
separate process’ address spaces. Intuitively (and empiri-
cally as shown later on), both overheads will have a lesser
impact with increasing dimension of the matrix (the sys-
tem calls, data copying and linear solver have computa-
tional complexitiesO(1), O(n2), andO(n3) respectively).

The LFC’ parallel solver have a stand-alone variant of
the relevant ScaLAPACK and Basic Linear Algebra Com-
munication Subprograms (BLACS). This allows leverag-
ing a large body of expertise as well as software design
and engineering. It also allows developers to focus on

new issues and address common problems encountered
by users.

Once a decision has been made and the parallel al-
gorithm to be used, there are still possibilities to be ac-
counted for in order to achieve desirable levels of perfor-
mance. This phase of selection concerns various param-
eters of the aforementioned parallel algorithm. However,
it is not merely a final code tuning exercise as the wrong
choices may have disastrous effects in performance terms.
The most important possibilities include:

• block size,

• processor count,

• logical process grid aspect ratio,

• processor set.

LAPACK and ScaLAPACK require a tuning parameter
– a block size – which is crucial to attaining high perfor-
mance. If LAPACK’s functionality was embedded in an
archived library which was supplied by the vendor then
the burden of selecting the block size would have been
removed from the user. However, if the vendor supplies
only a BLAS library then the block size selection is to be
made by the user and there is a possibility of degrading
the performance by inappropriate choice. Thus, all the ef-
fort that went into tuning the BLAS may be wasted. It is
possible to solve the problem in a sequential environment
because of theoretical advances [43, 44, 45] in the decom-
positional approach in matrix computations. But in a par-
allel setting, the procedure is still not mature enough [46]
and consequently there is a need for extra effort when se-
lecting parameters that will define the parallel runtime en-
vironment for the specific application.

As mentioned earlier, in the parallel environment,
proper choice of resources is harder than in the sequen-
tial setting due to a larger set of parameters to selected
properly. ScaLAPACK Users’ Guide [47] provides the
following equation for predicting the total timeT spent in
one of its linear solvers (LLT, LU, or QR) on matrix of
sizen in NP processes [48]:

T(n,NP) =
Cf n3

NP
t f +

Cvn2
√

NP
tv +

Cmn
NB

tm (1)

where:

3



Driver Cf Cv Cm

LU 2/3 3+1/4log2NP NB(6+ log2NP)
LLT 1/3 2+1/2log2NP 4+ log2NP

QR 4/3 3+ log2NP 2(NB log2NP +1)

Table 1: Performance parameters of ScaLAPACK. All
costs entries correspond to a single right-hand side; LU,
LLT and QR correspond toPxGESV, PxPOSV, andPxGELS
routines, respectively.

• t f time per floating-point operation (matrix-matrix
multiplication flop rate is a good starting approxima-
tion)

• tm corresponds to latency

• 1/tv corresponds to bandwidth

• Cf corresponds to number of floating-point opera-
tions (see Table 1)

• Cv andCm correspond to communication costs (see
Table 1)

In contrast, for a single processor the equation is:

Tseq(n) = Cf n
3t f (2)

The equation (1) yields surprisingly good predic-
tions (more homogeneous the system, the more accurate
the prediction). The surprise factor comes from the num-
ber of simplifications that were made in the model which
was used to derive the equation. The hard part in using
the equation is measuring system parameters which are
related to some of the variables in the equation. The hard-
ship comes from the fact that these variables do not corre-
spond directly to typical hardware specifications and can-
not be obtained through simple tests. In a sense, this situ-
ation may be regarded as if the equation had some hidden
constants which are to be discovered in order to obtain
reasonable predictive power. At the moment we are not
aware of any reliable way of acquiring those parameters
and thus we rely on parameter fitting approach that uses
timing information from previous runs.

Our experimental results (presented later on) illustrate
the fact that it is far from sufficient to choose the right

number of processors. The key is to select the right as-
pect ratio of the logical process grid (unfortunately equa-
tion (1) does not account for it), i.e. the number of process
rows divided by the number of process columns. In partic-
ular, sometimes it might be better for overall performance
to use a smaller number of processors than the total num-
ber of the available ones.

Lastly there exist influential aspects in decision making
process that are worth mentioning:

• per-processor performance (parallel efficiency),

• resource utilization (memory),

• time to solution (user perspective).

Trivially, the owner of the system is interested in opti-
mal resource utilization while the user expects the shortest
time to obtain the solution. Instead of aiming at optimiza-
tion of either the former (by maximizing memory utiliza-
tion and sacrificing the total solution time by minimizing
the number of processes involved) or the latter (by using
all the available processors) LFC attempts to balance the
two. In the future, we envisage more general scheduling
policies to take over this balancing and provide a better
control of how the resources are used.

5 Resource Monitoring and Data
Mapping

LFC allows to choose various variants of monitoring:

• interface to Network Weather Service (NWS),

• LFC monitoring daemon, and

• manual (user-guided) resource specification.

LFC uses discovery and adaptivity to assist the user in
problem solving. Cluster state information is continually
being assembled. The services provided by the NWS [49]
may be utilized by LFC, provided that the NWS sensors
have been configured to monitor the same resources that
are used by parallel MPI applications.

A solution catered specifically to LFC’ needs has also
been developed. While conceptually similar, the solution
addresses the monitoring problem from a standpoint of a

4



parallel MPI application. The following steps are repeated
by the information gathering daemon process: a proces-
sor discovery routine is invoked that accounts for the exis-
tence of candidate resources, the available physical mem-
ory per processor is assessed, the time-averaged CPU load
of each processor in a node is assessed, read/write times
per processor to/from the local and network disks is as-
sessed, point-to-point and global communications laten-
cies and bandwidths on the cluster are assembled, and the
core kernel of matrix-matrix multiplication is studied per
processor. In addition to this data gathering cycle, there
is an interest in the one-time discovery of the underlying
memory hierarchy. Random access loads and stores with
uniform and non-uniform stride help with this discovery.

In addition, there exists also a choice of a largely sim-
plified solution for restrictive environments. In such a set-
ting, the user manually (and presumably in a static man-
ner) describes the computational environment to be used
by LFC.

Data mapping component of LFC moves the data de-
scribing a linear system between sequential and parallel
environments. The former being the initial user setting
and the latter being the one chosen by LFC for execu-
tion. The component takes care of data transformation
from their initial layout into the one more suitable for par-
allel execution – 2D block cyclic distribution [50].

6 Experimental Results

First, we present experimental results on a single pro-
cessor that show the array of possibilities available for
the user of LFC. In the sequential environment, a stand-
alone (i.e. without user-visible linker dependencies) vari-
ant of the relevant LAPACK routines form the backbone
of the serial applications in LFC. Achieving high perfor-
mance in such an environment might be questionable as
it involves overheads of system calls and data copying as
it was mentioned earlier. The following data sheds some
light on the impact that these overheads have on the real
world performance of a linear solver. Figure 1 shows
the performance data. The figure compares the following
types of solvers:

• Recursive LU solver with optimized (in this case
from ATLAS) BLAS – an expert user case,

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
flo

p/
s

Matrix dimension

Recursive LU and Atlas BLAS
LAPACK LU and Atlas BLAS

Recursive LU and Atlas BLAS and pipe()
Recursive LU and blocked BLAS

Figure 1: Performance comparison between the stan-
dard LAPACK’s linear solve routine and the same rou-
tine executed in a separate process created withfork(2)
and exec(3) system calls (matrix and right hand side
data are sent through a system pipe, only solution data
is sent back). The tested machine had an Intel Pentium 4
2.4 GHz processor with Atlas 3.4.1.

• LAPACK (block iterative) LU solver with opti-
mized (in this case from ATLAS) BLAS – an expert
LAPACK user case,

• Recursive LU solver with optimized (in this case
from ATLAS) BLAS invoked through a system pipe
– a case for an LFC user without knowledge of
BLAS linking requirements,

• Recursive LU solver with blocked BLAS [51] – a
case for any user on a RISC-based system without
optimized BLAS.

For large enough matrices there exists about 10%-20%
of performance drop and the difference decreases as the
matrix size increases. We believe that for many users this
is a price worth paying for convenience and certainty.

Next, we show results from experiments conducted
with LFC’ linear solver in a parallel setting. Fig-
ure 2 illustrates the relationship between the number of
processors and the aspect ratio of the logical process
grid (the number of process rows divided by the num-
ber of process columns). Sometimes it might be benefi-

5



30 35 40 45 50 55 60 65
5000

6000

7000

8000

9000

10000

11000 LFC performance on a cluster of AMD processors

Worst processor grid

Best processor grid

W
al

l c
lo

ck
 ti

m
e 

[s
]

Number of processors

Figure 2: Time to solution of a linear system of order
70000 with the best and worst aspect ratios of the logi-
cal process grid. (Each processor was an AMD Athlon
1.4 GHz with 2 GB of memory; the interconnect was
Myrinet 2000.)

cial not to use all the available processors. This is espe-
cially true if the number of processors is a prime number
which leads to a flat process grid and thus very poor per-
formance on many systems. It is unrealistic to expect that
non-expert users will correctly make the right decisions
in every case. It is either a matter of having expertise or
experimental data to guide the choice and our experiences
suggest that perhaps a combination of both is required to
make good decisions consistently. As a side note, with
respect to the experimental data, it is worth mentioning
that the collection of data for Figure 2 required a num-
ber of floating point operations that would compute the
LU factorization of a square dense matrix of order almost
three hundred thousand. Matrices of that size are usually
suitable for supercomputers (the slowest supercomputer
on the Top500 [52] list that factored such a matrix was on
position 16 in November 2002).

The following graphs show experimental results from a
Pentium 4 cluster. The detailed description of the cluster
is summarized in Table 2. Figures 3 and 4 compare perfor-
mance of the LFC’ parallel on 30 and 60 CPUs of the Pen-
tium 4 cluster for matrices of dimension between 10000
and 20000. For matrix size 20000, 30 processors (pro-

Hardware specifications
CPU type Intel Pentium 4
CPU clock rate 2400 MHz
System bus clock rate 400 MHz
Level 1 data cache 8 KB
Level 1 instruction cache 12kµops∗

Level 2 unified cache 256 KB
SMP CPUs per box 2
Main memory per SMP box 2048 MB
Ethernet Interconnect (switched) 100 Mbps

Single CPU performance
Peak floating-point performance 4800 Mflop/s
Matrix-matrix multiply –DGEMM ≈3200 Mflop/s
Matrix-vector multiply –DGEMV ≈470 Mflop/s
∗Intel has not made public the exact size of the trace cache
in bytes; they’ve only said how manyµops of unspecified
size it holds.

Table 2: Parameters of the Pentium 4 cluster (running
Linux OS) that was used in tests. TheDGEMV andDGEMM
rates were measured with ATLAS 3.4.1 (with SSE2 ex-
tensions enabled).

vided the aspect ratio of the logical aspect grid is cho-
sen optimally) have nearly 50% better efficiency. How-
ever, the time to solution for the same matrix size may be
nearly 50% shorter for 60 processors. Figures 5 and 6
attempt to show the large extent to which the aspect ratio
of the logical process grid influences per-processor per-
formance of the LFC’ parallel solver. The graphs in the
figures shows data for various numbers of processors (be-
tween 40 and 64) and consequently does not represent
a function since, for example, ratio 1 may be obtained
with 7 by 7 and 8 by 8 process grids (within the specified
range of number of processors). Figure 5 shows perfor-
mance of parallel Gaussian elimination algorithm while
Figure 6 shows performance of parallel Cholesky code. A
note on relevance of data from Figures 5 and 6: they are
only relevant for the LFC’ parallel linear solvers that are
based on the solvers from ScaLAPACK [47], they would
not be indicative of performance of a different solver,
e.g. HPL [29] which uses different communication pat-
terns and consequently behaves differently with respect
to the aspect ratio.

6



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

8000 10000 12000 14000 16000 18000 20000

P
er

fo
rm

an
ce

 p
er

 s
in

gl
e 

pr
oc

es
so

r 
[G

flo
p/

s]

Matrix dimension

1x30 processor grid
2x15 processor grid
3x10 processor grid

5x6 processor grid

Figure 3: Per-processor performance of the LFC’ parallel
linear solver on the Pentium 4 cluster using 30 CPUs and
various aspect ratios of the logical process grid.

7 Conclusions and Future Work

As computing systems become more powerful and com-
plex it becomes a major challenge to tune applications for
high performance. We have described a concept and out-
lined a plan to develop numerical library software for sys-
tems of linear equations which adapts to the users prob-
lem and the computational environment in an attempt to
extract near optimum performance. This approach has ap-
plications beyond solving systems of equations and can be
applied to most other areas where users turn to a library
of numerical software for their solution.

At runtime, our software makes choices at the software
and hardware levels for obtaining a best parameter set for
the selected algorithm by applying expertise from the lit-
erature and empirical investigations of the core kernels on
the target system. The algorithm selection depends on the
size of the input data and empirical results from previous
runs for the particular operation on the cluster. The over-
heads associated with this dynamic adaptation of the users
problem to the hardware and software systems available
can be minimal.

The results presented here show unambiguously that
the concepts of self adaptation can come very close to
matching the performance of the best choice in parame-
ters for an application written for a cluster. As our exper-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8000 10000 12000 14000 16000 18000 20000

P
er

fo
rm

an
ce

 p
er

 s
in

gl
e 

pr
oc

es
so

r 
[G

flo
p/

s]

Matrix dimension

1x60 processor grid
2x30 processor grid
3x20 processor grid
4x15 processor grid
5x12 processor grid
6x10 processor grid

Figure 4: Per-processor performance of the LFC’ parallel
linear solver on the Pentium 4 cluster using 60 CPUs and
various aspect ratios of the logical process grid.

iments indicate, the overhead to achieve this is minimal
and the performance levels are almost indistinguishable.
As a result the burden on the user is removed and hidden
in the software.

8 Acknowledgments

We wish to thank the Ohio Supercomputing Cen-
ter (OSC), the Computational Science and Mathemat-
ics Division at Oak Ridge National Laboratory (XTORC
cluster), the Center for Computational Sciences at
Oak Ridge National Laboratory (Cheetah and Ea-
gle), resources of the Scalable Intracampus Research
Grid (SInRG) Project at the University of Tennessee sup-
ported by the National Science Foundation CISE Re-
search Infrastructure Award EIA-9972889, the Dolphin
donation cluster (part of the SInRG program at the Uni-
versity of Tennessee Knoxville), the San Diego Super-
computing Center (SDSC), and the National Energy Re-
search Scientific Computing Center (NERSC) for re-
search conducted on their resources. We also wish to
thank NPACI, the National Partnership for the Advance-
ment of Computational Infrastructure, for including LFC
in its NPACkage.

7



0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

fo
rm

an
ce

 [G
flo

p/
s]

Logical process grid aspect ratio

Per-processor Performance

Figure 5: Per-processor performance of the LFC’ parallel
linear LU solver on the Pentium 4 cluster as a function
of the aspect ratio of the logical process grid (matrix size
was 72000 and the number of CPUs varied between 48
and 64).

References

[1] Jack J. Dongarra and Victor Eijkhout. Self adapt-
ing numerical algorithms for next generation ap-
plications. International Journal of High Per-
formance Computing Applications, 17(2):125–132,
2003. ISSN 1094-3420.

[2] Kenneth J. Roche and Jack J. Dongarra. Deploying
parallel numerical library routines to cluster com-
puting in a self adapting fashion. InParallel Com-
puting: Advances and Current Issues. Imperial Col-
lege Press, London, 2002.

[3] E. Amaldi and V. Kann. On the approximability
of minimizing nonzero variables or unsatisfied re-
lations in linear systems.Theoretical Computer Sci-
ence, 209:237–260, 1998.

[4] Pierluigi Crescenzi and Viggo Kann (editors). A
compendium of NP optimization problems.http:/
/www.nada.kth.se/theory/problemlist.html.

[5] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
er

fo
rm

an
ce

 [G
flo

p/
s]

Logical processor grid aspect ratio

Per-processor Performance

Figure 6: Per-processor performance of the LFC’ paral-
lel Cholesky (LLT) linear solver on the Pentium 4 clus-
ter as a function of the aspect ratio of the logical process
grid (matrix size was 72000 and the number of CPUs var-
ied between 40 and 48).

Completeness. W.H. Freeman and Company, New
York, 1979.

[6] J. Gergov. Approximation algorithms for dynamic
storage allocation. InProceedings of the 4th Annual
European Symposium on Algorithms, pages 52–56.
Springer-Verlag, 1996. Lecture Notes in Computer
Science 1136.

[7] D. Hochbaum and D. Shmoys. A polynomial ap-
proximation scheme for machine scheduling on uni-
form processors: using the dual approach.SIAM
Journal of Computing, 17:539–551, 1988.

[8] V. Kann. Strong lower bounds on the approx-
imability of some NPO PB-complete maximization
problems. InProceedings of the 20th Interna-
tional Symposium on Mathematical Foundations of
Computer Science, pages 227–236. Springer-Verlag,
1995. Lecture Notes in Computer Science 969.

[9] J. Lenstra, D. Shmoys, and E. Tardos. Approxima-
tion algorithms for scheduling unrelated parallel ma-
chines. Mathematical Programming, 46:259–271,
1990.

8



[10] J. R. Rice. On the construction of poly-algorithms
for automatic numerical analysis. In M. Klerer and
J. Reinfelds, editors,Interactive Systems for Exper-
imental Applied Mathematics, pages 31–313. Aca-
demic Press, 1968.

[11] R. Clint Whaley, Antoine Petitet, and Jack J. Don-
garra. Automated empirical optimizations of soft-
ware and the ATLAS project.Parallel Computing,
27(1-2):3–35, 2001.

[12] Jack J. Dongarra and Clint R. Whaley. Automat-
ically tuned linear algebra software (ATLAS). In
Proceedings of SC’98 Conference. IEEE, 1998.

[13] Jack J. Dongarra, J. Du Croz, Iain S. Duff, and
S. Hammarling. Algorithm 679: A set of Level 3 Ba-
sic Linear Algebra Subprograms.ACM Transactions
on Mathematical Software, 16:1–17, March 1990.

[14] Jack J. Dongarra, J. Du Croz, Iain S. Duff, and
S. Hammarling. A set of Level 3 Basic Linear Alge-
bra Subprograms.ACM Transactions on Mathemat-
ical Software, 16:18–28, March 1990.

[15] Jack J. Dongarra, J. Du Croz, S. Hammarling, and
R. Hanson. An extended set of FORTRAN Basic
Linear Algebra Subprograms.ACM Transactions on
Mathematical Software, 14:1–17, March 1988.

[16] Jack J. Dongarra, J. Du Croz, S. Hammarling,
and R. Hanson. Algorithm 656: An extended
set of FORTRAN Basic Linear Algebra Subpro-
grams. ACM Transactions on Mathematical Soft-
ware, 14:18–32, March 1988.

[17] E. Anderson, Z. Bai, C. Bischof, Suzan L. Black-
ford, James W. Demmel, Jack J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, and Danny C. Sorensen.LAPACK User’s
Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, Third edition, 1999.

[18] J. Bilmes et al. Optimizing matrix multiply us-
ing PHiPAC: a portable, high-performance, ANSI
C coding methodology. InProceedings of Interna-
tional Conference on Supercomputing, Vienna, Aus-
tria, 1997. ACM SIGARC.

[19] Richard Barrett, Michael Berry, Jack Dongarra, Vic-
tor Eijkhout, and Charles Romine. Algorithmic
bombardment for the iterative solution of linear sys-
tems: a poly-iterative approach.Journal of Compu-
tational and Applied Mathematics, 74(1-2):91–109,
1996.

[20] R. Weiss, H. Haefner, and W. Schoenauer.LINSOL
(LINear SOLver) – Description and User’s Guide
for the Parallelized Version. University of Karlsruhe
Computing Center, 1995.

[21] R. Agarwal, Fred Gustavson, and M. Zubair. A
high-performacne algorithm using preprocessing for
the sparse matrix-vector multiplication. InProceed-
ings of International Conference on Supercomput-
ing, 1992.

[22] E.-J. Im and Kathy Yelick. Optimizing sparse
matrix-vector multiplication on SMPs. InNinth
SIAM Conference on Parallel Processing for Scien-
tific Computing, San Antonio, Texas, 1999.

[23] E.-J. Im. Automatic optimization of sparse matrix-
vector multiplication. PhD thesis, University of Cal-
ifornia, Berkeley, California, 2000.

[24] Ali Pinar and Michael T. Heath. Improving per-
formance of sparse matrix-vector multiplication. In
Proceddings of SC’99, 1999.

[25] Sivan Toledo. Improving the memory-system per-
formance of sparse matrix-vector multiplication.
IBM Journal of Research and Development, 41(6),
November 1997.

[26] A. Bik and H. Wijshoff. Advanced compiler opti-
mizations for sparse computations.Journal of Par-
allel and Distributing Computing, 31:14–24, 1995.

[27] Jakob Ostergaard.OptimQR – A software package
to create near-optimal solvers for sparse systems of
linear equations. http://ostenfeld.dk/˜jakob/
OptimQR/.

[28] Sathish Vadhiyar, Graham Fagg, and Jack J. Don-
garra. Performance modeling for self adapting col-
lective communications for MPI. InLos Alamos
Computer Science Institute Symposium (LACSI
2001), Sante Fe, New Mexico, 2001.

9



[29] Jack J. Dongarra, Piotr Luszczek, and Antoine Pe-
titet. The LINPACK benchmark: Past, present, and
future. Concurrency and Computation: Practice
and Experience, 15:1–18, 2003.

[30] M. Frigo. A fast Fourier transform compiler. In
Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
Atlanta, Georgia, USA, 1999.

[31] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. InProceedings
International Conference on Acoustics, Speech, and
Signal Processing, Seattle, Washington, USA, 1998.

[32] D. Mirkovic and S. L. Johnsson. Automatic perfor-
mance tuning in the UHFFT library. In2001 Inter-
national Conference on Computational Science, San
Francisco, California, USA, 2001.

[33] Ian Foster and Carl Kesselman, editors.The Grid:
Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco, 1999.

[34] F. Berman et al. The GrADS project: Software sup-
port for high level grid application development.In-
ternational Journal of High Performance Comput-
ing Applications, 15:327–344, 2001.

[35] Antoine Petitet et al. Numerical libraries and the
grid. International Journal of High Performance
Computing Applications, 15:359–374, 2001.

[36] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard.The International Jour-
nal of Supercomputer Applications and High Perfor-
mance Computing, 8, 1994.

[37] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard (version 1.1), 1995.
Available at:http://www.mpi-forum.org/.

[38] Message Passing Interface Forum. MPI-2: Ex-
tensions to the Message-Passing Interface, 18 July
1997. Available athttp://www.mpi-forum.org/
docs/mpi-20.ps.

[39] MPICH. http://www.mcs.anl.gov/mpi/mpich/.

[40] LAM/MPI parallel computing. http://www.mpi.
nd.edu/lam/.

[41] Thomas Sterling.Beowulf Cluster Computing with
Linux (Scientific and Engineering Computation).
MIT Press, October 2001.

[42] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen,
and Henk A. van der Vorst.Numerical Linear Alge-
bra for High-Performance Computers. Society for
Industrial and Applied Mathematics, Philadelphia,
1998.

[43] Erik Elmroth and Fred G. Gustavson. New serial
and parallel recursive QR factorization algorithms
for SMP systems. InProceedings of PARA 1998,
1998.

[44] Fred G. Gustavson. Recursion leads to automatic
variable blocking for dense linear-algebra algo-
rithms. IBM Journal of Research and Development,
41(6):737–755, November 1997.

[45] Sivan Toledo. Locality of reference in LU decom-
position with partial pivoting.SIAM J. Matrix Anal.
Appl., 18(4):1065–1081, October 1997.

[46] Dror Irony and Sivan Toledo. Communication-
efficient parallel dense LU using a 3-dimensional
approach. InProceedings of the 10th SIAM Con-
ference on Parallel Processing for Scientific Com-
puting, Norfolk, Virginia, USA, March 2001.

[47] L. Suzan Blackford, J. Choi, Andy Cleary, Ed-
uardo F. D’Azevedo, James W. Demmel, Inder-
jit S. Dhillon, Jack J. Dongarra, Sven Hammarling,
Greg Henry, Antoine Petitet, Ken Stanley, David W.
Walker, and R. Clint Whaley.ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1997.

[48] J. Choi, Jack J. Dongarra, Susan Ostrouchov, An-
toine Petitet, David W. Walker, and R. Clint Whaley.
The design and implementation of the ScaLAPACK
LU, QR, and Cholesky factorization routines.Sci-
entific Programming, 5:173–184, 1996.

[49] Rich Wolski et al. The network weather service: A
distributed resource performance forecasting service

10



for metacomputing.Future Generation Computing
Systems, 14, 1998.

[50] Antoine Petitet.Algorithmic Redistribution Methods
for Block Cyclic Decompositions. Computer Science
Department, University of Tennessee, Knoxville,
Tennessee, December 1996. PhD dissertation.

[51] B. Kågstr̈om, P. Ling, and Charles Van Loan.
Portable high performance GEMM-based Level 3
BLAS. In Proceedings of the 6th SIAM Confer-
ence on Parallel Processing for Scientific Comput-
ing, pages 339–346, Philadelphia, 1993.

[52] Hans W. Meuer, Erich Strohmaier, Jack J. Don-
garra, and Horst D. Simon. Top500 Supercom-
puter Sites, 20th edition edition, November 2002.
(The report can be downloaded fromhttp://www.
netlib.org/benchmark/top500.html).

11


