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Abstract

With increasing numbers of processors on todays ma-
chines, the probability for node or link failures is also in-
creasing. Therefore, application level fault-tolerance is be-
coming more of an important issue for both end-users and
the institutions running the machines. This paper presents
the semantics of a fault tolerant version of the Message
Passing Interface, the de-facto standard for communication
in scientific applications, which gives applications the pos-
sibility to recover from a node or link error and continue ex-
ecution in a well defined way. The architecture of FT-MPI,
an implementation of MPI using the semantics presented
above as well as benchmark results with various applica-
tions are presented. An example of a fault-tolerant parallel
equation solver, performance results as well as the time for
recovering from a process failure are furthermore detailed.

1 Introduction

Today, end-users and application developers of high per-
formance computing systems have access to larger ma-
chines and more processors than ever before. Systems such
as the Earth Simulator, the ASCI-Q machines or the IBM
Blue Gene consist of thousands or even tens of thousand of
processors. Machines comprising 100,000 processors are
expected for the next years.

A critical issue of systems consisting of such large num-
bers of processors is the ability of the machine to deal with
process failures. Based on the current experiences with the
high-end machines, it can be concluded, that a 100,000-
processor machine will experience a processor failure every
few minutes [21]. While on earlier massively parallel pro-
cessing systems (MPPs) crashing nodes often lead to a crash
of the whole system, current architectures are more robust.

Typically, the applications utilizing the failed processor will
have to abort, the machine, as an entity is however not af-
fected by the failure. This robustness has been the result
of improvements at the hardware as well as on the level of
system software.

Current parallel programming paradigms for high-
performance computing systems are mainly relying on mes-
sage passing, especially on the Message-Passing Interface
(MPI) [12][13] specification. Shared memory concepts (e.g.
OpenMP) or parallel programming languages (e.g. UPC,
CoArrayFortran) offer a simpler programming paradigm for
applications in parallel environments, however they either
lack the scalability to tens of thousands of processors, or do
not offer a feasible framework for complex, irregular appli-
cations. The message-passing paradigm on the other hand
provides a mean to write highly scalable algorithms, ab-
stracting and hiding many architectural decisions from the
application developers.

However, the current MPI specification does not deal
with the case where one or more process failures occur dur-
ing runtime. MPI gives the user the choice between two
possibilities of how to handle failures. The first one, which
is also the default mode of MPI, is to immediately abort
the application. The second possibility is just slightly more
flexible, handing the control back to the user application
without guaranteeing however, that any further communi-
cation can occur. The latter mode has mainly the purpose
to give an application the possibility to perform local oper-
ations before exiting, e.g. closing all files or writing a local
checkpoint.

Summarizing the findings of the previous paragraphs,
there is a discrepancy between the capabilities of current
high performance computing systems and the most widely
used parallel programming paradigm. While the machines
are improving their robustness (hardware, network, operat-
ing systems, file systems) the MPI specification does not
leave room for fully exploiting the capabilities of the cur-



rent architectures. When considering machines with tens of
thousand of processors, the only currently available fault
tolerance handling technique, checkpoint/restart, has its
performance and conceptual limitations. In fact, one of
the main reasons for many research groups to prefer the
PVM[4] communication library to MPI is its capability to
handle process failures.

Therefore, we present in this paper the results of work
conducted during the last four years, which produced:

• A specification proposing extensions to the Message-
Passing Interface for handling process fault-tolerance,

• An implementation of this specification based on the
HARNESS framework,

• Numerous application scenarios showing the feasibil-
ity of the specification for scientific, high performance
computing.

The rest of the document is organized as follows: Sec-
tion 2 presents a summary of the Fault-Tolerant MPI specifi-
cation as well as the architecture of the library and some im-
plementation details. Section 3 compares the point-to-point
performance of FT-MPI to those achieved with some pop-
ular public-domain MPI libraries, while section 4 uses the
Parallel Spectral Shallow Water Code benchmark to classify
the performance of FT-MPI. In section 5 we describe two
applications which exploit the fault-tolerant features offered
by FT-MPI: a master-slave framework and a preconditioned
conjugate gradient solver. Finally, section 6 summarizes the
paper and presents the ongoing work.

1.1 Related Work

The methods supported by various projects can be split
into two classes: those supporting checkpoint/roll-back
technologies, and those using replication techniques. The
first method attempted to make MPI applications fault tol-
erant was through the use of check-pointing and roll back.
Co-Check MPI [18] from the Technical University of Mu-
nich being the first MPI implementation built that used the
Condor library for check-pointing an entire MPI applica-
tion. Another system that also uses check-pointing but at
a much lower level is StarFish MPI [4]. Unlike Co-Check
MPI, Starfish MPI uses its own distributed system to pro-
vide built in check-pointing.

MPICH-V [7] from Universite´e de Paris Sud, France is
a mix of uncoordinated check-pointing and distributed mes-
sage logging. The message logging is pessimistic thus they
guarantee that a consistent state can be reached from any lo-
cal set of process checkpoints at the cost of increased mes-
sage logging. MPICH- V uses multiple message storage
(observers) known as Channel Memories (CM) to provide
message logging. Process level check-pointing is handled

by multiple servers known as Checkpoint Servers (CS). The
distributed nature of the check pointing and message log-
ging allows the system to scale, depending on the number
of spare nodes available to act as CM and CS servers.

LA-MPI [13] is a fault-tolerant version of MPI from the
Los Alamos National Laboratory. Its main target is not to
handle process failures, but to provide reliable message de-
livery between processes in presence of bus, networking
cards and wire-transmission errors. To achieve this goal,
the communication layer is split into two parts, a Memory
and Message Management Layer, and a Send and Receive
Layer. The first one is responsible for choosing a different
route, in case the Send and Receive Layer reports an error,
while the Message Management Layer is retransmitting lost
packets.

MPI/FT [5] provides fault-tolerance by introducing a
central co-coordinator and/or replicating MPI processes.
Using these techniques, the library can detect erroneous
messages by introducing a voting algorithm among the
replicas and can survive process-failures. The drawback
however is increased resource requirements and partially
performance degradation.

FT-MPI has much lower overheads compared to the
above check-pointing and message replication systems, and
thus much higher potential performance. These benefits do
however have consequences. An application using FT-MPI
has to be designed to take advantage of its fault tolerant fea-
tures as shown in the next section, although this extra work
can be trivial depending on the structure of the application.
If an application needs a high level of fault tolerance where
node loss would equal data loss then the application has to
be designed to perform some level of user directed check-
pointing. An additional advantage of FT-MPI over many
systems is that check-pointing can be performed at the user
level and the entire application does not need to be stopped
and rescheduled as with most process level check-pointing
systems.

2 FT-MPI and HARNESS

This section presents the extended semantics used by
FT-MPI, the architecture of the library as well as some de-
tails of the implementation. Furthermore, we present tools
which are supporting the application developer while using
FT-MPI are also presented.

2.1 FT-MPI Semantics

Handling fault-tolerance typically consists of three steps:
failure detection, notification, and recovery. The FT-MPI
specification does not make any assumptions about the first
two steps except that the run-time environment discovers
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failures and all remaining processes in the parallel job are
notified about these events.

The notification of failed processes is passed to the MPI
application through the usage of a special error code. As
soon as an application process has received the notification
of a death event through this error code, its general state
is changing from no failures to failure recognized. While
in this state, the process is just allowed to execute certain
actions. These actions are depending on various parameters
and are detailed later in the document.

The recovery procedure is considered to consist of two
steps: recovering the MPI library and the run-time envi-
ronment, and recovering the application. The latter one is
considered to be the responsibility of the application.

The FT-MPI specification tackles answers to the follow-
ing questions:

1. What are the necessary steps and options to start the
recovery procedure and therefore change the state of
the processes back to no failure?

2. What is the status of the MPI objects after recovery?

3. What is the status of ongoing communication and mes-
sages during and after recovery?

The first question is handled by the so-called recovery
mode, the second by the communicator mode, and the third
by the message mode respectively the collective communi-
cation mode.

The recovery mode defines how the recovery procedure
can be started. Currently, three options are defined:

• an automatic recovery mode, where the recovery pro-
cedure is started automatically by the MPI library as
soon as a failure event has been recognized,

• a manual recovery mode, where the application has to
start the recovery procedure through the usage of a spe-
cial MPI function,

• a recovery mode, where the recovery procedure does
not have to be initiated at all. However, any communi-
cation to failed processes will raise an error.

The status of MPI objects after the recovery operation
is depending on whether they contain some global infor-
mation or not. As for MPI-1, the only objects containing
global information are groups and communicators. These
objects are invalidated during the recovery procedure. The
objects available after MPI Init, which are the communi-
cators MPI COMM WORLD and MPI COMM SELF, are
re-instantiated by the library automatically.

Communicators and group can have different for-
mats after recovery operation. Failed processes can ei-
ther be replaced (FTMPI COMM MODE REBUILD), or

not. In case the failed processes are not replaced, the
user still has two choices: the position of the failed
process can be left empty in groups and communi-
cators (FTMPI COMM MODE BLANK) or the groups
and communicators can shrink such that no gap is left
(FTMPI COMM MODE SHRINK). For both modes a pre-
cise description of all MPI-1 functions are given in the FT-
MPI specification.

Furthermore, the specification clarifies the status of mes-
sages when errors occur. Two modes are currently defined
in the specification. In the first mode, all messages in transit
are canceled by the system. This mode is mainly useful for
applications, which on error rollback to the last consistent
state in the application. As an example, if an error occurs in
iteration 423 and the last consistent state of the application
is from iteration 400, than all ongoing messages from iter-
ation 423 would just confuse the application after the roll-
back. The preconditioned conjugate gradient solver shown
in section 5 details the usage of this communication mode.

The second mode completes the transfer of all messages
after the recovery operation, with the exception of the mes-
sages to and from the failed processes. This mode requires
that the application keeps detailed information of the state
of each process, minimizing the rollback procedure. Similar
modes are available for collective operations, which can ei-
ther be executed in an atomic or a non-atomic fashion. The
master-slave example presented in section 5 is an example
of an application, where no roll-back is necessary in case a
process failure occurs.

2.2 Architecture of FT-MPI and HARNESS

FT-MPI was built from the ground up as an independent
MPI implementation as part of the Department of Energy
Heterogeneous Adaptable Reconfigurable Networked SyS-
tems (HARNESS) project [6]. One of the aims of HAR-
NESS was to provide a framework for distributed comput-
ing much like PVM [12] previously. A major difference be-
tween PVM and HARNESS is the formers monolithic struc-
ture verses the latter’s dynamic plug-in modularity. To pro-
vide users of HARNESS instant application support, both
a PVM and a MPI plug-in were envisaged. As the HAR-
NESS system itself was both dynamic and fault tolerant (no
single points of failure), then it became possible to build a
MPI plug-in with added capabilities such as dynamic pro-
cess management and fault tolerance.

Figure 1 illustrates the overall structure of a user level
application running under the FT-MPI plug-in, and HAR-
NESS system. The following subsections briefly outline
the design of FT-MPI and its interaction with various HAR-
NESS system components.
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2.3 FT-MPI architecture

As shown in figure 1 the FT-MPI system itself is built
in a layering fashion. The upper most layer deals with
the handling of the MPI-1.2 specification API and MPI ob-
jects. The next layer deals with data conversion/marshaling
(if needed), attribute and record storage, and various lists.
Details of the highly tuned buffer management and derived
data type handling can be found in [9]. FT-MPI also im-
plements a number of tuned MPI collective routines, which
are further discussed in [19]. The lowest layer consists of
the FT-MPI runtime library (FTRTL), which is responsible
for interacting with the OS via the HARNESS user level li-
braries (HLIB). The FTRTL layer provides the facilities that
allow for dynamic process management, system level nam-
ing of MPI tasks, message handling during the entire fault
to recovery cycle. The HLIB layer interacts with HAR-
NESS system during both startup, fault to recovery cycle,
and shutdown phases of execution. The HLIB also provides
the interfaces to the dynamic process management and redi-
rection of application IO. The SNIPE [10] library provides
the inter-node communication of MPI message headers and
data. To simplify the design of the FTRTL, SNIPE only de-
livers whole messages atomically to the upper layers. Dur-
ing a recovery from failure, SNIPE uses in channel system
flow control messages to indicate the current state of mes-
sage handling (such as accepting connections, flushing mes-
sages or in-recovery).

It is important to note that the FTRTL shown in figure
1 can receive notification of failures from both the point to
point communications libraries as well as from the HAR-
NESS layer. In the case of communication errors, the notify
is usually started by the communication library detecting a
point to point message not being delivered to a failed party
rather than the failed parties OS layer detecting the failure.
The FTRTL is responsible for notifying all tasks of errors as
they occur by injecting notify messages into the send mes-
sage queues ahead of user level messages.

2.3.1 OS support and the HARNESS G HCORE

The General HARNESS CORE (G HCORE) is a dae-
mon that provides a very lightweight infrastructure from
which to build distributed systems. The capabilities of the
G HCORE are exploited via remote procedure calls (RPCs)
as provided by the user level library (HLIB). The core pro-
vides a number of very simple services that can be dynami-
cally added to [1]. The simplest service is the ability to load
additional code in the form of a dynamic library (shared ob-
ject) known as a plug-in, and make this available to either a
remote process or directly to the core itself. Once the code
is loaded it can be invoked using a number of different tech-
niques such as:

Daemon

Plug−in

HLIB calls

Failure events
Failure detection

User Application

MPI Library Layer

Derived Types
Buffer Mgmnt.

Message &
nonblocking queue

FT−MPI runtime library

HLIB SNIPE

HCORE

Spawn−Notify
Startup service

Notifier

Name service

MPI messages

Figure 1. Architecture of HARNESS and FT-
MPI

• Direct invocation: the core calls the code as a function,
or a program uses the core as a runtime library to load
the function, which it then calls directly itself.

• Indirect invocation: the core loads the function and
then handles requests to the function on behalf of the
calling program, or, it sets the function up as a separate
service and advertises how to access the function.

An application built for HARNESS might not interact
with the host OS directly, but could instead install plug-ins
that provide the required functionality. The handling of dif-
ferent OS capabilities would then be left to the plug-in de-
velopers, as is the case with FT-MPI.

2.3.2 G HCORE services for FT-MPI

Services required by FT-MPI break down into two main cat-
egories:

• Spawn and Notify service. This service is provided by
a plug-in which allows remote processes to be initiated
and then monitored. The service notifies other inter-
ested processes when a failure or exit of the invoked
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process occurs. The notify message is either sent di-
rectly to all other MPI tasks or via the FT-MPI Notifier
daemon which can provide additional diagnostic infor-
mation if required.

• Naming services. These allocate unique identifiers in
the distributed environment for tasks, daemons and
services (which are uniquely addressable). The name
service also provides temporary state storage for use
during MPI application startup and recovery, via a
comprehensive record facility.

Currently FT-MPI can be executed in one of two modes.
As the plug-in mode described above when executing as
part of a HARNESS distributed virtual machine, or in a
slightly lighter weight configuration with the spawn-notify
service as a standalone daemon. This latter configuration
loses the benefits of any other available HARNESS plug-
ins, but is better suited for clusters that only execute MPI
jobs. No matter which configuration is used, one name-
service daemon, plus one either of the GHCORE daemon
or one startup daemon per node is needed for execution.

2.4 FT-MPI system level recovery algorithm and
costs

The recovery method employed by FT-MPI is based on
the construction of a consistent global state at a dynami-
cally allocated leader node. The global state is the bases
for the MPI COMM WORLD communicator membership
from which all other communicators are derived. After the
state is constructed at this node it is distributed to all other
nodes (peons) via an atomic broadcast operation based on a
multi-phase commit algorithm.

The recovery is designed to handle multiple recursive er-
rors, including the failure of the leader node responsible for
constructing the global state. Under this condition an elec-
tion state is entered where every node votes for themselves,
and the first voter wins the election via an atomic swap op-
eration on a leader record held by the HARNESS name ser-
vice. Any other faults causes the leader node to restart the
construction of the global state from the beginning. This
process continues until the state is either completely lost
(when all nodes already holding the previous verified state
fail) or when everyone agrees with the atomic broadcast of
the pending global state.

The cost of performing a system level recovery is as fol-
lows:

• synchronizing state and detecting faults. O(2N) mes-
sages.

• re-spawning failed nodes and rechecking state and
faults. O(2N) messages.

• broadcasting the new pending global state, verifying
reception. O(3N) messages.

• broadcasting the acceptance of global state. O(N) mes-
sages.

The total cost of recovery from detection to acceptance
of a new global state is O(8N) messages. The results de-
tailed later in section 5.2 currently use a linear topology
for these messages leading to O(8N) cost, which is not
acceptable for larger systems. Currently under test is a
mixed fault tolerant tree and ring topology which together
with the combining of several fault detection and broad-
cast stages will reduce the recovery cost to approximately
O(3N)+O(3log2N).

3 Point-to-point benchmark results

In this section we would like to compare the point-to-
point performance of FT-MPI to the performance achieved
with the most widely used, non fault-tolerant MPI imple-
mentations. These are MPICH [14] using version 1.2.5 as
well as the new beta-release of version 2, and LAM/MPI [8]
version 7. All tests were performed on a PC-cluster consist-
ing of 32 nodes, each having two 2.4 GHz Pentium IV Xeon
processors. The nodes are connected by a Gigabit Ethernet
network.

For determining the communication latency and the
achievable bandwidth, we used the latency test suite [11].
The zero-byte latency measured in this test revealed LAM7
to have the best short-message performance, achieving a la-
tency of 41.2 µs, followed by MPICH 2 with 43.6 µs. FT-
MPI had in this test a latency of 44.5 µs, while MPICH 1.2.5
followed with 45.5 µs.

Figure 2 shows the achieved bandwidth with all commu-
nication libraries for large messages. FT-MPI achieves in
this test the best bandwidth with a maximum of 66.5 MB/s.
LAM7 and MPICH 2 have comparable results with 65.5
MB/s and 64.6 MB/s respectively. The bandwidth achieved
with MPICH 1.2.5 is slightly worse, having a maximum of
59.6 MB/s.

4 Performance results with the Shallow Wa-
ter Code benchmark

While FT-MPI extends the syntax of the MPI specifi-
cation, we expect that many of the end-users will use FT-
MPI in the conventional, non fault-tolerant way. Therefore,
we evaluate in this section the performance of FT-MPI us-
ing the Parallel Spectral Transform Shallow Water Model
(PSTSWM) [20] benchmark, and compare the performance
results of FT-MPI to the results achieved with MPICH 1.2.5
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Figure 2. Achieved bandwidth with FT-MPI,
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and MPICH 2. LAM/MPI 7 is in contrary to the previ-
ous section not included in this evaluation, since PSTSWM
makes use of some optional Fortran MPI-Datatypes, which
are currently not supported by LAM/MPI.

Included in the distribution of PSTSWM version 6.7.2
are several test-cases and test data. Presenting the results
achieved with all of these test-cases would exceed the scope
and the length of this paper, therefore we have picked three
test-cases, which we found representative from the prob-
lem size and performance behavior. All tests were executed
with 32 processes using 16 nodes on the same PC-cluster
described in the previous section.

Figure 3 presents the results achieved for these three test-
cases. FT-MPI outperformed MPICH 1.2.5 and MPICH-2
in these test-cases significantly. The reason turned out to
be the process placement strategy of FT-MPI. FT-MPI dis-
tributes the processes block-wise, if the number of used pro-
cesses does not match the number of available nodes. Thus,
the ranks 0 and 1 or located on the first node, ranks 2 and 3
on the second node, etc.. In contrary to that, both versions
of MPICH distribute the processes in a cyclic manner, e.g.
the ranks 0 and 16 are on node 0, 1 and 17 on node 1.

Figure 4 shows a snapshot of the PSTSWM benchmark
presenting the communication volume between each pair
of nodes. This analysis reveals, why the process distribu-
tion of FT-MPI could improve the performance compared
to the other MPI libraries. The communication volume
and the number of messages exchanged between neighbor-
ing processes (e.g. between rank 0 and rank 1) is in this
application significantly higher than the overall data ex-
changed between other process pairs. Since the commu-
nication between processes within the same node is consid-
erably faster than the communication between processes on
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MPICH 2, FT-MPI and FT-MPI using cyclic pro-
cess distribution.

different nodes, a larger number of messages could bene-
fit from the faster communication inside a node using the
block-wise process distribution.

In a second test, we forced FT-MPI to use a cyclic pro-
cess distribution similar to MPICH. The results achieved in
these tests are labeled as FT-MPI cyclic in figure 3. For
these measurements, FT-MPI and MPICH 2 are usually
equally fast, MPICH 1.2.5 remains slower than the other
two MPI libraries. The overall conclusion of the last two
sections are, that the performance of FT-MPI is comparable
to the current state-of-the-art public domain MPI libraries.
The extensions in the specification do not introduce a per-
formance penalty per se in a non fault-tolerant application.

5 Examples of fault tolerant applications

Hand in hand with the development of FT-MPI, we also
developed some example applications showing the usage
of the fault-tolerant features of the library. In this section,
we would like to present the relevant parts of fault-tolerant
master-slave applications as well as a fault-tolerant version
of a parallel equation solver.

5.1 A framework for a fault-tolerant master-slave
application

For many applications using a master-slave approach,
fault tolerance can be achieved easily, by adding a simple
state model in the master process. The basic idea is, that
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Figure 4. Analysis of PSTSWM using VAM-
PIR. This figure shows the amount of data
exchanged between each pair of processes
during a typical run.

when a worker process dies, the master redistributes the
work currently assigned to this process. The state model
as applied in our example, is shown in figure 5.

The master maintains for every process its current state.
This can be one of the following states:

• AVAILABLE: process is alive and no work has been
assigned to him

• WORKING: process is alive and work has been as-
signed to him

• RECEIVED: process is alive and the result of its work
has been received

• FINISHED: process is alive and it has been notified
that no more work will be sent to him

• SEND FAILED: send operation to this process failed

• RECV FAILED: the recv operation to this process
failed

• DEAD: this process is marked as dead.

Under regular conditions, the state of each process is
changing from AVAILABLE to WORKING to RECEIVED
and back to AVAILABLE. In case an error occurs when dis-
tributing the work to the slaves, the state of the receiver-
process is changed to SEND FAILED. The Send operation
to this process could have failed due to two reasons: first,
the receiving process died, and second another process has
failed. In both cases, all MPI operations called after the no-
tification of the death-event of a process will return the spe-
cific MPI error code mentioned in section 2. In the first case,

AVAILABLE

WORKING

RECEIVED

FINISHED DEAD

FAILED

SEND−
FAILED

ok

Blank/Shrink: failed process marked dead

Rebuild: failed process respawned, state re−set

send msg.

mesg.recv.

completed

error

error

RECV−

Figure 5. Transition-state diagram of the fault-
tolerant master-slave code

the process is either marked as DEAD for the BLANK and
SHRINK communicator mode, or re-spawned and marked
as AVAILABLE for the REBUILD mode. In the second
case, the Send operation has to be repeated, and therefore
the state of this process is re-set to its previous value. The
situation is similar if an error occurs on the receive opera-
tion.

The application can detect and handle failure events us-
ing two different methods: either the return code of every
MPI function is checked, or the application makes use of
MPI error handlers. The second mode gives users the pos-
sibility to register a function with the MPI library, which is
called, in case an error occurs. Thus, existing source code
does not have to be extended by introduced detailed error-
checking for each MPI-function used.

The following extract of the source code of the mas-
ter shows the most relevant peaces of the major work-
ing loop, including the registration of the error-handler
as well as usage of the different state’s for each process.
The transition state diagram is implemented in the routine
advance_state.

/* Register error handler */
if ( master ) {
MPI_Errhandler_create(recover,&errh);
MPI_Errhandler_set ( comm, errh);

}

/* major master work loop */
do {
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/* Distribute work */
for ( proc=1; proc<maxproc; proc++)

if ( state[proc] == AVAILABLE ){
MPI_Send(workid[proc],....);
advance_state(proc);

}

for ( proc=1; proc<maxproc; proc++){
/* Collect results */
if ( state[proc] == WORKING ){

MPI_Recv(workid[proc], ....);
advance_state(proc);

}

/* Perform global calculation */
if ( state[proc] == RECEIVED ) {

workperformed += workid[proc];
advance_state(proc);

}
}

} while (all work is done);

The recovery algorithm invoked in case an error occurs,
consists of the following steps:

1. Re-instantiation of the MPI library and the runtime en-
vironment by calling a specific, predefined MPI func-
tion.

2. Determining how many processes have died and who
has died.

3. Set the state of the failed processes to DEAD for the
BLANK and SHRINK mode, respectively to AVAIL-
ABLE for the REBUILD mode.

4. Set the state of the communication partner in the Send
or Recv operation when the error was detected to
SEND FAILED respectively RECV FAILED.

5. Mark the piece of work, which was currently assigned
to the failed processes as ’not done’.

The second point in the list is closely related to the prob-
lem, how a process can determine, whether it has been
part of the initial set of processes or whether it is a re-
spawned processes. FT-MPI offers the user two possibil-
ities to solve this issue: the first method is the fast solu-
tion, involves however proprietary FT-MPI constants and
attributes. In case a processes is a replacement for a failed
process, the return value of MPI Init will be set to a specific
new FT-MPI constant (MPI INIT RESTARTED PROCS).
All surviving processes will have two additional MPI at-
tributes set: the value of FTMPI NUMFAILED PROCS in-
dicates, how many processes have failed, while the value of

FTMPI ERR FAILED is an error-code, whose error-string
contains the list of processes which have failed since the last
error. This method is considered to be fast, since it does not
involve any additional communication to determine these
values.

The second possibility is, that the application introduces
a static variable. By comparing the value of this variable to
the value on the other processes, the application can detect,
whether everybody has been newly started (in which case
all processes will have the pre-initialized value), or whether
a subset of processes have a different value, since each pro-
cesses modifies the value of this variable after the initial
check. This second approach is somewhat more complex,
however, it is fully portable and can also be used with any
other non fault-tolerant MPI library.

5.2 A fault-tolerant preconditioned conjugate
gradient solver

In this section we would like to give an example, of how
fault tolerance can be achieved for a tightly coupled appli-
cation, which is not using the master-slave paradigm. As an
example, we implemented a parallel preconditioned conju-
gate gradient equation solver (PCG) in a fault tolerant man-
ner. The parallel application has been extended by two ma-
jor points:

• A process has been dedicated in the application to
serve as an in-memory checkpoint server. Every
200 iterations, all processes calculate using several
MPI Reduce operations a checkpoint of each relevant
vector, which is than stored on the dedicated check-
point processes.

• In case one of the processes dies, the data of the re-
spawned process is recalculated using the local data on
all other processes and the checkpointed vector. The
matrix is not checkpointed in this application, since
it is constant and not changing. Therefore, the re-
spawned processes rereads the matrix from the original
input file.

The recovery algorithm makes use of the longjmp func-
tion of the C-standard. In case the return code of an MPI
function indicates that an error has occurred, all processes
jump to the recovery section in the code, perform the nec-
essary operations and continue the computation from the
last consistent state of the application. The relevant sec-
tion with respect to the recovery algorithm is shown in the
source code below.

/* Mark entry point for recovery */
j = setjmp ( env );
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/* Execute recovery if necessary */
if ( state == RECOVER) {

MPI_Comm_dup ( comm, &newcomm );
comm = newcomm;
...
/* do other operations */
recover_data ( my_vector,.., &num_iter );

/* reset state-variable */
state = OK;
}

/* major calculation loop */
do {
....

rc = MPI_Send ( ...)
if ( rc == MPI_ERR_OTHER ) {
state = RECOVER;
longjmp ( env, state );

}

} while ( norm < errtol );

The code is written such, that any symmetric, positive
definite matrix using the Boeing/Harwell format can be
used for simulations. Table 1 gives some results of exe-
cution times for solving a system of linear equations using
the fault tolerant version of the solver. The first column is
indicating the problem size by giving the number of non-
zero entries in the matrix, the second column the number of
processes used for the calculation (with the checkpoint pro-
cess also shown as an addition) The third column contains
the execution time required to achieve a solution with the
required precision. Finally, the fourth column is showing
the recovery time in both seconds and as a ratio of overall
execution time in case of a computational processes dies.

Problem No. of Exec. time Recovery time/ratio
size procs. [sec] [sec]/[%]

4,054 4+1 5 1.32/26.4
428,650 8+1 189 3.34/1.76

2,677,324 16+1 1162 11.37/0.97

Table 1. Execution time of various problem
sizes with FT-MPI, and the recovery time for
the according number of processes

As table 1 indicates, recovering from an exit-event of a
process takes between 1.3 seconds for 4 processes to 11.37

seconds for 16 processes. The recovery time itself can be
split again into two major parts: the first part is the time
spent in a multi-phase commit protocol between the pro-
cesses, since FT-MPI is capable of recovering from addi-
tional death events recursively during the recovery phase.
For 16 processes, this time is in our application scenario 3.5
out of 11.37 seconds. The second part of the recovery time
consists of the recovery of the user-data within the applica-
tion. While this time is negligible for small matrices and
problem sizes, it is the dominant part for the biggest test
case their. The re-reading of the matrix over NFS at the re-
spawned process takes up to 7.5 seconds. Nevertheless, for
large problem sizes, the overall recovery time from a pro-
cess failure is less than one percent of the total execution
time of the application. Therefore, the advantage for the
end-user is, that despite the potential of having to deal with
process failures, the overall execution time for the simula-
tion in the case of failures are approximately the same as for
the original execution without failures.

6 Conclusion and Outlook

In this paper we presented the semantics of a fault-
tolerant version of the Message Passing Interface. FT-
MPI is an implementation of this specification, supporting
the full MPI-1.2 document as well as supporting extended
functionality of a failure-recovery model. FT-MPI is how-
ever not an automatic checkpoint/recovery system, instead
it gives the application the possibility to survive node or
link failures, re-organize its communication and/or commu-
nicators and continue from a well defined point in the users
application. Defining and implementing a consistent state
in the application is the responsibility of the application de-
velopers.

Results with point-to-point benchmarks as well as with
the PSTSWM benchmark show, that the performance
achieved with FT-MPI is comparable to other, non fault-
tolerant implementations of MPI, in some cases even better.
The overhead introduced by the fault-tolerant features of the
libraries are negligible.

Writing fault tolerant applications requires usually some
modifications to existing parallel applications. A state
model for the development of master-slave applications has
been presented as well as an example for a tightly cou-
pled application, namely a parallel CG-solver. The usage of
error-handlers from the MPI specification greatly improves
the readability and maintainability of fault tolerant applica-
tions.

Current work focuses on improving the times for recov-
ering from an error. While for long-running applications
even the current times are just a marginal fraction of their
overall execution time, we still think that there is ample
room for further improvements in this area. More work
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will also be invested in the development of other templates
to show, how the fault-tolerant features of FT-MPI can be
used by other classes of high performance computing appli-
cations.
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