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Abstract. Although high performance computing has been achieved
over computational Grids using various techniques, the support for high
performance computing on the Grids using Remote Procedure Call
(RPC) mechanisms is fairly limited. In this paper, we discuss a RPC sys-
tem called GrADSolve that supports execution of parallel applications
over Grid resources. GrADSolve employs powerful scheduling techniques
for dynamically choosing the resources used for the execution of paral-
lel applications and also uses robust data staging mechanisms based on
the data distribution used by the end application. Experiments and re-
sults are presented to prove that GrADSolve’s data staging mechanisms
can significantly reduce the overhead associated with data movement in
current RPC systems.

1 Introduction

The role of Remote Procedure Call (RPC) [2,15,18,4,9,3,12] mechanisms in Com-
putational Grids [7] has been the subject of several recent studies [14,6,13]. Al-
though traditionally RPCs have been viewed as communication mechanisms,
recent RPC systems [3,12] perform a wide range of services for problem solving
on remote resources. Computational Grids consist of large number of machines
ranging from workstations to supercomputers and strive to provide transparency
to the end users and high performance for end applications. While high perfor-
mance is achieved by the parallel execution of applications on large number of
Grid resources, user transparency can be achieving by employing RPC mecha-
nisms. Though there are a large number of RPC systems that adequately support
the remote invocation of sequential software from sequential environments, the
number of RPC systems for supporting invocation of parallel software are rel-
atively few [3,12,13,10,5]. Some of these parallel RPC systems [13,10] require
invocation of remote parallel services from only parallel clients. Some of the
RPC systems [3,12] support only master-slave or task farming models of paral-
lelism. A few RPC systems [12,3] fix the amount of parallelism at the time when
the services are uploaded into the RPC system and hence are not adaptive to
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the load dynamics of the Grid resources. A few RPC systems [10,5] supporting
invocation of parallel software are implemented on top of object oriented frame-
works like CORBA and JavaRMI and may not be suitable for high performance
computing according to a previous study [16].

In this paper, we propose a Grid-based RPC system called GrADSolve1 that
enables the users to invoke MPI applications on remote Grid resources from a
sequential environment. In addition to providing easy-to-use interfaces for the
service providers to upload the parallel applications into the system and for
the end users to remotely invoke the parallel applications, GrADSolve performs
application-level scheduling and dynamically chooses the resources for the execu-
tion of the parallel applications based on the load dynamics of the Grid resources.
GrADSolve also uses data distribution information provided by the library writ-
ers to partition the users’ data and stage to the different resources used for the
application execution. Our experiments show that the data staging mechanisms
in GrADSolve helps reduce the data staging times in RPC systems by 20-50%. In
addition to the above features, GrADSolve also enables users to store execution
traces for a problem run and use the execution traces for subsequent problem
runs.

Thus, the contributions of our research are:

1. design and development of an RPC system that utilizes standard Grid Com-
puting mechanisms including Globus [8] for invocation of remote parallel
applications from a sequential environment.

2. selection of resources for parallel application execution based on load condi-
tions of the resources and application characteristics.

3. communication of data between the user’s address space and the Grid re-
sources based on the data distribution used in the application and

4. maintenance of execution traces for problem runs.

The current implementation of GrADSolve is only suitable for invoking remote
MPI-based parallel applications from sequential applications and not from par-
allel applications.

Section 2 presents a detailed description of the framework of the GrADSolve
system. The support in the GrADSolve system for maintaining execution traces
is explained in Section 3. In Section 4, the experiments conducted in GrADSolve
are explained and results are presented to demonstrate the usefulness of the
data staging mechanisms and execution traces in GrADSolve. Section 5 looks at
related efforts in the development of RPC systems. Section 6 presents conclusions
and future work.

2 Overview of GrADSolve

Figure 1 illustrates the overview of the GrADSolve system.
1 The system is called GrADSolve since it is derived from the experiences of the

GrADS [1] and NetSolve [3] projects.
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Fig. 1. Overview of GrADSolve system

At the core of the GrADSolve system is a XML database. This database
maintains four kinds of tables - users, resources, applications and problems. The
users, resources and the applications tables contain information about the dif-
ferent users, machines and applications on the Grid system respectively. The
problems table maintains information about the individual problem runs.

There are three human entities involved in GrADSolve - administrators, li-
brary writers and end users. The role of these entities in GrADSolve and the
functions performed by the GrADSolve system for these entities are explained
below.

Administrators. The GrADSolve administrator is responsible for managing
the users and resources of the GrADSolve system. The administrator creates
entities for different users and resources in the XML database by specifying
configuration files that contains information for different users and resources,
namely the user account names for different resources, the location of the home
directories on different resources in the GrADSolve system, the names of the
different machines, their computational capacities, the number of processors in
the machines and other machine specifications.

Library Writers. The library writer uploads his application into the GrAD-
Solve system by specifying an Interface Definition Language (IDL) file for the
application. In the IDL file, the library writer specifies the programming lan-
guage in which the function is written, the name of the function, the set of input
and output arguments, the description of the function, the names of the object
files and libraries needed for linking the function with other functions, if the
function is sequential or parallel, etc. For each input and output argument, the
library writer specifies the name of the argument, if the argument is an input
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or output argument, the datatype of the argument, the number of elements if
the argument is a vector, the number of rows and columns if the argument is a
matrix etc. An example of a IDL file written for a ScaLAPACK QR factorization
routine is given in Figure 2.

PROBLEM qrwrapper
C FUNCTION qrwrapper(IN int N, IN int NB, INOUT double A[N][N],

INOUT double B[N][1])
‘‘a version of qr factorization that works with
square matrices.’’

LIBS = ‘‘/home/grads23/GrADSolve/ScaLAPACK/pdgeqrf_instr.o \
/home/grads23/GrADSolve/ScaLAPACK/pdscaex_instrQR.o \
...’’

TYPE = parallel

Fig. 2. An example GrADSolve IDL for a ScaLAPACK QR problem

After the library writer submits the IDL file to the GrADSolve system,
GrADSolve translates the IDL file to a XML document. The GrADSolve trans-
lation system also generates a wrapper program and compiles the wrapper pro-
gram with the appropriate libraries and stages the executable file to the remote
machines in the GrADSolve system. Also, stored in the XML database for the
application is the information regarding the location of the executable files on
the remote resources.

If the library writer wants to add an performance model for his application, he
executes the getperfmodel template utility specifying the name of the application.
The utility retrieves the problem description of the application from the XML
database and generates a performance model template file. The template file
contains the definitions of the performance model routines. The library writer
fills in the performance model routines with the appropriate code for specifying
if the given set of resources have adequate capacity to solve the problem, the
predicted execution cost of the application and the data distribution used in
the application. The library writer uploads his performance model by executing
the add perfmodel utility which stores the location of the wrapper program and
the performance model to the XML database corresponding to the entry for the
application.

End Users. The end users solve problems over remote GrADSolve resources
by writing a client program in C or Fortran. The client program includes an
invocation of a routine called gradsolve() passing to the function, the name of
the end application and the input and output parameters needed by the end
application. The invocation of the gradsolve() routine triggers the execution of
the GrADSolve Application Manager. GrADSolve uses Globus Grid Security In-
frastructure (GSI) for the authentication and authorization of users. The Appli-
cation Manager then retrieves the problem description from the XML database
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and matches the user’s data with the input and output parameters required by
the end application.

If an performance model exists for the end application, the Application Man-
ager downloads the performance model from the remote location where the li-
brary writer had previously stored it. The Application Manager then retrieves
the list of machines in the GrADSolve system from the resources table in the
XML database, and retrieves resource characteristics of the machines from the
Network Weather Service (NWS) [17]. The Application Manager uses the list of
resources with resource characteristics, the performance model and scheduling
heuristics [19] to determine a final schedule for application execution and stores
the status of the problem run and the final schedule in the problems table of the
XML database corresponding to the entry for the problem run.

The Application Manager then creates working directories on the sched-
uled remote machines for end application execution and enters the Application
Launching phase. The Application Launcher stores the input data to files and
stages these files to the corresponding remote machines chosen for application
execution. An input data may be associated with data distribution information
that was previously uploaded by the library writer. The data distribution infor-
mation contains the kind of data distribution (e.g., block, block-cyclic, cyclic,
user-defined etc.) used for the data. If data distribution information for an input
data does not exist, the Application Launcher stages the entire input data to all
the machines involved in end application execution. If the information regarding
data distribution exists, the Application Launcher stages only the appropriate
portions of the input data to the corresponding machines. For example, for data
with block distribution, only the 2nd block has to be staged to the 2nd machine
used for problem solving. This kind of selective data staging significantly reduces
the time needed for the staging of entire data especially if large amount of data
is involved. After the staging of input data, the Application Launcher launches
the end application on the remote machines chosen for the final schedule using
the Globus MPICH-G mechanisms. The end application reads the input data
that were previously staged by the Application Launcher, solves the problem and
stores the output data to the corresponding files on the machines in the final
schedule. When the end application finishes execution, the Application Launcher
copies the output data from the remote machines to the user’s address space.
The staging in of the output data from the remote locations is a reverse opera-
tion of the staging out of the input data to the remote locations. The GrADSolve
Application Manager finally returns success state to the user client program.

3 Execution Traces in GrADSolve – Storage,
Management, and Usage

One of the unique features in the GrADSolve system is the ability provided to
the users to store and use execution traces of problem runs. There are many ap-
plications in which the outputs of the problem depend on the exact number and
configuration of the machines used for problem solving. Ill-conditioned problems
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or unstable algorithms can give rise to vast changes in output results due to
small changes in input conditions. For these kinds of applications, the user may
desire to use the same initial environment for all problem runs.

To guarantee reproducibility of numerical results in the above situations,
GrADSolve provides capability to the users to store execution traces of problem
runs and use the execution traces during subsequent executions of the same
problem with the same input data. For storing the execution trace of the current
problem run, the user executes his GrADSolve program with a configuration
file called input.config that contains a TRACE FLAG variable that is either
0 or 1. During the registration of the problem run with the XML database,
the value of the TRACE FLAG variable is stored. After the end application
completes its execution and the output data are copied from the remote machines
to the user’s address space, the Application Manager removes the remote files
containing the input data for the end application if the TRACE FLAG is 0.
But if the TRACE FLAG is set to 1, the Application Manager retains the input
data in the remote machines. At the end of the problem run, the Application
Manager generates an output configuration file that contains a TRACE KEY
corresponding to the execution trace.

When the user wants to execute the problem with a previously stored execu-
tion trace, he executes his client program specifying the TRACE KEY variable
in the input.config file. The TRACE KEY variable is set with the key that cor-
responds to the execution trace. During the Schedule Generation phase, the Ap-
plication Manager, instead of generating a schedule for the execution of the end
application, retrieves the schedule used for the previous problem run correspond-
ing to the TRACE KEY, from the problems table in the XML database . The
Application Manager then checks if the capacities of the resources in the schedule
at the time of trace generation are comparable to the current capacities of the
resources. If the capacities are comparable, the Application Manager proceeds to
the rest of the phases of its execution. During the Application Launching phase,
the Application Manager, instead of staging the input data to remote working
directories, copies the input data and the data distribution information, used
in the previous problem run corresponding to the TRACE KEY, to the remote
working directories. Thus GrADSolve guarantees the use of the same execution
environment used in the previous problem run for the current problem run, and
hence guarantees reproducibility of numerical results.

4 Experiments and Results

The GrADS testbed consists of about 40 machines from University of Tennessee
(UT), University of Illinois, Urbana-Champaign (UIUC) and University of Cal-
ifornia, San Diego (UCSD). For the sake of clarity, our experimental testbed
consists of 4 machines:

– a 933 MHz Pentium III machine with 512 MBytes of memory located in UT,
– a 450 MHz Pentium II machine with 256 MBytes of memory located in UIUC

and
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– 2 450 MHz Pentium III machines with 256 MBytes of memory located in
UCSD connected to each other by 100 Mb switched Ethernet.

Machines from different locations are connected by Internet. In the experi-
ments, GrADSolve was used to remotely invoke ScaLAPACK QR factorization.
Since some of the unique features of GrADSolve include the data distribution
mechanisms and the usage of execution traces, the experiments focus only on the
times for staging data and not on the communication and total execution times.
Block cyclic distribution was used for the matrix A. GrADSolve was operated in
3 modes. In the first mode, the performance model did not contain information
about the data distribution used in the ScaLAPACK driver. In this case, GrAD-
Solve transported the entire data to each of the locations used for the execution
of the end application. This mode of operation is practiced in RPC systems that
do not support the information regarding data distribution. In the second mode,
the performance model contained information about the data distribution used
in the end application. In this case, GrADSolve transported only the appropriate
portions of the data to the locations used for the execution of end application.
In the third mode, GrADSolve was used with an execution trace corresponding
to a previous run of the same problem. In this case, data is not staged from the
user’s address space to the remote machines, but temporary copies of the input
data used in the previous run are made for the current problem run.
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Fig. 3. Data staging and other GrADSolve overhead

Figure 3 shows the times taken for data staging and other GrADSolve over-
head for different matrix sizes and for the three modes of GrADSolve operation.
The machines that were chosen by the GrADSolve application-level scheduler
for the execution of end application for different matrix sizes are shown in Table
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1. The decisions regarding the selection of machines for problem execution were
automatically made by the GrADSolve system taking into account the size of
the problems and the resource characteristics at the time of the experiments.

Table 1. Machines chosen for application execution

Matrix size Machines
1000 1 UT machine
2000 1 UT machine
3000 1 UT machine
4000 1 UT machine
5000 1 UT, 1 UIUC machines
6000 1 UIUC, 1 UCSD machines
7000 1 UIUC, 1 UCSD machines
8000 1 UT, 1 UIUC, 2 UCSD machines

Comparing the first two modes in Figure 3, we find that for smaller problem
sizes, the times taken for data staging in both the modes are the same. This is
because only one machine was used for problem execution and the same amount
of data are staged in both the modes when only one machine is involved for
problem execution. For larger problem sizes, the times for data staging using
the data distribution is less than 20-55% of the times taken for staging the
entire data to remote resources. Thus the use of data distribution information in
GrADSolve can give significant performance benefits when compared to staging
the entire data that is practiced in some of the RPC systems. Data staging in
the third mode is basically the time taken for creating temporary copies of data
used in the previous problem runs in remote resources. We find this time to
be negligible when compared to the first two modes. Thus execution traces can
be used as caching mechanisms to use the previously staged data for problem
solving. The GrADSolve overheads for all the three modes are found to be the
same. This is because of the small number of machines used in the experiments.
For experiments when large number of machines are used, we predict that the
overheads will be higher in the first two modes than in the third mode. This
is because in the first two modes, the application-level scheduling will explore
large number of candidate schedules to determine the machines used for the end
application while in the third mode, a previous application-level schedule will
be retrieved from the database and used.

5 Related Work

Few RPC systems contain mechanisms for the parallel execution of remote soft-
ware. The work by Maassen et. al [10] extends Java RMI for efficient communica-
tions in solving high performance computing problems. The framework requires
the end user’s programs to be parallel programs. NetSolve [3] and Ninf [12]
support task parallelism by the asynchronous execution of number of remote
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sequential applications. OmniRPC [13] is an extension of Ninf and supports
asynchronous RPC calls made from OpenMP programs. But similar to the ap-
proaches in NetSolve and Ninf, OmniRPC supports only master-worker models
of parallelism. NetSolve, and Ninf also supports remote invocation of MPI ap-
plications, but the amount of parallelism and the locations of the resources to
be used for the execution are fixed at the time when the applications are up-
loaded to the systems and hence are not adaptive to dynamic loads in the Grid
environments.

The efforts that are very closely related to GrADSolve are PaCO [11] and
PaCO++ [6,5] from the PARIS project in France. The PaCO systems are im-
plemented within the CORBA [4] framework to encapsulate MPI applications
in RPC systems. The data distribution and redistribution mechanisms in PaCO
are much more robust than in GrADSolve and support invocation of remote par-
allel applications either from sequential or parallel client programs. The PaCO
projects do not support dynamic selection of resources for application execution
as in GrADSolve. Also, GrADSolve supports Grid related security models by
employing Globus mechanisms. And finally, GrADSolve is unique in maintain-
ing execution traces that can help bypass the resource selection and data staging
phases.

6 Conclusions and Future Work

In this paper, an RPC system for efficient execution of remote parallel soft-
ware was discussed. The efficiency is achieved by dynamically choosing the ma-
chines used for parallel execution and staging the data to remote machines based
on data distribution information. The GrADSolve RPC system also supports
maintaining and utilizing execution traces for problem solving. Our experiments
showed that the GrADSolve system is able to adapt to various problem sizes and
the resource characteristics and yielded significant performance benefits with its
data staging and execution trace mechanisms.

Interfaces for the library writers for expressing more capabilities of the end
application are currently being designed. These capabilities include the ability
of the application to be preempted and continued later with different processor
configuration. These capabilities will allow GrADSolve to adapt to changing
Grid scenarios. Remote execution of non-MPI parallel programs, applications
with different modes of parallelism and irregular applications are also being
considered.
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