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Abstract. This paper evaluates the performance of several MPI imple-
mentations regarding two chapters of the MPI-2 specification. First, we
analyze, whether the performance using dynamically created communi-
cators is comparable to the approach presented in MPI-1 using a static
communicator for different MPI libraries. We than evaluate, whether the
communication performance of one-sided communication on current ma-
chines, represents a benefit or a drawback to the end-user compared to
the more conventional two-sided communication.

1 Introduction

The MPI-2 specification [3] extends the MPI-1 document [2] by three major
chapters (dynamic process management, one-sided communication and paral-
lel File-I/0O), several minor ones and some corrections/clarifications for MPI-1
functions. Although it has been published since 1997, up to now only the paral-
lel File-I/O chapter has really been accepted by the end-users, and clearly this
is the reason why benchmarks have been mainly developed in this area of the
MPI-2 specification[4].

Assuming that the user really wants to use features of the MPI-2 specifica-
tion, we would like to investigate in this paper, what the performance benefits
and drawbacks of different features of MPI-2 are. Two questions are of specific
interest in the context of this paper: first, do dynamically created communi-
cators offer the same point-to-point performance on current implementations
comparable to the static MPI_.COMM_WORLD approach ? And second, what
is the achievable performance using one-sided operations compared to two-sided
communication?

Since the number of available MPI implementations implementing some parts
of the MPI-2 specification is meanwhile quite large, we would like to limit our-
selves for the scope of this paper to analyze the performance and implementation
of following libraries:

— MPI/SX: library version 6.7.2. Tests were executed on an NEC SX-5 con-
sisting of 16 250 MHz processors with 32 GBytes of main memory.



— Hitachi MPI: library version 3.07. Tests were executed on a Hitachi SR8000
with 16 nodes, each having 8 250 MHz processors. Each node has 8 GBytes
of main memory.

— SUN MPT: library version 6. Tests were executed on a SUN Fire 6800, with
24 750 MHz Sparc III processors, and 96 GBytes of main memory.

— LAM MPI: library version 6.5.9. Tests were executed on a cluster with 32
nodes, each having two 2.4 GHz Pentium 4 Zeon processors and 2 GBytes
of memory. The nodes are connected by Gigabit Ethernet.

The library versions used in the tests are always the most recent versions
available from the according vendors/implementors. We would like to emphasize
at this point, that our intention is not to compare the numbers between the
machines. Our goal is to compare the numbers achieved in the tests with the
performance measured on the very same machine for the static MPI-1 scenario,
and therefore comment on the quality of the implementation of the MPI-library.

2 Performance results with dynamic communicators

The MPI-2 document gives the user three possibilities on how to create a new
communicator that includes processes, which have not been part of the previous
world-group:

1. Spawn additional processes using MPI_Comm_spawn/multiple

2. Connect two already running (parallel) applications using a socket-like inter-
face, where one application connects using MPI_Comm_connect to another
application, which calls MPI_Comm_accept.

3. Connect two already running application processes, which have already a
socket connection established by using MPI_Comm_join.

The third method explicitly restricts itself to be used for socket communica-
tion. However, the goal of this paper is not to measure the socket performance on
each machine, but we would like to measure the performance of methods, where
the user might expect to get the same performance with a dynamically created
communicator like with the static approach. Therefore, we are just considering
the first two approaches in this paper.

The tests performed are a modification of a ping-pong benchmark, which has
been adapted to work with variable communicator and partner arguments. The
latter one is necessary, since in some of the cases we have to deal with inter-
communicators, and therefore the rank of the communication partner might be
different than in the static case using MPI_.COMM_WORLD.

2.1 Results on the NEC SX-5

The first library which we would like to analyze regarding its performance and
usability of this part of the MPI-2 specification, is the implementation of NEC.
Starting an application which is using MPI_Comm _spawn, the user has to specify



an additional parameter called max_np. For example, if the application is started
originally with 4 processes and the user wants to spawn later on 4 more processes,
the command line has to look like follows:

mpirun -np 4 -max_np 8 ./<myapp>

While this approach is explicitly allowed by the MPI-2 specification, it also
clearly sets certain limits on the dynamic behavior of the application.

When using the connect/accept approach, the user has to set another flag
for compiling and starting the application. The tcpip flag strongly indicates
already, that the connect/accept model has been implemented in MPI/SX using
TCP/IP. An interesting question regarding this flag is, whether communication
in each of the independent, parallel applications is influenced by this flag, e.g.
whether all communication is executed using TCP/IP, or whether just the com-
munication between the two applications connected by the dynamically created
inter-communicator is using TCP/IP.
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Fig. 1. Point to point performance on the SX-5 (left) and Hitachi SR8000 (right)

Figure 1 shows on the left side the maximum bandwidth achieved with the
different communicators. Obviously, the performance achieved with a commu-
nicator created by MPI_Comm _spawn is identical to the static approach. How-
ever, the line for the MPI_Comm_connect/accept approach is not visible, since
the TCP/IP performance of the machine can not compete with the bandwidth
achieved through the regular communication device.

At a first glance, the tcpip flag does not seem to have an affect on the
maximum achievable bandwidth. However, our measurements showed, that the
variance were somewhat higher than without the tcpip flag. The standard de-
viation from the average without the flag was usually below 1 %, while using
the tcpip flag it was in the range of 5-10%. Therefore, the flag does have an
influence on the performance of an application, even if it is not dramatic.



2.2 Results on the Hitachi SR8000

On the Hitachi SR8000 we conducted two sets for each experiment: all tests
were executed using two processes on the same node, indicated in fig. 1 as intra-
node communication, and using two processes on different nodes, referred to as
inter-node communication.

Like shown in the right part of fig. 1, for the intra-node tests, the performance
achieved with the MPI_Comm_spawn example as well as for the MPI_Comm _con-
nect/accept example is comparable to the static approach. Furthermore, the
inter-node performance for the MPI_Comm_connect/accept example was basi-
cally identical to the static inter-node performance. However, we did not manage
to make the spawn-method work across several nodes. While we do not believe
that this is a restriction of the MPI-library, it indicates one of the possible prob-
lems for dynamically creating new processes, namely the interaction with the
scheduler of the machine.

2.3 Results on the SUN Fire 68000
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Fig. 2. Point to point performance on the SUN-Fire (left) and the with LAM (right)

The results achieved with SUN-MPI are presented in the left part of figure
2. To summarize these results and the experiences, no additional flags had to be
used to make any of the examples work, and the performance achieved in all sce-
narios tested were always basically identical to the static MPI.COMM_WORLD
scenario.

2.4 Results using LAM 6.5.9

Using the most recent version of LAM, all three tests provided basically the
same performance, for using both, TCP/IP communication for connecting sev-
eral processes on several nodes, and a shared-memory interface for intra-node
communication (see right part of fig. 2).



We would like to comment on the behavior of LAM when using MPI_ Comm_
spawn. When booting the lam-hosts, the user has to specify in a hostfile the list
of machines, which should be used for the parallel job. A LAM daemon is then
started on each of these machines. The processes are started according to their
order in the hostfile. When spawning new processes, it appears for the default
configuration, the processes are started again using the first machine in the
list. Optimally, the user would expect, that the first 'unused’ machine (at least
unused according to the job which spawns the processes) is chosen, to distribute
the load appropriately. With the current scheme, it is probable that for compute
intensive application by spawning additional processes on the machines which
are running the MPI-job already, the overall job will be slowed down.

3 Performance of one-sided operations

The chapter about one-sided communication is supposed to be the most dramatic
supplement to the MPI-1 specification, since it gives the user a completely new
paradigm for exchanging data between processes. In contrary to the two-sided
communication of MPI-1, a single processes can control the parameters for source
and destination processes. However, since the goal was to design a portable
interface for one-sided operations, the specification has become rather complex.
It can be briefly summarized as follows:

— For moving data from the memory of one process to the memory of another
processes, three operations are provided: MPI_Get, MPI_Put and MPI_Accu-
mulate, the latter one combining the data of the processes in a similar fashion
to MPI_Reduce.

— For the synchronization between the processes involved, three methods are
provided: MPI_Win_fence, MPI_Win_start/post/wait/complete and MPI_Win_
lock/unlock. The first two methods are called active target synchronization,
since the destination processes is also involved in the operation. The last
method is called passive target synchronization, since the destination pro-
cess is not participating in any of the MPI-calls.

Another call from the MPI-2 document is of particular interest for the one-
sided operation, namely the possibility to allocate some ’fast’ memory using
MPI_Alloc_.mem [3]. On shared-memory architectures this might be for example
a shared memory segment which can be directly accessed by a group of processes.
Therefore, RMA operations and one-sided communication might be faster, if
memory areas are involved, which have been allocated via this function.

3.1 Description of the test code

The ping-pong benchmark used in the last section has been further modified
to work with one-sided operations. For this, we are creating first an access and
exposure epoch on both processes and putting/getting data in/from the remote
memory. After closing the access and exposure epoch on both processes and thus



forcing all operations to finish, we create a second exposure and access epoch,
transferring the data back. We are timing the overall execution time for both
operations thus producing comparable results to the ping-pong benchmark.

For the passive target synchronization, we did not manage to create a rea-
sonable version of this test. For measuring the achievable bandwidth using
MPI_Win_lock/unlock, a streaming benchmark should be used instead. For pro-
ducing comparable results (also with respect to the previous section), we omitted
the passive target synchronization in the following tests and focused on commu-
nication methods using active target synchronization.

The MPI-2 specification gives the user many possibilities for optimizing the
one-sided operations. For example, when creating a window object, the user has
to pass an MPI Info object as an argument, where they can indicate, how the
window is used in its application. Another optimization possibility is the as-
sert argument in the synchronization routines. For our tests, we used the default
values for both arguments, which are MPI_INFO_NULL and assert=0. An inves-
tigation of the effect of each of these parameters on different machines would be
very interesting, but it would exceed the length-limit of this paper. Additionally,
the usage of these arguments might optimize the communication performance on
one platform, while being in the worst case a performance drawback on another
one. Therefore, we expect most users to use just the default parameter settings.

3.2 Results on the NEC SX-5

One-sided performance NEC SX5 One-sided performance NEC SX5
9000 T T 9000

sendirecy —+—
get start/post -~
ut start/post -
i

8000 8000

7000 7000
7 b T _—
g NN S g -
Z 6000 - 5 6000
2 pa
B b g pe
= s = -
£ s - PR £ so0 ™ -
3 ¥ E o s oo st
H =% P 2 - e
& 400 - R g oo ) -
[ S e S € / e
2 o ¥ e g A Py
£ 3000 & A E 3000 e A e
£ ¥ == £ 7 e
g { g g ][ VAo
2000 H,”’ e 2000 ‘ﬁ % £
s i ¥
) F
1000 [ 1000 %
0 0

0 500000 1e+06 1.5e+06 2406 0 500000 1e+06 15406 2¢+06
Message Length [Bytes] Message Length [Bytes]

Fig.3. Performance of one-sided operations using MPI_Win_fence (left) and
MPI_Win_start/post for synchronization on the SX-5

The performance of one-sided operations with MPI/SX without using fast
memory, is lower than regular point-to-point performance achieved by using
MPI_Send and MPI_Recv. The user can still achieve the same maximum band-
width with one-sided operations like in the MPI-1 scenario, however the message
size has to reach up to 4 MBytes for achieving this bandwidth.



Using MPI_Alloc_mem to allocate the memory segments, which are then used
in the one-sided operations, the user can improve the performance of one-sided
operations for both, the winfence and the start/post test. While in the previ-
ous test without the usage of MPI_Alloc_mem, the start/post mechanism was
achieving a slightly better performance than the winfence mechanism, with the
'fast” memory, the difference is increasing significantly. For messages larger than
1 MByte, it even outperforms the two-sided communication used as a reference.

3.3 Results on the Hitachi SR8000
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Fig. 4. Performance of one-sided operations for intra node (left) and inter-node com-
munication on the Hitachi SR8000

The results for the Hitachi are shown in figure 4. Up to 1.5 MByte messages,
the one-sided operations are partially more than 20 % slower than the two-
sided communication. For messages exceeding this message size, the bandwidth
achieved using one-sided operations is slowly converging towards the bandwidth
of the send/recv test-case. There is also no real difference for the performance
whether we are using MPI_Put or MPI_Get. However, the winfence test-case
achieves usually a slightly better performance than the start/post mechanism.

The situation is similar for the inter-node case, the implementation of the
test-suite using MPI_Win_fence for synchronization achieves a somewhat better
performance than the test-case using MPI_Win_Start/ Post. For all tests, the
usage of MPI_Alloc_mem did not show any effect on the performance.

3.4 Results on the SUN Fire 6800

The results achieved on with SUN-MPI are presented in figure 5. Two major
effects can be observed: first, the usage of MPI_Alloc_mem has a huge influence
on the performance achieved. In case where ’fast’ memory is allocated using



this function, the performance achieved with one-sided operations outperforms
the point-to-point performance using send/recv operations. Without this routine
however, the achievable bandwidth is roughly half of the bandwidth achieved for
two-sided communication.

There is no real performance difference between the two synchronization
mechanisms analyzed. However, if we are not allocating memory using the pro-
vided MPI-function, the performance using MPI_Get was always higher than the
one achieved with MPI_Put.
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Fig.5. Performance of one-sided operations using MPI_Win fence (left) and
MPI_Win_start/post for synchronization with SUN-MPI

3.5 Results using LAM 6.5.9

The performance results achieved with LAM are presented in figure 6. For both
communication drivers analyzed, the bandwidth achieved with one-sided com-
munication is comparable to the send/recv tests. The only difference is, that
the peak observed in both protocols between 32 and 64 Kilobyte messages, is
somewhat lower.

3.6 One-Byte Latency

While in the previous chapters we focused on the achievable bandwidth especially
for large messages, we would like to summarize the results for small messages
on all platforms by presenting the execution time for a data transfer of one
byte. Since we did not find any major differences in the performance between
MPI_Put and MPI_Get, we present in this section just the results for MPI_Put.
A minus in the table does not mean, that the function is not supported by the
library, but it just indicates, that the usage of MPI_Alloc.mem did not have
any influence on the performance. As shown in table 1, one-sided operations
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Fig. 6. Performance of one-sided operations for inter-node and intra-node communica-
tion with LAM

using active target synchronization have a much higher start-up overhead than
two-sided communication. Only on SUN-MPI, when using memory allocated by
MPI_Alloc_mem, the user can achieve a reasonable one-byte latency.

Send/Recv|Win_fence| Win_fence + |start/post| start/post +
MPI_Alloc_mem MPI_Alloc_mem
SX5 5.20 117.19 138.03 70.47 81.34
SR8K intra| 10.98 64.62 - 182.60 -
SR8K inter| 22.26 119.28 - 256.97 -
SUN 2.88 33.9 4.96 27.80 3.38
LAM inter 46.76 260.72 - 133.80 -
LAM intra 16.57 170.88 - 86.90 -

Table 1. Execution time for sending a 1-byte message using different communication
methods

4 Summary

In this paper we presented our experiences and the performance of four MPT li-
braries, with respect to the handling of dynamically created communicators and
one-sided communication. Using the MPI-2 features for creating communicators,
that include processes which have not been part of the original MPI.COMM_
WORLD, has worked basically well on all machines. However, with the excep-
tion of SUN-MPI, all have shown certain pitfalls, which might influence the
performance and the user-friendliness of these functions.



The usage of one-sided communication offers the application developer a wide
variety of possibilities to express the communication pattern of his application.
Once familiar with the syntax, the usage of these functions did not impose
any major challenges from the usage point of view. The performance achieved
with these operations vary partially dramatically, depending on whether the
user has allocated the memory for the communication using MPI_Alloc_.mem or
not. While at the beginning of the 90s, a parallel application had to abstract the
communication routines for supporting several communication libraries, it might
happen, that end-users have to do this again, if they want to make sure, that they
are using the fastest possibility on each machine, even though all communication
methods are provided by MPI.
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