Self Adaptivity in Grid Computing *

Sathish S. Vadhiyar and Jack J. Dongarra

Computer Science Department
University of Tennessee, Knoxville
{vss, dongarra}@cs.utk.edu

Abstract. Optimizing a given software to exploit the features of the
underlying system has been an area of research for many years. Recently,
a number of self adapting software have been designed and developed for
various computing environments. In this paper, we discuss the design and
implementation of a software that dynamically adjusts the parallelism
of applications executing on computational Grids in accordance to the
changing load characteristics of the underlying resources. The migration
framework implemented by our software is oriented towards performance
oriented Grid systems and implements tightly coupled policies for both
suspension and migration of executing applications. The suspension and
migration policies take into account both the load changes on systems
as well the remaining execution times of the applications thereby taking
into account both system load and application characteristics. The main
goal of our migration framework is to improve the response times for
individual applications. We also present some results that demonstrate
the usefulness of our migration framework.

1 Introduction

Optimization of software routines for achieving efficiency on a given compu-
tational environment has been an active area of research. Historically, the op-
timization was achieved by hand-tuning the software to fit the needs of the
computing environment. Although high optimization can be achieved, this pro-
cess was found to be tedious and needs considerable scientific expertise. Also,
hand-tuning process was not portable across different computing environments.
Finally, hand customization does not take into account the run-time load dy-
namics of the system and the inputs parameters for the application.

The solution to the above mentioned problems associated with hand-tuning
software routines for the computing environment is to build self adaptive software
that studies the characteristics of the computing environments and chooses the
software parameters to achieve high efficiency on the computing environment.
Recently, a number of self adaptive software have been designed and implemented
[13,27,24,26,7,3]. Some of the software apply adaptivity to the computational
processors [13,27], some are tuned for communication networks [24], some are

* This work is supported in part by the National Science Foundation contract GRANT
#ETA-9975020, SC #R36505-29200099 and GRANT #EIA-9975015

intended for workstation clusters [7] and some have been developed for compu-
tational Grids [3]. The adaptive software also differ in terms of the time when
adaptivity is performed. Some perform adaptivity at installation time [27,24,
26] while some perform adaptivity at the run time [7, 3].

There are very few self adaptive software that dynamically adapts to changes
in the load characteristics of the resources on computational Grids. Computa-
tional Grids [11] involve large system dynamics that the ability to migrate ex-
ecuting applications onto different sets of resources assumes great importance.
Specifically, the main motivations for migrating applications in Grid systems are
to provide fault tolerance and to adapt to load changes on the systems. In this
paper, we focus on migration of applications executing on the distributed and
Grid systems to adapt to the load dynamics of the resources.

There are at least two disadvantages in using the existing migration frame-
works [17,9, 16, 25, 30, 14, 16] for adapting to load dynamics. Due to the separate
policies employed by these migration systems for suspension of executing appli-
cations and migration of the applications to different systems, the applications
can incur lengthy waiting times between when they are suspended and when
they are restarted on new systems. Secondly, due to the use of pre-defined con-
ditions for suspension and migration and due to the lack of knowledge of the
remaining execution time of the applications, the applications can be suspended
and migrated even when they are about to finish execution in a short period
of time. This is certainly less desirable in performance oriented Grid systems
where the large load dynamics will to lead to frequent satisfaction of the pre-
defined conditions and hence will lead to frequent invocation of suspension and
migration decisions.

In this paper, we describe a framework that defines and implements schedul-
ing policies for migrating applications executing on distributed and Grid systems
in response to system load changes. In our framework, the migration of applica-
tions depends on

1. the amount of increase or decrease in loads on the resources,

2. the time of the application execution when load is introduced into the system,

3. the performance benefits that can be obtained for the application due to
migration.

Thus, our migrating framework takes into account both the load and application
characteristics. The policies are implemented in such a way that the executing
applications are suspended and migrated only when better systems are found for
application execution thereby invoking the migration decisions as infrequently
as possible. Our migration framework is primarily intended for rescheduling long
running applications that typically execute for several minutes. The migration of
applications in our migration framework is dependent on the ability to predict
the remaining execution times of the applications which in turn is dependent
on the presence of execution models that predict the total execution cost of the
applications. The framework has been implemented and tested in the GrADS
system [3]. Our test results indicate that our migration framework can help
improve the performance of executing applications by more than 30%.

In Section 2, we present a general overview of self adaptive software by de-
scribing some systems that perform adaptivity. In Section 3, we describe the
GrADS system and the life cycle of GrADS applications. In Section 4, we in-
troduce our migration framework by describing the different components for
migration. In Section 5, we describe our experiments and provide various re-
sults. In Section 6, we present related work in the field of migration. We give
concluding remarks and explain our future plans in Section 7.

2 Self Adaptive Software Systems - An Overview

Recently, there have been number of efforts in designing and developing self
adaptive software systems. These system differ in terms of the kind of comput-
ing environments, the kind of software and also the time when adaptivity is
performed. The following subsection describe some illustrative examples.

2.1 ATLAS

ATLAS [27] stands for Automatically Tuned Linear Algebra Software. ATLAS
exploits cache locality to provide highly efficient implementations of BLAS (Ba-
sic Linear Algebra Subroutine) and few LAPACK routines. During installation,
ATLAS studies various characteristics of the hardware including the size of the
cache, the number of floating point units in the machine and the pipeline length
to determine the optimal or near-optimal block size for the dense matrices, the
number of loop unrollings to perform, the kind of instruction sets to use, the
register blocking etc. Thus optimizations are performed for reducing the number
of accesses to main memory and loop overheads resulting in BLAS implemen-
tations that are competitive with the machine-specific versions of most know
architectures.

2.2 ATCC

ATCC [24] (Automatically Tuned Collective Communications) is intended for
optimizing MPT [22,1] collective communications for a given set of machines
connected by networks of specific configurations. The collective communication
routines form integral parts of most of the MPI-base parallel applications. During
installation, ATCC conducts experiments for different algorithms and segment
sizes for different collective communications, number of processors and message
sizes. ATCC then gathers the times for individual experiments in a look-up
table. When the user invokes a collective communication routine with a given
message size and a given number of processors, ATCC looks up the table and
chooses the best collective communication algorithm and segment size for com-
munication. Recent versions of ATCC include performance models for collective
communication algorithms to reduce the time taken for experiments.

2.3 BeBOP

The BeBOP project from Berkeley attempts to optimize sparse matrix kernels,
namely, matrix-vector multiplication, triangular solve and matrix triple product
for a given architecture. For each of the sparse matrix kernels, the BeBOP project
considers a set of implementations and chooses the optimal or near-optimal im-
plementation for a given architecture. Given a sparse matrix, machine, and ker-
nel, the BeBOP approach in choosing an implementation consists of two steps.
First, the possible implementations are benchmarked off-line in a matrix inde-
pendent, machine dependent way. When the matrix structure is known during
runtime, the matrix is sampled to extract relevant aspects of its structure, and
performance models that combine the benchmark data and the estimated ma-
trix properties are evaluated to obtain the near-optimal implementation. The
BeBOP approach has been successfully applied to optimize register blocking for
spare matrix-vector multiplication [26].

2.4 LFC

The LFC (LAPACK for Clusters) project [7] aims to simplify the use of par-
allel linear algebra software on computational clusters. Benchmark results are
obtained for sequential kernels that are invoked by the parallel software. During
runtime, adaptivity is performed by taking into account the resource charac-
teristics of the computational machines and optimal or near-optimal choice of
a set of resources for the execution of the parallel application, is made by the
employment of scheduling algorithms. LFC also optimizes the parameters of the
problem, namely the block size of the matrix. LFC is intended for the remote in-
vocation of parallel software from a sequential environment and hence employs
data movement strategies. The LFC approach has been successfully used for
solving ScaLAPACK LU, QR and Cholesky factorization routines.

3 The GrADS System

GrADS [3] is an ongoing research project involving a number of institutions and
its goal is to simplify distributed heterogeneous computing in the same way that
the World Wide Web simplified information sharing over the Internet. GrADS
is similar to LFC approach, but more suited for Grid computing due to the
employment of Grid computing tools. The University of Tennessee investigates
issues regarding integration of numerical libraries in the GrADS system. In our
previous work [18], we demonstrated the ease with which numerical libraries like
ScaLAPACK can be integrated into the Grid system and the ease with which
the libraries can be used over the Grid. We also showed some results to prove
the usefulness of a Grid in solving large numerical problems.

In the architecture of GrADS, the user wanting to solve a numerical appli-
cation over the Grid invokes the GrADS application manager. The life cycle of
the GrADS application manager is shown in Figure 1.

Problem current list of machinesin

\

the grid, machine parameters
Parameters ReSOU.rce Resource
Selection Selector

Initia list of machines Problem and machine
Application parameters Performance
ECITIC
hedulin — - Modeler
Application Application specific schedule
specific schedule

Contract
Development

No

5et new resource information
and develop a new contract
Yes

approved

Problem parameters,
final schedule

Application | Problem parameters, AEpIication
final schedule auncher

Launching
Application

Completed Exit

Application was stopped

Figure 1. GrADS application manager

As a first step, the application manager invokes a component called Resource
Selector. The Resource Selector accesses the Globus Monitoring and Discovery
Service(MDS) [10] to get a list of machines in the GrADS testbed that are alive
and then contacts the Network Weather Service(NWS) [29] to get system infor-
mation for the machines. The application manager then invokes a component
called Performance Modeler with problem parameters, machines and machine
information. The Performance Modeler, using an execution model built specif-
ically for the application, determines the final list of machines for application
execution. By employing the application specific execution model, GrADS fol-
lows the AppLeS [4] approach to scheduling. The problem parameters and the
final list of machines are passed as a contract to a component called Contract
Developer. The Contract Developer can either approve or reject the contract.
If the contract is rejected, the application manager develops a new contract by
starting from the resource selection phase again. If the contract is approved,
the application manager passes the problem, its parameters and the final list of
machines to Application Launcher. The Application Launcher spawns the job on
the given machines using Globus job management mechanism and also spawns a
component called Contract Monitor. The Contract Monitor through an Autopi-
lot mechanism [20] monitors the times taken for different parts of applications.
The GrADS architecture also has a GrADS Information Repository(GIR) that
maintains the different states of the application manager and the states of the
numerical application. After spawning the numerical application through the
Application Launcher, the application manager waits for the job to complete.
The job can either complete or suspend its execution due to external interven-
tion. These application states are passed to the application manager through the
GIR. If the job has completed, the application manager exits, passing success
values to the user. If the application is stopped, the application manager waits
for a resume signal and then collects new machine information by starting from
the resource selection phase again.

4 The Migration Framework and Self Adaptivity

The GrADS architecture explained in the previous section performs adaptiv-
ity by choosing the appropriate number of resources for the execution of end
application taking into account the load characteristics of the machines. But it
does not adapt the executing application to the changing resource characteristics
once the application is committed to a set of resources. It is highly desirable to
adapt and migrate the application to different set of resources if the resources on
which the application is executing does not meet the performance criteria. The
ability to migrate applications in the GrADS system is implemented by adding a
component called Rescheduler to the GrADS architecture The migrating numer-
ical application, migrator, the contract monitor that monitors the application’s
progress and the rescheduler that decides when to migrate, together form the
core of the migrating framework. The interactions between the different com-

ponents involved in the migration framework is illustrated in Figure 2. These
components are described in detail in the following subsections.

Manager
Application
Launching

A 3 Application

Application
Completed?

Applicationwas sto|
%F))/ the resdl edulerppecl

Application

for applicatio /

Execution

Resc

Storing STOP and
RESUME status

GrADS
Information
Repository

(GIR)

Figure 2. Interactions in Migration framework

4.1 The Migrator

We have implemented a user-level checkpointing library called SRS (Stop Restart
Software). The application by making calls to SRS gets the ability to checkpoint
data, to be stopped at a particular point in execution, to be restarted later on
a different configuration of processors and to be continued from the previous
point, of execution. The SRS library is implemented on top of MPI and hence
can be used only with MPI based parallel programs. Since checkpointing in SRS
is implemented at the application layer and not at the MPI layer, migration
is achieved by clean exit of the entire application and restarting the applica-
tion over a new configuration of The application interfaces for SRS look similar
to CUMULVS [15], but unlike CUMULVS, SRS does not require a PVM vir-
tual machine to be setup on the hosts. Although the method of rescheduling in

SRS, by stopping and restarting executing applications, incurs more overhead
than process migration techniques [5, 6, 23], the approach followed by SRS allows
reconfiguration of executing applications and portable across different MPI im-
plementations, particularly MPICH-G [12], a popular MPI implementation for
Grid computing. Due to the clean exit of the application during migration, no
interaction with the resource allocation manager is necessary during reschedul-
ing.

The SRS library consists of 6 main functions - SRS_Init(), SRS_Finish(),
SRS_Restart_Value(), SRS_Check_Stop(), SRS_Register() and SRS_Read(). The
user calls SRS Init() and SRS_Finish() in his application after MPI Init() and be-
fore MPI_Finalize() respectively. Since SRS is a user-level checkpointing library,
the application may contain conditional statements to execute certain parts of
the application in the start mode and certain other parts in the restart mode.
In order to know if the application is executed in the start or restart mode, the
user calls SRS_Restart_Value() that returns 0 and 1 on start and restart modes
respectively. The user also calls SRS_Check_Stop() at different phases of the ap-
plication to check if an external component wants the application to be stopped.
If the SRS_Check_Stop() returns 1, then the application has received a stop sig-
nal from an external component and hence can perform application-specific stop
actions.

SRS library uses Internet Backplane Protocol(IBP)[19] for storage of the
checkpoint data. IBP depots are started on all the machines of the GrADS
testbed. The user calls SRS_Register() in his application to register the variables
that will be checkpointed by the SRS library. When an external component stops
the application, the SRS library checkpoints only those variables that were reg-
istered through SRS_Register(). The user reads in the checkpointed data in the
restart mode using SRS_Read(). The user, through SRS_Read(), also specifies
the previous and current data distributions. By knowing the number of proces-
sors and the data distributions used in the previous and current execution of
the application , the SRS library automatically performs the appropriate data
redistribution. Thus, for example, the user can start his application on 4 pro-
cessors with block distribution of data, stop the application and restart it on 8
processors with block-cyclic distribution. The details of the SRS API for accom-
plishing the automatic redistribution of data is beyond the scope of the current
discussion. For the current discussion, it is suffice to notice that the SRS library
is generic and has been tested with applications like ScaLAPACK and PETSC.

An external component(e.g., the rescheduler) wanting to stop an executing
application interacts with a daemon called Runtime Support System (RSS).
RSS exists for the entire duration of the application and spans across multiple
migrations of the application. Before the actual parallel application is started,
the RSS is launched by the application launcher on the machine where the
user invokes the GrADS application manager. The actual application through
the SRS library knows the location of the RSS from the GIR and interacts
with RSS to perform some initialization, to check if the application needs to be
stopped during SRS_Check_Stop(), to store pointers to the checkpointed data,

to retrieve pointers to the checkpointed data and to store the present processor
configuration and data distribution used by the application.

4.2 Contract Monitor

Contract Monitor is a component that uses the Autopilot infrastructure to mon-
itor the progress of the applications in GrADS. Autopilot [20] is a real-time
adaptive control infrastructure built by the Pablo group at University of Illinois,
Urbana-Champaign. An autopilot manager is started before the launch of the
numerical application. The numerical application is instrumented with calls to
send the execution times taken for the different phases of the application to the
contract monitor. The contract monitor compares the actual execution times
with the predicted execution times and calculates the ratio between them. The
tolerance limits of the ratio are specified as inputs to the contract monitor.

When a given ratio is greater than the upper tolerance limit, the contract
monitor calculates the average of the computed ratios. If the average is greater
than the upper tolerance limit, it contacts the rescheduler, requesting for migrat-
ing the application. The average of the ratios is used by the contract monitor to
contact the rescheduler due to the following reasons:

1. A competing application of short duration on one of the machines may have
increased the load on the machine and hence the loss in performance of the
application. Contacting the rescheduler for migration on noticing few losses
in performance will result in unnecessary migration in this case since the
competing application will end soon and the application’s performance will
be back to normal.

2. The average of the ratios also captures the history of the behavior of the ma-
chines on which the application is running. If the application’s performance
on most of the iterations has been satisfactory, then few losses of performance
may be due to sparse occurrences of load changes on the machines.

3. The average of the ratios also takes into account the percentage completed
time of application’s execution.

If the rescheduler refuses to migrate the application, the contract monitor
adjusts its tolerance limits to new values. Similarly when a given ratio is less
than the lower tolerance limit, the contract monitor calculates the average of
the ratios and adjusts the tolerance limits if the average is less than the lower
tolerance limit. The dynamic adjusting of tolerance limits not only reduces the
amount of communication between the contract monitor and the rescheduler but
also hides the deficiencies in the application-specific execution time model.

4.3 Rescheduler

Rescheduler is the component that evaluates the performance benefits that can
be obtained due to the migration of an application and initiates the migration
of the application. The rescheduler is a daemon that operates in two modes:

migration on request and opportunistic migration. When the contract monitor
detects intolerable performance loss for an application, it contacts the resched-
uler requesting it to migrate the application. This is called migration on request.
In other cases when no contract monitor has contacted the rescheduler for mi-
gration, the rescheduler periodically queries the GrADS Information Reposi-
tory(GIR) for recently completed applications. If a GrADS application was re-
cently completed, the rescheduler determines if performance benefits can be ob-
tained for an executing application by migrating it to use the resources that were
freed by the completed application. This is called opportunistic rescheduling.

In both cases, the rescheduler first contacts the Network Weather Service
(NWS) to get the updated information for the machines in the Grid. It then
contacts the application-specific performance modeler to evolve a new schedule
for the application. Based on the total percentage completion time for the ap-
plication and the total predicted execution time for the application with the
new schedule, the rescheduler calculates the remaining execution time, ret_new,
of the application if it were to execute on the machines in the new schedule.
The rescheduler also calculates ret_current, the remaining execution time of the
numerical application if it were to continue executing on the original set of ma-
chines. The rescheduler then calculates the rescheduling gain as

(ret-current — (ret_new + 900))
ret_current

rescheduling_gain =

The number 900 in the numerator of the fraction is the worst case time
in seconds needed to reschedule the application. The various times involved in
rescheduling is given in Table 1. The times shown in Table 1 were obtained by
conducting a number of experiments with different problem sizes and obtain-
ing the maximum times for each phases of rescheduling. Thus the rescheduling
strategy adopts pessimistic approach for rescheduling where migration of appli-
cations will be avoided in certain cases where migration can yield performance
benefits.

Rescheduling Phase Time
(secs.)
Writing checkpoints 40

Waiting for NWS to update information |90
Time for application manager to get new re-|120
source information from NWS

Evolving new application-level schedule 80
Other grid overhead 10
Starting application 60
Reading checkpoints and Data redistribu-|{500
tion
||T0tal |900 ”

Table 1. Times for rescheduling phases

If the rescheduling gain is greater than 30%, the rescheduler sends STOP
signal to the application, and stores the stop status in GIR. The application
manager then waits for the RESUME signal. The rescheduler stores the RE-
SUME value in the GIR thus prompting the application manager to evolve a
new schedule and restart the application on the new schedule. If the reschedul-
ing gain is less than 30% and if the rescheduler is operating in the migration
on request mode, the rescheduler contacts the contract monitor prompting the
contract monitor to adjust its tolerance limits.

The rescheduling threshold [28] which the performance gain due to reschedul-
ing must cross for rescheduling to yield significant performance benefits depends
on the load dynamics of the system resources, the accuracy of the measurements
of resource information and may also depend on the particular application for
which rescheduling is made. Since the measurements made by NWS are fairly
accurate, the rescheduling threshold for our experiments depended only on the
load dynamics of the system resources. By means of trail-and-error experiments
we determined the rescheduling threshold for our testbed to be 30%. Reschedul-
ing decisions made below this threshold may not yield performance benefits in
all cases.

5 Experiments and Results

The GrADS experimental testbed consists of about 40 machines that reside in
institutions across United States including University of Tennessee, University
of Illinois, University of California at San Diego, Rice University etc. For the
sake of clarity, our experimental testbed consists of two clusters, one in Univer-
sity of Tennessee and another in University of Illinois, Urbana-Champaign. The
Tennessee cluster consists of 8 933 MHz dual- processor Pentium IIT machines
running Linux and connected to each other by 100 Mb switched Ethernet. The
Ilinois cluster consists of 16 450 MHz single-processor Pentium II machines run-
ning Linux and connected to each other by 1.28 Gbit/second full duplex myrinet.
The two clusters are connected by means of Internet.

About 5 applications, namely, ScaLAPACK LU and QR factorizations, ScalLA-
PACK eigen value problems, PETSC, CG application and heat equation solver
have been integrated into the migration framework by instrumenting the appli-
cations with SRS calls and writing performance models for the applications. In
general, our migration framework is suitable for iterative parallel applications
for which performance models predicting the execution costs can be written. In
our experiments, ScaLAPACK QR factorization was used as the end applica-
tion. The application was instrumented with calls to SRS library such that the
application can be stopped by the rescheduler at any point of time and can be
continued on a different configuration of machines. The data that were check-
pointed by the SRS library for the application included the matrix, A and the
right-hand side vector, B.

5.1 Migration on Request

In all the experiments in this section, 4 Tennessee machines and 8 Illinois ma-
chines were used. A given matrix size for the QR factorization problem was
input to the application manager. For large problem sizes, the computation time
dominates the communication time for the ScaLAPACK application. Since the
Tennessee machines have higher computing power than the Illinois machines,
the application manager by means of the performance modeler chose the 4 Ten-
nessee machines for the end application run. A few minutes after the start of the
end application, artificial load is introduced into the 4 Tennessee machines. This
artificial load is achieved by executing a certain number of loading programs on
each of the Tennessee machines. The loading program used was a sequential C
code that consists of a single looping statement that loops forever. This program
was compiled without any optimization in order to achieve the loading effect.

Due to the loss in predicted performance caused by the artificial load, the con-
tract monitor requested the rescheduler to migrate the application. The resched-
uler evaluated the potential performance benefits that can be obtained by mi-
grating the application to the 8 Illinois machines and either migrated the ap-
plication or allowed the application to continue on the 4 Tennessee machines.
The rescheduler was operated in two modes - a default and a non-default mode.
The normal operation of the rescheduler is its default mode and the non-default
mode of the rescheduler is when the rescheduler code was modified to force the
application to either migrate or continue on the same set of resources. Thus
in cases when the default mode of the rescheduler was to migrate the appli-
cation, the non-default mode was to continue the application on the same set
of resources and in cases when the default mode of the rescheduler was to not
migrate the application, the non-default mode was to force the rescheduler to
migrate the application by adjusting the rescheduling cost parameters. For each
experimental run, results were obtained for both when rescheduler was operated
in the default and non-default mode. This allowed us to compare both scenarios
and to verify if the rescheduler made the right decision.

Three parameters were involved in each set of experiments - the size of the
matrices, the amount of load and the time after the start of the application when
the load was introduced into the system. The following three sets of experiments
were obtained by fixing two of the parameters and varying the other parameter.

In the first set of experiments, the artificial load consisting of 10 loading
programs was introduced into the system 5 minutes after the start of the end
application. The bar chart in Figure 3 was obtained by varying the size of the
matrices, i.e. the problem size on the x-axis. The y-axis represents the execution
time in seconds of the entire problem including the Grid overhead. For each
problem size, the bar on the left represents the execution time when the appli-
cation was not migrated and the bar on the right represents the execution time
when the application was migrated.

Several points can be observed from Figure 3. The time for reading check-
points occupied most of the rescheduling cost since it involves moving data across
the Internet from Tennessee to Illinois and redistribution of data from 4 to 8 pro-

Execution Time (sec)

4000 6000 8000 10000

2000

B ODIENE BIRQEBE

Application duration 2 Left Bars — No rescheduling
Checkpoint reading 4UTm/es

Application start 2 Right Bars — Rescheduling

Grid overhead 2 from 4 UT to 8 UIUC m/c s

Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1

Grid overhead 1
Performance modeling 1
Resource slection 1

Rescheduler decided not
to reschedule for size 8000.
‘Wrong decision

[ewwww)

[wwww)

2z

.“

[Fwa |
[I

I I I I I I I
7000 8000 9000 10000 11000 12000

Size of matrices (N)

Figure 3. Problem Sizes and Migration

cessors. On the other hand, the time for writing checkpoints is insignificant since
the checkpoints are written to local disks. The rescheduling benefits are more for
large problem sizes since the remaining lifetime of the end application when load
is introduced is larger for larger problem sizes. There is a particular size of the
problem below which the migrating cost overshadows the performance benefit
due to rescheduling. Except for matrix size 8000, the rescheduler made the cor-
rect decision for all matrix sizes. For matrix size 8000, the rescheduler assumed
a worst-case rescheduling cost of 900 seconds while the actual rescheduling cost
was close to about 420 seconds. Thus the rescheduler evaluated the performance
benefit to be negligible while the actual scenario points to the contrary. Thus
the pessimistic approach followed by using a worst-case rescheduling cost in
the rescheduler will lead to underestimating the performance benefits due to
rescheduling in some cases.

In the second set of experiments, matrix size 12000 was chosen for the end
application and artificial load was introduced 20 minutes into the execution of the
application. In this set of experiments, the amount of artificial load was varied
by varying the number of loading programs that were executed. In Figure 4, the
x-axis represents the number of loading programs and the y-axis represents the
execution time in seconds. For each amount of load, the bar on the left represents
the case when the application was continued on 4 Tennessee machines and the
bar on the right represents the case when the application was migrated to 8
Illinois machines.

Similar to the first set of experiments, we find only one case when the resched-
uler made incorrect decision for rescheduling. This case, when the number of
loading programs was 5 was due to the insignificant performance gain that can
be obtained due to rescheduling. When the number of loading programs was 3,
we were not, able to force the rescheduler to migrate the application since the ap-
plication completed at the time of rescheduling decision. Also, more the amount
of load, the more the performance benefit due to rescheduling because of larger
performance losses for the application in the presence of heavier loads. But the
most significant result in Figure 4 was that the execution times when the appli-
cation was rescheduled remained almost constant irrespective of the amount of
load. This is because, as can be observed from the results when the number of
loading programs was 10 and when the number was 20, the more the amount of
load, the earlier the application was rescheduled. Hence our rescheduling frame-
work was able to adapt to the external load.

In the third set of experiments, shown in Figure 5, equal amount of load
consisting of 7 loading programs was introduced at different points of execution
of the end application for the same problem of matrix size 12000. The x-axis
represents the elapsed time in minutes of the execution of end application when
the load was introduced. The y-axis represents the total execution time in sec-
onds. Similar to the previous experiments, the bars on the left denote the cases
when the application was not rescheduled and the bars on the right represent
the cases when the application was rescheduled.

Execution Time (sec)

1000 2000 3000 4000 5000 6000

0

Application duration 2
Checkpoint reading Left Bars — No rescheduling
Application start 2 4UT m/cs

Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1

Grid overhead 1
Performance modeling 1
M Resource slection 1

Rescheduler decided
not to reschedule.

Right bars — Rescheduling
from 4 UT to 8 UIUC m/c

DUENE BDIRE

_{ Wrong decisio
A, el v/ 22/
NNNN\N SNNN
o Ly Ly [INNENNE R TRN NN WLLELiy iy LUy
[I I I I I I I 1
3 5 5 10 10 15 15 20 20

No Rescheduling
Number of loading programs(N)

Figure 4. Load Amount and Migration

Execution Time (sec)

1000 2000 3000 4000 5000 6000 7000

0

Left Bars - N(H%Sd}eduhng Application duration 2

Checkpoint reading
Application start 2

Grid overhead 2
Performance modeling 2

m/cCs
Right Bars — Rescheduling
from 4 UT to 8 UIUC m/cs
Rescheduler decided
not to reschedule. Resourcg sele_c_tion 2
Wrong decmons Checkpoint writing
Application duration 1
Application start 1
Grid overhead 1
Performance modeling 1
Resource slection 1
v/
AANAYN
II
II

LLLLLLILI.LLLLLI LLLLLLILLLLLLI LI.LLLLI.ILLLLLLI LLLLLLILLLLLLI.I WL Ly

B BIENBE BB

5 5 10 10 15 15 20 20 23 24

Time since start of the application when load was introduced(Minutes)

Figure 5. Load Introduction Time and Migration

As can be observed from Figure 5, there are diminishing returns due to
rescheduling as the load is introduced later into the program execution. The
rescheduler made wrong decisions in two cases - when the load introduction
times are 15 and 20 minutes after the start of end application execution. While
the wrong decision for 20 minutes can be attributed to the pessimistic approach
of rescheduling, the wrong decision of the rescheduler for 15 minutes was de-
termined to be due to the faulty functioning of the performance model for the
ScaLAPACK QR problem for UITUC machines. The most startling result in Fig-
ure 5 is when the load was introduced 23 minutes after the start of the end
application. At this point, the program almost completed and hence reschedul-
ing will not yield performance benefits for the application. The rescheduler was
able to evaluate the scenario and avoid unnecessary rescheduling of the applica-
tion. Most rescheduling frameworks will not be capable of achieving this since
they do not possess the knowledge regarding remaining execution time of the
application.

5.2 Opportunistic Migration

In this set of experiments, we illustrate opportunistic migration in which the
rescheduler tries to migrate an executing application when some other appli-
cation completes. For these experiments, two problems were involved. For the
first problem, matrix size of 14000 was input to the application manager and
6 Tennessee machines were made available. The application manager, through
the performance modeler chose the 6 machines for the end application run. Two
minutes after the start of the end application for the first problem, a second
problem of a given matrix size was input to the application manager. For the
second problem, the 6 Tennessee machines on which the first problem was exe-
cuting and 2 Illinois machines were made available. Due to the presence of the
first problem, the 6 Tennessee machines alone were insufficient to accommodate
the second problem. Hence the performance model chose the 6 Tennessee ma-
chines and 2 Illinois machines for the end application and the actual application
run involved communication across the Internet.

In the middle of the execution of the second application, the first application
completed and hence the second application can be potentially migrated to use
only the 6 Tennessee machines. Although this involved constricting the num-
ber of processors of the second application from 8 to 6, there can be potential
performance benefits due to the non-involvement of Internet. The rescheduler
evaluated the potential performance benefits due to migration and made an
appropriate decision.

Figure 6 shows the results for two illustrative cases when matrix sizes of the
second application were 13000 and 14000. The x-axis represents the matrix sizes
and the y-axis represents the execution time in seconds. For each application
run, three bars are shown. The bar on the left represents the execution time for
the first application that was executed on 6 Tennessee machines. The middle bar
represents the execution time of the second application when the entire applica-
tion was executed on 6 Tennessee and 2 Illinois machines. The bar on the right

represents the execution time of the second application, when the application
was initially executed on 6 Tennessee and 2 Illinois machines and later migrated
to execute on only 6 Tennessee machines when the first application completed.

Application duration 2
Checkpoint reading
Application start 2

Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1

Grid overhead 1
Performance modeling 1
Resource slection 1

Left Bars — Large problem m
6 UT m/c s)
Middle Bars — No rescheduling
6UTand2UIUCm/cs &
Right Bars — Rescheduling T
§ from 6 UT and 2 UIUC =
© m/csto 6 UT m/cs
m
< N
@
£
Qé m
o
£ g -
c <
kel
5
o
9]
x
L
o
o |
S
Y
Ly g
o - D

Ly uy

[N N NNNNNET]

14000 13000

13000

14000 14000 14000

Size of matrices (N)

Figure 6. Opportunistic Migration

In both problem cases, matrix sizes 13000 and 14000, for the second problem,
the rescheduler made the correct decision of migrating the application. We also
find that for both problem cases, the second application was almost immediately
rescheduled after the completion of the first application.

5.3 Predicting Redistribution Cost

As observed in Figures 3 - 5, the Rescheduler makes wrong decisions for reschedul-
ing in certain cases. In cases where the Rescheduler made the wrong decisions, the

Rescheduler decided that rescheduling the executing application will not yield
significant performance benefits for the application while the actual results point
to the contrary. This is because the Rescheduler used the worst case times shown
in Table 1 for different phases of rescheduling while the actual rescheduling cost
was less than the worst case rescheduling cost for cases when the Rescheduler
made the wrong decisions.

As shown in Table 1, of the various costs involved in rescheduling, the cost
for reading and redistribution of data is the highest. The data redistribution and
reading the checkpoints are performed in a single operation where the processes
determine the portions and locations of data needed by them and read the check-
points directly from the IBP [19] depots. The data redistribution cost depends
on a number of factors including the number and amount of checkpointed data,
the data distributions used for the data , the current and future processors sets
for the application used before and after rescheduling respectively, the network
characteristics, particularly the latency and bandwidth, of the links between the
current and future processor sets etc. The rescheduling framework was extended
to predict the redistribution cost and use the predicted redistribution cost for
calculating the gain due to rescheduling the executing application. Though the
time for writing the checkpoints also depends on the size of the checkpoints
which in turn depends on the problem size, the checkpoint writing time is in-
significant due to the design of the rescheduling architecture where the processes
write checkpoint data to the local disks. Hence the time for checkpoint writing
is not predicted in the rescheduling framework.

Similar to the SRS library, the Rescheduling framework has also been ex-
tended to support common data distribution algorithms like block, cyclic and
block-cyclic distributions. When the end application calls SRS_Register to mark
the checkpointed data, it also specifies the data distribution used for the data.
If the data distribution is one of the common data distributions, the input pa-
rameter used for the distribution is stored in an internal data structure of the
SRS library. For e.g., if block-cyclic data distribution is specified for the data,
the block size used for the distribution is stored in the internal data structure.
When the application calls, SRS_StoreMap, the data distributions used for the
different data along with the parameters used for the distribution are sent to the
Runtime Support System (RSS).

When the Rescheduler wants to calculate the rescheduling cost of an exe-
cuting application, it contacts the RSS of the application, and retrieves various
information about the data that were marked for checkpointing including the
total size and data types of the data, the data distributions used for the data
and the parameters used for the data distributions. For each data that uses one
of the common data distributions supported by the Rescheduler, the Resched-
uler determines the data maps for the current processor configuration on which
the application is executing and the future processor configuration where the ap-
plication can be potentially rescheduled. A data map indicate the total number
of panels of the data and the size and location of each of the data panel. The
Rescheduler calculates the data map using the data distribution and the param-

eters used for data distribution, it collected from RSS. Based on the data maps
for the current and future processor configuration and the properties of the net-
works between the current and future processor configuration it collected from
NWS, the Rescheduler simulates the redistribution behavior. The end result of
the simulation is the predicted cost for reading and redistribution of checkpointed
data if the application was rescheduled to the new processor configuration. The
Rescheduler uses this predicted redistribution cost for calculation the potential
rescheduling gain that can be obtained due to rescheduling the application.

An experiment was conducted in which the simulation model for predicting
the redistribution cost was validated. In this experiment, 4 msc and 8 opus ma-
chines were used. A ScaLAPACK QR factorization problem was submitted to
the GrADS Application Manager. Since the msc machines are faster than the
opus machines, the 4 msc machines were chosen by the Performance Modeler
for the execution of the end application. 5 minutes after the start of the execu-
tion of the end application, artificial loads are introduced in the msc machines
by the execution of 10 loading programs on each of the msc machines. When
the Contract Monitor contacted the Rescheduler requesting for rescheduling the
application, The Rescheduler dynamically predicted the the redistribution cost
involved in rescheduling the application. Figure 7 compares the predicted and
the actual cost for redistribution of data in the application for different problem
sizes. The x-axis denoted the matrix sizes used for the QR factorization problem
and the y-axis represents the redistribution time.

From Figure 7, we find that the Rescheduler was able to perform a reason-
able simulation of the redistribution of data. The actual redistribution cost was
greater than the predicted redistribution cost by only 30-40 seconds. The differ-
ence is mainly due to the unpredictable behavior in the network characteristics
of the Internet connection between Tennessee and Illinois, Urban-Champaign.
By employing the predicted redistribution cost, the Rescheduler was able to
make the right decisions for rescheduling for cases in Figures 3, 4 and 5 when it
previously made wrong decisions.

6 Related Work

Different systems have been implemented to migrate executing applications onto
different sets of resources. These systems migrate applications either to efficiently
use under-utilized resources [21,6,5,25,8], to provide fault resilience [2] or to
reduce the obtrusiveness to workstation owner [2,16]. The particular projects
that are closely related to our work are Dynamite [25], MARS [14], LSF [30] and
Condor [16].

The Dynamite system [25] based on Dynamic PVM [8] migrates applications
when the loads of certain machines gets under-utilized or over-utilized as defined
by application-specified thresholds. Although this method takes into account
application-specific characteristics it does not necessarily evaluate the remaining
execution time of the application and the resulting performance benefits due to
migration. MARS [14] migrates applications taking into account both the system

Redistribution Cost, Predicted vs Actual performance
(4 UT, 8 UIUC machines)

140 T

meastljred time j——
predicted time s—
120 R

100 b
80 b

60 b

Time [secs.]

40 + :

20 b

O 1 1 1 1 1 1 1
6000 7000 8000 9000 10000 11000 12000 13000 14000

Matrix Size

Figure 7. Redistribution Cost Prediction

loads and application characteristics. But the migration decisions are made only
at different phases of the applications unlike our migration framework where
the applications are continuously monitored and migration decisions are made
whenever the applications are not making sufficient progress.

In LSF [30], jobs can be submitted to queues which have pre-defined migra-
tion thresholds. A job can be suspended when the load of the resource increases
beyond a particular limit. When the time since the suspension becomes higher
than the migration threshold for the queue, the job is migrated and submitted to
a new queue. Thus LSF suspends jobs to maintain the load level of the resources
while our migration framework suspends jobs only when it is able to find better
resources where the jobs can be migrated. By adopting a strict approach to sus-
pending jobs based on pre-defined system limits, LSF gives less priority to the
stage of the application execution whereas our migration framework suspends
an application only when the application has large enough remaining execution
time so that performance benefits can be obtained due to migration. And lastly,
due to the separation of the suspension and migration decisions, a suspended ap-
plication in LSF can wait for a long time before it restarts executing on a suitable
resource. In our migration framework, a suspended application is immediately
restarted due to the tight coupling of suspension and migration decisions.

Of the Grid computing systems, only Condor [16] seems to migrate applica-
tions under workload changes. Condor provides powerful and flexible ClassAd

mechanism by means of which the administrator of resources can define policies
for allowing jobs to execute on the resources, suspending the jobs and vacat-
ing the jobs from the resources. The fundamental philosophy of Condor is to
increase the throughput of long running jobs and also respect the ownership of
the resource administrators. The main goal of our migration framework is to
increase the response times of individual applications. Similar to LSF, Condor
also separates the suspension and migration decisions and hence has the same
problems mentioned for LSF in taking into into account the performance benefits
of migrating the applications. Unlike our metascheduler framework, the Condor
system does not possess the knowledge about the remaining execution time of
the applications. Thus suspension and migrating decisions can be invoked fre-
quently in Condor based on system load changes. This may be less desirable in
Grid systems where system load dynamics are fairly high.

7 Conclusions and Future Work

Many existing migrating systems that migrate applications under loading con-
ditions implement simple policies that cannot be applied to Grid systems. We
have implemented a migration framework that takes into account both the sys-
tem load and application characteristics. The migrating decisions decisions are
based on factors like the amount of load, the time of the application when the
load is introduced and the size of the applications. We have also implemented a
framework that migrates executing applications to make use of additional free re-
sources. Experiments were conducted and results were presented to demonstrate
the capabilities of the migration framework.

We intend to provide more robust frameworks in the SRS system and in
the Rescheduler to efficiently predict the cost for the redistribution of data.
Also, instead of fixing the rescheduler threshold at 30%, our future work will
involve determining the rescheduling threshold dynamically based on the dy-
namic observation of load behavior on the system resources. Finally, we propose
to investigate the usefulness of our approach for complex applications involving
multiple components and/or written in multi-programming languages.

References

1. MPI. hitp://www-uniz.mcs.anl.gov/mpi.

2. J.N.C. Arabe, A.B.B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan. Dome:
Parallel Programming in a Heterogeneous Multi-User Environment. Supercomput-
ing, 1995.

3. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and
R. Wolski. The GrADS Project: Software Support for High-Level Grid Applica-
tion Development. International Journal of High Performance Applications and
Supercomputing, 15(4):327-344, Winter 2001.

4. F. Berman and R. Wolski. The AppLeS Project: A Status Report. Proceedings of
the 8th NEC Research Symposium, May 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty, and J. Walpole.

MIST: PVM with Transparent Migration and Checkpointing, 1995.

J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A
Migration Transparent Version of PVM. Technical Report CSE-95-002, 1, 1995.
Z. Chen, J. Dongarra, P. Luszczek, and K. Roche. Self Adapting Software for
Numerical Linear Algebra and LAPACK for Clusters. Submitted to Parallel Com-
puting, 2003.

L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. DynamicPVM:
Dynamic Load Balancing on Parallel Systems. In Wolfgang Gentzsch and Uwe
Harms, editors, Lecture notes in computer science 797, High Performance Com-
puting and Networking, volume Proceedings Volume II, Networking and Tools,
pages 273-277, Munich, Germany, April 1994. Springer Verlag.

F. Douglis and J. K. Ousterhout. Transparent Process Migration: Design Al-
ternatives and the Sprite Implementation. Software - Practice and Ezperience,
21(8):757-785, 1991.

S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations.
volume Proc. 6th IEEE Symp. on High-Performance Distributed Computing, pages
365375, 1997.

I. Foster and C. Kesselman eds. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, ISBN 1-55860-475-8, 1999.

I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In Proceedings of SuperComputing 98 (SC98),
1998.

M. Frigo. FFTW: An Adaptive Software Architecture for the Fft. In Proceedings
of the ICASSP Conference, volume 3, page 1381, 1998.

J. Gehring and A. Reinefeld. MARS - A Framework for Minimizing the Job
Execution Time in a Metacomputing Environment. Future Generation Computer
Systems, 12(1):87-99, 1996.

G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing Fault-
Tolerance, Visualization and Steering of Parallel Applications. International Jour-
nal of High Performance Computing Applications, 11(3):224-236, August 1997.
M. Litzkow, M. Livney, and M. Mutka. Condor - a Hunter for Idle Workstations.
Proc. 8th Intl. Conf. on Distributed Computing Systems, pages 104-111, 1988.

R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive Load Sharing in Het-
erogeneous Distributed Systems. Journal of Parallel and Distributed Computing,
9:331-346, 1990.

A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhiyar.
Numerical Libraries and the Grid: The GrADS Experiments with Scalapack. Jour-
nal of High Performance Applications and Supercomputing, 15(4):359-374, Winter
2001.

J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski. The
Internet Backplane Protocol: Storage in the Network. NetStore99: The Network
Storage Symposium, 1999.

R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive Control
of Distributed Applications. Proceedings of the 7th IEEE Symposium on High-
Performance Distributed Computing, July 1998.

K.A. Sagabi, S.W. Otto, and J. Walpole. Gang Scheduling in Heterogeneous Dis-
tributed Systems. Technical report, OGI, 1994.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
Complete Reference - The MPI Core, volume 1. Boston MIT Press, 2nd edition,
September 1998.

G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceed-
ings of the 10th International Parallel Processing Symposium (IPPS ’96), pages
526-531, Honolulu, Hawaii, 1996.

S. Vadhiyar, G. Fagg, and J. Dongarra. Automatically Tuned Collective Commu-
nications. In Proceedings of SuperComputing2000, November 2000.

G.D. van Albada, J. Clinckemaillie, A.H.L. Emmen, J. Gehring, O. Heinz,
F. van der Linden, B.J. Overeinder, A. Reinefeld, and P.M.A. Sloot. Dynamite -
Blasting Obstacles to Parallel Cluster Computing. In P.M.A. Sloot and M. Bubak
and A.G. Hoekstra and L.O. Hertzberger, editors, High-Performance Computing
and Networking (HPCN Europe ’99), Amsterdam, The Netherlands, in series Lec-
ture Notes in Computer Science, nr 1593, Springer-Verlag, Berlin, ISBN 3-5/0-
65821-1., pages 300-310. April 1995.

R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Per-
formance Optimizations and Bounds for Sparse Matrix-Vector Multiply. In Pro-
ceedings of Supercomputing, Baltimore, MD, USA, November 2002.

R. C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software. In
SC98: High Performance Networking and Computing, 1998.

R. Wolski, G. Shao, and F. Berman. Predicting the Cost of Redistribution in
Scheduling. Proceedings of 8th SIAM Conference on Parallel Processing for Scien-
tific Computing, March 1997.

R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, 15(5-6):757—-768, October 1999.

S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems. Software — Practice and
Ezxperience, 23(12):1305-1336, December 1993.

