GrADSolve - a Grid-based RPC system for
Remote Invocation of Parallel Software*

Sathish S. Vadhiyar *, Jack J. Dongarra

Department of Computer Science, University of Tennessee

Abstract

Although the existing Remote Procedure Call (RPC) systems provide adequate sup-
port for remote execution of sequential software, the support for remote invocation
of parallel software is fairly limited. Some RPC systems support parallel execution
of software routines with simple modes of parallelism. Some RPC systems statically
choose the configuration of resources for parallel execution even before the parallel
routines are invoked remotely by the end user. These policies of the existing systems
prevent them from being used for remotely solving computationally intensive paral-
lel applications over the dynamic computational Grid environments. In this paper,
we discuss a RPC system called GrADSolve that supports execution of parallel ap-
plications over Grid resources. In GrADSolve, the resources used for the execution
of parallel application are chosen dynamically based on the load characteristics of
the machines. Also GrADSolve stages the user’s data to the end resources based on
the data distribution used by the end application. Finally, GrADSolve allows the
users to store execution traces for problem solving and use the traces for subse-
quent solutions. Experiments are presented to prove that GrADSolve’s data staging
mechanisms can significantly reduce the overhead associated with data movement
in current RPC systems. Results are also presented to demonstrate the usefulness
of utilizing execution traces maintained by GrADSolve for problem solving.

Key words: RPC, Grid, GrADSolve, application-level scheduling, data staging,
execution traces

* This work is supported in part by the National Science Foundation contract
GRANT #EIA-9975020, SC #R36505-29200099 and GRANT #EIA-9975015
* Corresponding author.

Email addresses: vss@cs.utk.edu (Sathish S. Vadhiyar),

dongarra@cs.utk.edu (Jack J. Dongarra).

Preprint submitted to Elsevier Science 5 February 2003

1 Introduction

Remote Procedure Call (RPC) mechanisms have been studied extensively and
have been found to be powerful abstractions for distributed computing [1,2].
In RPC frameworks, the end user invokes a simple routine to solve problems
over remote distributed resources. A number of RPC frameworks have been
implemented and are widely used [3-11]. In addition to providing simple inter-
faces for uploading applications into the distributed systems and for remote
invocation of the applications, some of the RPC systems also provide service
discovery, resource management, scheduling, security and information services.

The role of RPC in Computation Grids [12] has been the subject of recent stud-
ies [13-17]. Computational Grids consists of large number of machines ranging
from workstations to supercomputers and strive to provide transparency to
the end users and high performance for end applications. While high perfor-
mance is achieved by the parallel execution of applications on large number of
Grid resources, user transparency can be achieving by employing RPC mech-
anisms. Hence Grid-based RPC systems need to be built to provide the end
users the capability to invoke remote parallel applications on Grid resources
by a simple sequential procedure call.

A number of issues are involved in the remote execution of parallel applications
on Grid resources from a sequential environment. First, the number and the
location of the resources where the parallel application will be executed have
to be chosen dynamically based on the load dynamics of the Grid resources.
Secondly, the user’s data have to be partitioned and the different partitions
of the data have to be scattered among the different resources involved in
the execution of parallel application depending on the data distribution used
by the end application. Similarly, the different partitions corresponding to
the output data have to be gathered and copied to the user’s address space.
Though there are large number of RPC systems that adequately support the
remote invocation of sequential software from sequential environments, the
number of RPC systems for supporting invocation of parallel software are
relatively few [7,9,10,17-20]. Some of these parallel RPC systems [7,17,18]
require invocation of remote parallel services from only parallel clients. Some
of the RPC systems [9,10] support only master-slave or task farming models
of parallelism. Few RPC systems [10,9] fix the amount of parallelism at the
time when the services are uploaded into the RPC system and hence are not
adaptive to the load dynamics of the Grid resources. Few RPC systems [18-20]
supporting invocation of parallel software are implemented on top of object
oriented frameworks like CORBA and JavaRMI and may not be suitable for
high performance computing according to a previous study [21].

In this paper, we propose a Grid-based RPC system called GrADSolve! that
enables the users to invoke MPI applications on remote Grid resources from
a sequential environment. In addition to providing easy-to-use interfaces for
the service providers to upload the parallel applications into the system and
for the end users to remotely invoke the parallel applications, GrADSolve also
provides interfaces for the service providers or library writers to upload execu-
tion models that provide information about the predicted execution costs of
the applications and the data distribution used for the different data in the ap-
plications. These information are used by GrADSolve to perform application-
level scheduling and dynamically choose the resources for the execution of
the parallel applications based on the load dynamics of the Grid resources.
GrADSolve also uses the data distribution information provided by the li-
brary writers to partition the users’ data and stage the data to the different
resources used for the application execution. Our experiments show that the
data staging mechanisms in GrADSolve helps reduce the data staging times
in RPC systems by 20-50%. GrADSolve also uses the popular Grid computing
tool, Globus [24] for transferring data between the user and the end resources
and for launching the application on the Grid resources. In addition to the
above features, GrADSolve also enables the users to store execution traces for
a problem run and use the execution traces for the subsequent problem runs.
This feature helps in significantly reducing the overhead incurred due to the
selection of the resources for application execution and the staging of input
data to the end resources.

Thus, the contributions of our research are:

(1) design and development of an RPC system that utilizes standard Grid
Computing mechanisms for invocation of remote parallel applications
from a sequential environment.

(2) selection of resources for parallel application execution based on load
conditions of the resources and application characteristics.

(3) communication of data between the user’s address space and the Grid
resources based on the data distribution used in the application and

(4) maintenance of execution traces for problem runs.

Section 2 presents a brief overview of the of the GrADSolve system. The
various entities in the GrADSolve system and the support for the entities in
the GrADSolve system are explained in Section 3. Section 3 also deals with the
detailed description of the framework of the GrADSolve system. The support
in the GrADSolve system for maintaining execution traces is explained in
Section 4. In Section 5, the experiments conducted in GrADSolve are explained
and results are presented to demonstrate the usefulness of the data staging

1 The system is called GrADSolve since it is derived from the experiences of the
GrADS [22] and NetSolve [9,23] projects.

mechanisms and execution traces in GrADSolve. Section 6 looks at the related
efforts in the development of RPC systems. Section 7 presents conclusions and
future work.

2 Overview of GrADSolve

The general architecture of GrADSolve is shown in Figure 1. At the core of the
GrADSolve system is a XML database implemented with Apache Xindice [25].
Since XML is mostly useful for storing metadata and transferring compatible
documents across the network, GrADSolve uses XML as a language for storing
information about different Grid entities. This database maintains four kinds
of tables - users, resources, applications and problems. The users table contains
information about the different users of the Grid system, namely the home
directories of the users on different resources. The resources table contains
information about the different machines in the Grid, namely the names of
the machines, the clusters to which the machines belong, the architecture and
the operating system in the machines, the peak performance of the machines
etc. The applications table contains information about different applications,
namely the name and owner of the application, if the application is sequential
or parallel, the language in which the application is written, the number of
input and output arguments, the data type and size of the arguments, the
location of the binaries of the applications on each of the resources etc. Finally,
the problems table maintains information about the individual problem runs
due to the invocation of the remote applications by the end users. All the above
mentioned information are stored in the XML database in the form of XML
documents. The Xindice implementation of the XML-RPC standard [4] was
used for storing and retrieving information to and from the XML database.

The library writer uploads his application into the Grid system specifying the
problem description of the application using an Interface Definition Language
(IDL). The GrADSolve system creates a wrapper for the application, compiles
the wrapper along with the application and transports the executable applica-
tion to the different resources of the Grid system using the Globus GridFTP
mechanisms. The library writer also has the option of adding an execution
model for the application. The information regarding the locations of the end
applications on the resources are stored in the Xindice XML database.

The end user writes a client program in C or Fortran to execute applications
over the Grid. The GrADSolve client accesses the XML database, retrieves
the problem specification for the application and matches the user’s data with
the parameters of the problem. The GrADSolve client also downloads the ex-
ecution model of the application from a remote resource if the application
possesses an execution model. For the resources that contain the application,

XML

) D at ab ase
£
&
&
éﬁ\e& Machine 1
&8
N
S |
The client stages detato remote machi n(_es, Ak _—
. hes the application on the remote machines
= final machines
y Machine 3

2. The client matches input data with the
problem parameters

3. The client determines the final schedule
based on the execution model of the
application

Fig. 1. Overview of GrADSolve system

the GrADSolve client retrieves the various performance characteristics includ-
ing the peak performance of the resources, the load on the machines, the
latency and the bandwidth of the networks between the machines and the free
memory available on the machines from the Network Weather Service (NWS)
[26].

Based on the resource characteristics of the machines and the execution model
of the application, the GrADSolve client determines an application-level sched-
ule for application execution by employing scheduling heuristics [27,28]. The
application-level schedule consists of the list of Grid resources for the execution
of end application. After determining the final application-level schedule, the
GrADSolve client partitions the user’s input data and stages the appropriate
blocks of data to the different resources using the Globus GridF'TP mecha-
nisms. The client then spawns the application on the set of resources using
MPICH-G [29]. Similar to the staging of the input data, the client gathers the
different blocks of output data from different resources using GridFTP and
copies the data to the user’s memory.

3 GrADSolve Entities

There are three human entities involved in GrADSolve - administrators, li-
brary writers and end users. The role of these entities in GrADSolve and the
functions performed by the GrADSolve system for supporting these entities
are explained in the following sub sections.

3.1 Administrators

The GrADSolve administrator is responsible for managing the users and re-
sources of the GrADSolve system. The administrator initializes the XML
database and creates entities for different users in the XML database by speci-
fying a user configuration file. The user configuration file contains information
for different users, namely the user account names for different resources and
the location of the home directories on different resources in the GrADSolve
system. These information are translated into XML documents and stored in
the users table of the Xindice database. Finally, the administrator creates the
resources table in the Xindice database and adds entries for different resources
in the GrADSolve system by specifying a resource configuration file. The var-
ious information in the configuration file, namely the names of the different
machines, their computational capacities, the number of processors in the ma-
chines and other machine specifications, are stored as XML documents. The
translation of the configuration files into XML documents are automatically
handled by the GrADSolve system.

3.2 Library Writers

The library writer uploads his application into the GrADSolve system by
specifying an Interface Definition Language (IDL) file for the application. The
Backus Normal Form (BNF) of the GrADSolve IDL is given in Figure 2.

In the IDL file, the library writer specifies the name of the problem suite and
the description of the problem suite. A problem suite consists of a set of func-
tions that the user can invoke remotely. For each function, the library writer
specifies in the IDL file, the programming language in which the function is
written, the name of the function, the set of input and output arguments in
the function, the description of the function, the names of the object files and
libraries needed for linking the function with other functions, if the function
is sequential or parallel etc. GrADSolve supports the library functions to be
written in the popular C or Fortran languages. For each input and output
arguments, the library writer specifies the name of the argument, if the ar-

(PROBLEMSTART) — (PROBLEMDESC) (FUNCTION)
(PROBLEMDESC) — PROBLEM (PROBLEMNAME)
(FUNCTION) — (LANGUAGE) FUNCTION (FUNCDEFN) (FUNCDESC)
(FUNCLIB) (FUNCTYPE)
(LANGUAGE) — C' | FORTRAN
(FUNCDEFN) — (FUNCNAME) ((ARGLIST))
(FUNCDESC) — " (STRING)"
(FUNCLIB) — LIBS =" (STRING)"
(FUNCTYPE) — TY PE = (TYPESTRING)
) —
) —

(ARGLIST) — (ARGUMENT) | (ARGLIST) , (A\ARGUMENT)
(ARGUMENT) — (INOUTSTRING) (DATATYPE) (VARNAME)
| (INOUTSTRING) (DATATYPE) (VARNAME)
(VACTORATTR)
| (INOUTSTRING) (DATATYPE) (VARNAME)
(MATRIXATTR)
(VECTORATTR) — [(DIMENSIONEXPR)]
(MATRIXATTR) — [(DIMENSIONEXPR)] [(DIMENSIONEXPRY)]
(DIMENSIONEXPR) —» (NUMBER) | (VARNAME)
(PROBLEMNAME) — (IDENTIFIER)
(FUNCNAME) —» (IDENTIFIER)
(TYPESTRING) — sequential | parallel
(INOUTSTRING) — IN | OUT | INOUT
(DATATYPE) — INT | FLOAT | DOUBLE | CHAR
(VARNAME) —s (IDENTIFIER)

Fig. 2. BNF of GrADSolve IDL

gument is an input or output argument, the datatype of the argument, the
number of elements of the argument if the argument is a vector, the number of
rows and columns of the argument if the argument is a matrix etc. The num-
ber of elements in the vector arguments and the number of rows and columns
of the matrix arguments can be constants or expressed in terms of the other
input arguments. An example of a IDL file written for a ScaLAPACK QR
factorization problem is given in Figure 3.

After the library writer submits the IDL file to the GrADSolve system, GrAD-
Solve translates the IDL file to a XML document. The XML document gen-
erated for the IDL file in Figure 3 is shown in Figure 4.

The GrADSolve translation system also generates a wrapper program. This
wrapper program is a driver and acts as an entry point for remote execution of

ROBLEM qrwrapper
C FUNCTION qrwrapper(IN int N, IN int NB, INOUT double A[N][N],
INOUT double B[NI[11)
‘‘a version of gqr factorization that works with
square matrices.’’
LIBS = ‘‘/home/grads23/GrADSolve/ScalLAPACK/pdgeqrf_instr.o \
/home/grads23/GrADSolve/ScaLAPACK/pdscaex_instrQR.o \

)

TYPE = parallel

Fig. 3. An example GrADSolve IDL for a ScaLAPACK QR problem

the actual function. The wrapper program when compiled and executed per-
forms certain important functions. The wrapper performs the necessary initial-
ization if the end application is a parallel application. The wrapper program
then retrieves the problem description from the XML database, initializes the
input and output arguments, and reads the input data from the appropriate
files into the input arguments. It then invokes the actual function specified
in the IDL file with the input and output arguments. Once the actual prob-
lem is solved by the execution of the actual function, the wrapper program
stores the output arguments to files. It finally performs finalization routines
for deregistering from the parallel execution environment.

After generating the wrapper program, the GrADSolve system compiles the
wrapper program with the object files and the libraries specified in the IDL
file and with the appropriate parallel libraries if the application is specified as
a parallel application in the IDL file. The result of the compilation process is
an executable file suitable for remote execution on the GrADSolve resources.
The application is finally uploaded into the GrADSolve system. The uploading
process consists of two phases. In the first phase, the executable file is staged
to the remote machines in the GrADSolve system and stored in the user’s ac-
counts on the machines. The machines available in the system are determined
by querying the resources table in the XML database and the user’s home di-
rectories on the machines to which the executable file is stored are determined
by querying the users table in the XML database. In the second phase of the
uploading process, the XML document for the application generated from the
IDL file is stored in the XML database keyed by the problem name. Also,
stored in the XML database for the application is the information regarding
the location of the executable files for the application on the remote resources.

If the library writer wants to add an execution model for his application, he
executes the getperfmodel_template utility, specifying the name of the applica-
tion. The utility retrieves the problem description of the application from the
XML database and generates a performance model template file. The template

<?xml version="1.0"7>
<function name="qrwrapper">
<user>grads23</user>
<description>a version of qr factorization that works
with square matrices.
</description>
<type>parallel</type>
<language>C</language>
<continue>1</continue>
<reconfigure>1</reconfigure>
<call>
<argCount>4</argCount>
<arg>
<inout>IN</inout>
<datatype>int</datatype>
<objecttype>scalar</objecttype>
<name>N</name>
</arg>
<arg>
<inout>IN</inout>
<datatype>int</datatype>
<objecttype>scalar</objecttype>
<name>NB</name>
</arg>
<arg>
<inout>INOUT</inout>
<datatype>double</datatype>
<objecttype>matrix</objecttype>
<name>A</name>
<rowExpression>N</rowExpression>
<colExpression>N</colExpression>
</arg>
<arg>
<inout>INOUT</inout>
<datatype>double</datatype>
<objecttype>matrix</objecttype>
<name>B</name>
<rowExpression>N</rowExpression>
<colExpression>1</colExpression>
</arg>
</call>
</function>

Fig. 4. XML document generated for the IDL in Figure 3

int areResourcesSufficient(int N, int NB, doublex A,
doublex B,
RESOURCEINFO* resourcelnfo,
SCHEDULESTRUCT* schedule){

int getExecutionTimeCost(int N, int NB, doublex A,
doublex B,
RESOURCEINFO* resourceInfo,
SCHEDULESTRUCT* schedule,
double* costq

int mapper(int N, int NB, double* A, doublex B,
RESOURCEINFO* resourcelnfo,
SCHEDULESTRUCT* inputSchedule,
SCHEDULESTRUCT* mapperSchedule){

k;

Fig. 5. A Performance Model template generated by the GrADSolve system for the
QR problem

file contains the definitions of the execution model routines. The library writer
fills in the execution model routines with the appropriate code for predicting
the execution cost of his application. The performance model template file
generated by the getperfmodel_template for the ScaLAPACK QR problem is
shown in Figure 5.

The performance model template file contains definitions for three functions.
The first function areResourcesSufficient takes as input the problem parame-
ters, a given set of machines for problem execution, schedule and the resource
capabilities of the machines, resourcelInfo. The library writer fills the function
such that the function will return 1 if the machines have adequate capacities
for solving the problem and 0 otherwise. The second function getFEzecution-
TimeCost takes as input the problem parameters, the given set of machines,
the resource capabilities and returns as output, the predicted execution cost,
cost, of the application if the application were to run on the given set of
machines. The third function, mapper is an optional function. It is used for
specifying the data distribution of the different data used by the application.
The mapper can also change the order of the machines in the given set of
machines represented by inputSchedule and return the new order of machines

10

in the mapperSchedule. The execution model for the ScaLAPACK QR appli-
cation filled with the code written by the library writer is shown in the Figure
6.

The library writer uploads his execution model by executing the add_perfmodel
utility. After performing certain error checking mechanisms, the add_perfmodel
utility generates a wrapper program for the execution model. This wrap-
per program contains functions that act as entry points for the execution
model. The functions in the wrapper program initialize certain parameters
with default values and invoke the functions in the execution model. The
add_perfmodel utility finally uploads the execution model for the application
by storing the location of the wrapper program and the execution model to
the XML database corresponding to the entry for the application.

3.8 FEnd Users

The end users solve problems over remote GrADSolve resources by writing
a client program. This client program can be written in C or Fortran. The
client program includes an invocation of a routine called gradsolve() passing
to the function, the name of the end application and the input and output
parameters needed by the end application. An example of a GrADSolve client
program written in C is shown in Figure 7.

The invocation of the gradSolve() routine triggers the execution of the GrAD-
Solve Application Manager. As a first step, the Application Manager verifies
if the user has credentials to execute applications on the GrADSolve system.
GrADSolve uses Globus Grid Security Infrastructure (GSI) [30] for the authen-
tication of users. The Application Manager then queries the XML Database to
verify if the application had been previously uploaded by the library writer. If
the application had not been uploaded, the Application Manager displays an
error message to the user and aborts operation. If the application exists in the
GrADSolve system, the Application Manager registers the problem run in the
problems table of the XML database. The Application Manager then retrieves
the problem description from the XML database and matches the user’s data
with the input and output parameters required by the end application.

If an execution model exists for the end application, the Application Manager
downloads the execution model from the remote location where the library
writer had previously stored the execution model. The Application Manager
compiles the execution model programs with algorithms for scheduling heuris-
tics and starts the application-specific Performance Modeler service. The Ap-
plication Manager then retrieves the list of machines in the GrADSolve system
from the resources table in the XML database, and retrieves resource charac-

11

int areResourcesSufficient(int N, int NB, doublex A,
doublex B,
RESOURCEINFO* resourcelnfo,
SCHEDULESTRUCT* schedule)q{
memAvailable = 0.0;
for(i=0; i<schedule->count; i++){
memAvailable +=
resourceInfo->meminfo[schedule->indices[i]];
}
memNeeded = (double)N *((double)N + (double)NB + 1.0)
* sizeof (double);
if (memNeeded > memAvailable){
return 0; /*resources not sufficient */

+
return 1; /*resources sufficient */
+
int getExecutionTimeCost(int N, int NB, doublex A,

doublex B,
RESOURCEINFO* resourcelnfo,
SCHEDULESTRUCT* schedule,
double* costq
for(j=0; j<N; j+=NB){
trun += t1+t2; /* tl1 and t2 are times for different
phases in the iteration */
+
*cost = trun;
return O;
+
int mapper(int N, int NB, double* A, doublex B,
RESOURCEINFO* resourcelnfo,
SCHEDULESTRUCT* inputSchedule,
SCHEDULESTRUCT* mapperSchedule){
setBlockCyclicDistribution("A", mapperSchedule, NxNB);
B_distribution =
(int*)malloc(sizeof (int) *mapperSchedule->count) ;
B_distribution[0] = N;
for(i=1; i<mapperSchedule->count; i++){
B_distribution[i] = O;
+
setDistribution("B", mapperSchedule, B_distribution);
free(B_distribution);
getExecutionTimeCost (N, NB, A, B, resourcelnfo,
mapperSchedule,
& (mapperSchedule->cost));
return O;

Fig. 6. A QR Performance Moglgl filled with library writer code

#include '"gradsolve.h"

int main(int argc, char**x argv){
int N, NB;

doublex A, * B;

int i;

N = 1000;
NB = 40;

A
B

(doublex)malloc(sizeof (double) *N*N) ;
(doublex)malloc(sizeof (double) *N) ;

srand48(time(0));

for(i=0; i<N*N; i++){
A[i] = drand48();
if(i < M{
B[i] = drand48();
}
}

gradsolve("qrwrapper", N, NB, A, B);

free(h);
free(B);

return 1;

+
Fig. 7. GrADSolve C client code for the QR problem

teristics of the machines from the NWS. The Application Manager passes the
list of machines, along with the resource characteristics to the Performance
Modeler service to determine if the resources are sufficient to solve the prob-
lem. If the resources are sufficient, the Application Manager proceeds to the
Schedule Generation phase.

In the Schedule Generation phase, the Application Manager first determines if
the end application has an execution model. If an execution model exists, the
Application Manager contacts the Performance Modeler service and passes the
problem parameters and the list of machines with the machine capabilities.
The Performance Modeler service uses the execution model supplied by the

13

library writer along with the scheduling heuristics [27,28] to determine a final
schedule for application execution and returns the final list of machines to the
Application Manager. Along with the final list of machines and the predicted
execution cost for the final schedule, the Performance Modeling service also
returns information about the data distribution for the different data in the
end application. If an execution model does not exist for the end application,
the Schedule Generation phase adopts default scheduling strategies to gener-
ate the final schedule for end application execution. At the end of the Schedule
Generation phase, the GrADSolve Application Manager receives a list of ma-
chines for final application execution. The Application Manager then stores
the status of the problem run and the final schedule in the problems table of
the XML database corresponding to the entry for the problem run.

The Application Manager then creates working directories on the remote ma-
chines of the final schedule for end application execution and enters the Appli-
cation Launching phase. The Application Launching phase consists of several
important functions. The Application Launcher stores the input data to files
and stages these files to the corresponding remote machines chosen for ap-
plication execution. If data distribution information for an input data does
not exist, the Application Launcher stages the entire input data to all the ma-
chines involved in end application execution. If the information regarding data
distribution for an input data exists, the Application Launcher stages only the
appropriate portions of the data to the corresponding machines. This kind of
selective data staging significantly reduces the time needed for the staging for
entire data especially if large amount of data is involved. Apart from staging
the input data, the Application Launcher also stages the information regarding
data distribution to the remote machines.

After the staging of input data, the Application Launcher launches the end
application on the remote machines chosen for the final schedule using the
Globus MPICH-G [29] mechanism. The end application reads the input data
that were previously staged by the Application Launcher and solves the prob-
lem. The end application then stores the output data to the corresponding
files on the machines in the final schedule. If the end application finished ex-
ecution, the Application Launcher copies the output data from the remote
machines to the user’s memory space. The staging in of the output data from
the remote locations is a reverse operation of the staging out of the input data
to the remote locations. The GrADSolve Application Manager finally returns
success state to the user client program.

14

4 Execution Traces in GrADSolve - Storage, Management and Us-
age

One of the unique features in the GrADSolve system is the ability provided to
the users to store and use execution traces of problem runs. There are many
applications in which the outputs of the problem depend on the exact number
and configuration of the machines used for problem solving. For example,
considering the problem of adding large number of double precision numbers,
one of the parallel implementations of the problem is to partition the list
of double precision numbers among all processes of the parallel application,
compute local sums of the numbers in each process and compute the global
sum of the local sums computed on each process. The final sum obtained for
the same set of double precision numbers may vary from one problem run to
another depending on the number of elements in each partition, the number
of processes used in the parallel application and the actual processes used in
the computation. This is due to the impact of the round off errors caused by
the addition of double precision numbers. In general ill-conditioned problems
or unstable algorithms can give rise to vast changes in output results due to
small changes in input conditions. For these kinds of applications, the user may
desire to use the same input environment for all problem runs. Also, during
testing of new numerical algorithms over the Grid, different groups working
on the algorithm may want to ensure that same results are obtained when the
algorithms are executed with same input data on the same configuration of
resources.

To guarantee reproducibility of numerical results in the above situations,
GrADSolve provides capability to the users to store ezecution traces of prob-
lem runs and use the execution traces during subsequent executions of the
same problem with the same input data. For storing the execution trace of
the current problem run, the user executes his GrADSolve program with a
configuration file called input.config in the working directory containing the
following line:

TRACE_FLAG =1

During the registration of the problem run with the XML database, the value
of the TRACE_FLAG variable is stored. The GrADSolve Application Manager
proceeds to other stages of its execution. After the end application completes
its execution and the output data are copied from the remote machines to the
user’s memory, the Application Manager, under default mode of operation,
removes the remote working directories used for storing the files containing
the input data for the end application. But when the user wants to store the
execution trace of the problem run, i.e. when the input.config file contains

15

“TRACE_FLAG = 17 line, the Application Manager retains the input data
used for the problem run in the remote machines. At the end of the problem
run, the Application Manager generates an output configuration file called
output.config containing the following line

TRACE KEY = <key>

The value key in the output.config is a pointer to the execution trace stored
for the problem run.

When the user wants to execute the problem with the execution trace previ-
ously stored, he executes his client program specifying the line,

TRACE_KEY = <key>

in the input.config file. The value key in the input.config, is the same value pre-
viously generated by the GrADSolve Application Manager when the execution
trace was stored. The Application Manager first checks if the TRACE_KEY
exists in the problems table of the XML database. If the TRACE_KEY does
not exist, the Application Manager displays an error message to the user and
aborts operation. If the TRACE_KEY exists for an execution trace of a pre-
vious problem run, the Application Manager registers the current problem
run with the XML database and proceeds to the other stages of its execu-
tion. During the Schedule Generation phase, the Application Manager, in-
stead of generating a schedule for the execution of the end application, re-
trieves the schedule used for the previous problem run corresponding to the
TRACE_KEY, from the problems table in the XML database. The Applica-
tion Manager then checks if the capacities of the resources in the schedule at
the time of trace generation are comparable to the current capacities of the
resources. If the capacities are not comparable, the Application Manager dis-
plays an error message to the user and aborts the operation. If the capacities
are comparable, the Application Manager proceeds to the rest of the phases of
its execution. During the Application Launching phase, the Application Man-
ager, instead of staging the input data to remote working directories, copies
the input data and the data distribution information, used in the previous
problem run corresponding to the TRACE_KEY, to the remote working di-
rectories. The use of the same number of machines and the same input data
used in the previous schedule also guarantees the use of the same data distri-
bution for the current problem run. Thus GrADSolve guarantees the use of the
same execution environment used in the previous problem run for the current
problem run, and hence guarantees reproducibility of numerical results.

To support the storage and use of execution traces in the GrADSolve sys-
tem, two trigger functions are associated with the XML database. One trigger

16

function called trace_usage_trigger updates the last usage time of an execu-
tion trace when the execution trace is used for a problem run. Another trigger
function called cleanup_trigger is used for periodically deleting entries in the
problems table of the XML database thereby maintaining the size of the prob-
lems table in the database. The cleanup_trigger is invoked whenever a new
entry corresponding to a problem run is added to the problems table. The
cleanup_trigger first deletes those entries for which the execution traces were
not stored if the entries existed in the database for more than 10 minutes. The
cleanup_trigger then deletes those entries for which the execution traces were
stored, if the time of last usage of the execution trace is greater than 30 days.
Thus by using longer duration for those problem runs for which execution
traces were stored, the cleanup_trigger function provides greater opportunity
for the usage of the execution traces for the subsequent problem runs. If no
entries meet the above criteria for deletions and the number of entries for
which the execution traces were stored is greater than 100, the cleanup_trigger
function orders the entries based on completion times and deletes the first few
entries in the list till the number of entries in the database decreases to less
than 100.

5 Experiments and Results

The GrADS testbed consists of about 40 machines from University of Ten-
nessee (UT), University of Illinois, Urbana-Champaign (UIUC) and Univer-
sity of California, San Diego (UCSD). For the sake of clarity, our experimental
testbed consists of 4 machines:

e a 933 MHz Pentium III machine with 512 MBytes of memory located in
UT,

e a 450 MHz Pentium II machine with 256 MBytes of memory located in
UIUC and

e 2 450 MHz Pentium IIT machines with 256 MBytes of memory located in
UCSD.

The 2 UCSD machines are connected to each other by 100 Mb switched Ether-
net. Machines from different locations are connected by Internet. In the experi-
ments, GrADSolve was used to remotely invoke ScaLAPACK driver for solving
the linear system of equation, AX = B. The driver invokes ScaLAPACK QR
factorization for the factorization of matrix, A. Block cyclic distribution was
used for the matrix, A and the right-hand side vector, B. A GrADSolve IDL
was written for the driver routine and an execution model that predicts the
execution cost of the QR problem was uploaded into the GrADSolve system.
The GrADSolve user invokes the remote parallel application by passing the
size of the matrix, the matrix, A and the right-hand side vector, B to the

17

gradsolve() call.

GrADSolve was operated in 3 modes. In the first mode, the execution model
did not contain information about the data distribution used in the ScalLA-
PACK driver. In this case, GrADSolve transported the entire data to each
of the locations used for the execution of the end application. This mode of
operation is practiced in RPC systems that do not support the information
regarding data distribution. In the second mode, the execution model con-
tained information about the data distribution used in the end application. In
this case, GrADSolve transported only the appropriate portions of the data
to the locations used for the execution of end application. In the third mode,
GrADSolve was used with an execution trace corresponding to a previous run
of the same problem. In this case, data is not staged from the user’s address
space to the remote machines, but temporary copies of the input data used in
the previous run are made for the current problem run.

Figure 8 shows the times taken for data staging and other GrADSolve overhead
for different matrix sizes and for the three modes of GrADSolve operation.
Since the times taken for the execution of the end application are same in
all the three modes, we focus only on the times taken for data staging and
possible Grid overheads. The machines that were chosen by the GrADSolve
application-level scheduler for the execution of end application for different
matrix sizes are shown in Table 1. The UT machine was used for smaller
problem sizes since it had larger computing power than other machines. For
matrix size, 5000, UTUC machine was also used for the execution of parallel
application. For matrix sizes, 6000 and 7000, the available memory in the UT
machine at the time of the experiments was less than the memory needed
for the problems. Hence UIUC and UCSD machines were used. For matrix
size, 8000, all 4 machines were needed to accommodate the problem. All the
above decisions were automatically made by the GrADSolve system taking
into account the size of the problems and the resource characteristics at the
time of the experiments.

Comparing the first two modes in Figure 8, we find that for smaller prob-
lem sizes, the times taken for data staging in both the modes are the same.
This is because only one machine was used for problem execution and the
same amount of data are staged in both the modes when only one machine is
involved for problem execution. For larger problem sizes, the times for data
staging with distribution information is less than 20-55% of the times taken
for staging the entire data to remote resources. Thus the use of data distri-
bution information in GrADSolve can give significance performance benefits
when compared to staging the entire data that is practiced in some of the
RPC systems. Data staging in the third mode is basically the time taken for
creating temporary copies of data used in the previous problem runs in remote
resources. We find this time to be negligible when compared to the first two

18

Data Staging and GrADSolve Overhead
1400 T T T

Full data staging ———

Data staging with distribution —<—
1200 F Data staging with execution traces —x—
Overhead with full data staging —=—
Overhead with distribution —=—

1000 F Overhead with execution traces
4 800 |
]
9,
(]
£ 600 |
|_
400
200 r
Y p— ————— s
1000 2000 3000 4000 5000 6000 7000 8000
Matrix Size
Fig. 8. Data staging and other GrADSolve overhead
Matriz size Machines
1000 1 UT machine
2000 1 UT machine
3000 1 UT machine
4000 1 UT machine
5000 1 UT, 1 UIUC machines
6000 1 UIUC, 1 UCSD machines
7000 1 UIUC, 1 UCSD machines
8000 1 UT, 1 UIUC, 2 UCSD machines
Table 1

Machines chosen for application execution

modes. Thus execution traces can be used as caching mechanisms to use the
previously staged data for problem solving. The GrADSolve overheads for all
the three modes are found to be the same. This is because of the small number
of machines used in the experiments. For experiments when large number of
machines are used, we predict that the overheads will be higher in the first
two modes than in the third mode. This is because in the first two modes, the
application-level scheduling will explore large number of candidate schedules
to determine the machines used for end application while in the third mode,

19

a previous application-level schedule will be retrieved from the database and
used.

6 Related Work

Few RPC systems contain mechanisms for the parallel execution of remote
software.

MRPC [7] is a RPC system tuned for providing high performance for MPMD
applications on homogeneous clusters. The RPC communications are imple-
mented on top of Active Messages (AM) [31] and the user’s client programs
are written in Compositional C++ (CC++). The work by Maassen et. al [18]
extends Java RMI for efficient communications in solving high performance
computing problems. Both MRPC [7] and the Java RMI extension [18] requires
the end user’s programs to be parallel programs.

NetSolve [9], Ninf [10], RCS [11] and DFN-RPC [8] support task parallelism
by the asynchronous execution of number of remote sequential applications.
OmniRPC [17] is an extension of Ninf and supports asynchronous RPC calls to
be made from OpenMP programs. But similar to the approaches in NetSolve,
Ninf, RCS and DFN-RPC, OmniRPC supports only master-worker models of
parallelism. NetSolve, Ninf and RCS also support remote invocation of MPI
applications, but the amount of parallelism and the locations of the resources
to be used for the execution are fixed at the time when the applications are
uploaded to the systems and hence are not adaptive to dynamic loads in the
Grid environments.

The efforts that are very closely related to GrADSolve are PaCO [19,32] and
PaCO++ [14,20] from the PARIS project in France. The PaCO systems are
implemented within the CORBA [5] framework to encapsulate MPI applica-
tions in RPC systems. The data distribution and redistribution mechanisms
in PaCO are much more robust than in GrADSolve and support invocation of
remote parallel applications either from sequential or parallel client programs.
Recently, the PARIS project has been investigating coupling multiple appli-
cations of different types in Grid frameworks [15,16]. Although the PARIS
project aims to improve the performance of CORBA for high performance
computing, the RPC mechanisms provided in CORBA by the use of client
stubs and server skeletons have not found to be favorable for high perfor-
mance computing according to a previous study [21]. Also, the PaCO projects
do not support dynamic selection of resources for application execution as in
GrADSolve. Also, GrADSolve supports Grid related security models by em-
ploying Globus mechanisms. And finally, GrADSolve is unique in maintaining
execution traces that can help bypass the resource selection and data staging

20

phases.

7 Conclusions and Future Work

In this paper, an RPC system for efficient execution of remote parallel soft-
ware was discussed. The efficiency is achieved by dynamically choosing the
machines used for parallel execution and staging the data to remote machines
based on data distribution information. The GrADSolve RPC system also
supports maintaining and utilizing execution traces for problem solving. Our
experiments showed that the GrADSolve system is able to adapt to the prob-
lem sizes and the resource characteristics and yielded significant performance
benefits with its data staging and execution trace mechanisms.

Interfaces to the library writers for expressing more capabilities of the end ap-
plication are currently being designed. These capabilities include the ability of
the application to be preempted and continued later with different processor
configuration. These capabilities will allow GrADSolve to adapt to changing
Grid scenarios. Remote execution of non-MPI parallel programs and applica-
tions with different modes of parallelism are also being considered. Support
for remote invocation in different programming languages including MATLAB
are also part of our future efforts.

References

[1] A. Birrell, B. Nelson, Implementing Remote Procedure Calls, ACM
Transactions on Computer Systems 2 (1) (1984) 39-59.

[2] B. Bershad, T. Anderson, E. Lazowska, H. Levy, Lightweight Remote Procedure
Call, ACM Transactions on Computer Systems (TOCS) 8 (1) (1990) 37-55.

[3] Simple Object Access Protocol (SOAP) http://www.w3.org/TR/SOAP.
[4] XML-RPC http://www.xmlrpc.com.
[5] CORBA http://www.corba.org.

[6] Java Remote Method Invocation (Java RMI)
java.sun.com/products/jdk/rmi.

[7] C.-C. Chang, G. Czajkowski, T. von Eicken, MRPC: A High Performance RPC
System for MPMD Parallel Computing 29 (1) (1999) 43-66.

[8] R. Rabenseifner, The dfn remote procedure call tool for parallel and distributed
applications, in: In Kommunikation in Verteilten Systemen - KiVS 95. K.

21

Franke, U. Huebner, W. Kalfa (Editors), Proceedings, Chemnitz-Zwickau, 1995,
pp- 415-419.

[9] H. Casanova, J. Dongarra, NetSolve: A Network Server for Solving
Computational Science Problems, The International Journal of Supercomputer
Applications and High Performance Computing 11 (3) (1997) 212-223.

[10] H. N. M. Sato, S. Sekiguchi, Design and Implementations of Ninf: towards
a Global Computing Infrastructure, Future Generation Computing Systems,
Metascomputing Issue 15 (5-6) (1999) 649-658.

[11] P. Arbenz, W. Gander, M. Oettli, The remote computation system, Parallel
Computing 23 (1997) 1421-1428.

[12] I. Foster, C. K. eds., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, ISBN 1-55860-475-8, 1999.

[13] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, H. Casanova,
Overview of gridrpc: A remote procedure call api for grid computing, in:
M. Parashar (Ed.), Lecture notes in computer science 2536 Grid Computing
- GRID 2002, Vol. Third International Workshop, Springer Verlag, Baltimore,
MD, USA, 2002, pp. 274-278.

[14] A. Denis, C. Prez, T. Priol, Portable Parallel CORBA Objects: an Approach to
Combine Parallel and Distributed Programming for Grid Computing, in: Proc.
of the 7Tth International Euro-Par’01 Conference (EuroPar’01), Springer, 2001,
pp- 835-844.

[15] A. Denis, C. Prez, . Priol, Towards High Performance CORBA and MPI
Middlewares for Grid Computing, in: C. A. Lee (Ed.), Proc. of the 2nd
International Workshop on Grid Computing, no. 2242 in LNCS, Springer-
Verlag, 2001, pp. 14-25.

[16] C. Prez, T. Priol, A. Ribes, A Parallel CORBA Component Model for Numerical
Code Coupling, in: C. A. Lee (Ed.), Proc. of the 3nd International Workshop
on Grid Computing, LNCS, Springer-Verlag, 2002.

[17] M. Sato, M. Hirano, Y. Tanaka, S. Sekiguchi, OmniRPC: A Grid RPC Facility
for Cluster and Global Computing in OpenMP, in: In Workshop on OpenMP
Applications and Tools (WOMPAT2001), 2001.

[18] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs,
R. Hofman, Efficient Java RMI for Parallel Programming, ACM Transactions
on Programming Languages and Systems (TOPLAS) 23 (6) (2001) 747-775.

[19] C. René, T. Priol, MPI Code Encapsulation using Parallel CORBA Object, in:
Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing, IEEE, 1999, pp. 3-10.

[20] A. Denis, C. Pérez, T. Priol, Achieving Portable and Efficient Parallel CORBA
Objects, Concurrency and Computation: Practice and Experience .

22

[21] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, S. Sekiguchi, Are
Global Computing Systems Useful? - Comparison of Client-Server Global
Computing Systems Ninf, Netsolve versus CORBA, in: In Proceedings of the
14th International Parallel and Distributed Processing Symposium, IPDPS 00,
2000, pp. 547-559.

[22] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed,
L. Torczon, R. Wolski, The GrADS Project: Software Support for High-Level
Grid Application Development, International Journal of High Performance
Applications and Supercomputing 15 (4) (2001) 327-344.

[23] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour,
K. Sagi, Z. Shi, S. Vadhiyar, Users’ Guide to NetSolve V1.4.1, Innovative
Computing Dept. Technical Report ICL-UT-02-05, University of Tennessee,
Knoxville, TN (June 2002).

[24] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Intl
J. Supercomputer Applications 11 (2) (1997) 115-128.

[25] Apache Xindice http://xml.apache.org/xindice.

[26] R. Wolski, N. Spring, J. Hayes, The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing, Journal of
Future Generation Computing Systems 15 (5-6) (1999) 757-768.

[27] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, S. Vadhiyar,
Numerical Libraries and the Grid: The GrADS Experiments with Scalapack,
Journal of High Performance Applications and Supercomputing 15 (4) (2001)
359-374.

[28] A. Yarkhan, J. Dongarra, Experiments with Scheduling Using Simulated
Annealing in a Grid Environment, in: M. Parashar (Ed.), Lecture notes in
computer science 2536 Grid Computing - GRID 2002, Vol. Third International
Workshop, Springer Verlag, Baltimore, MD, USA, 2002, pp. 232-242.

[29] I. Foster, N. Karonis, A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems, In Proceedings of SuperComputing 98 (SC98)

[30] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch,
A National-Scale Authentication Infrastructure, IEEE Computer 33 (12) (2000)
60—66.

[31] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser, Active Messages:
A Mechanism for Integrated Communication and Computation, in: 19th
International Symposium on Computer Architecture, Gold Coast, Australia,
1992, pp. 256-266.

[32] C. René, T. Priol, MPI Code Encapsulating using Parallel CORBA Object,
Cluster Computing 3 (4) (2000) 255-263.

23

