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From our recent research, it has been determined that Parallel Simulated Annealing using
Genetic Crossover (PSA/GAc) has a high searching capability on an energy minimization
of a small protein called Met-enkephalin. PSA/GAc performs genetic crossover (one of
the operations of Genetic Algorithm (GA)) among the Parallel SA (PSA) to exchange their
information. In this paper, PSA/GAc is applied to the energy minimization of C-peptide and
Parathyroid Hormone Fragment(1-34). Also among the parameters of PSA/GAc, crossover
interval and total number of searching steps, which are supposed to have greater influence
on the searching capability, are modified to some values in order to examine and study their
influences. The results show that PSA/GAc provides lower energy of the target proteins
than Parallel SA. Furthermore, higher frequency of crossover and longer searching steps are
proven to derive lower energies. From the results we conclude that PSA/GAc is also effective
on the predictions of larger proteins.
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1 Introduction

Protein is a substance directly connected to the
biological phenomena and its biological functions
are said to be derived from its tertiary struc-
ture. Thus, clarification of its tertiary structure
leads to an explanation of the biological phenom-
ena process. Tertiary structure of the protein is
believed to correspond to the conformation with
the lowest residual potential energy. Therefore,
as one of the methods to predict the tertiary
structure of proteins, minimization of the energy
function has been studied. Simulated Annealing
(SA) has often been employed as the optimiza-
tion method to predict the tertiary structure of
proteins by the minimization of the energy4) .

However, the energy function that determines
the tertiary structure is complicated with large
numbers of global and local minima. Therefore
in order to acquire a fast convergence to a global
optimal, a hybrid method that combines Sequen-
tial SA (SSA) with a mechanism to improve the
searching capability has been developed. Thus,
as a combination method of SA with an operator

of Genetic Algorithm (GA), Parallel Simulated
Annealing using Genetic Crossover (PSA/GAc)
is what we propose3) . GA is another optimiza-
tion method that imitates an evolution of living
things. GA is said to be superior to SA at search-
ing for the optimum in a wider area of the search-
ing domain.

Our previous research shows that PSA/GAc
has higher searching capability than SSA on the
energy minimization of a small protein called
Met-enkephalin3) . In this paper, PSA/GAc is
applied to the energy minimization of the pro-
teins larger than Met-enkephalin; C-peptide and
Parathyroid Hormone Fragment (1-34). Also
among the parameters of PSA/GAc, crossover in-
terval and total number of searching steps, which
are supposed to have greater influence on the
searching capability, are modified to some values
to examine and study their influences. The re-
sults of PSA/GAc are compared to those of Par-
allel SA (PSA).
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2 SA and GA

2.1 Simulated Annealing

The term annealing derives from the physical pro-
cess of heating and then slowly cooling a sub-
stance to obtain a strong crystalline structure.
Simulated Annealing (SA) is the optimization
method to stochastically simulate this physical
process of annealing on the computers. In SA,
the simulation proceeds by randomly generating
a solution and then determining its acceptance in
certain probability. A temperature parameter is
used to determine this probability. In the basic
algorithm of SA, three operations bear an impor-
tant role; generate, accept, and cool.

The generation operation modifies a current so-
lution x and generates a next solution x′ using a
probability distribution G(x, x′).

The accept operation is a judgment to decide
whether to accept the modification or not. The
acceptance of the modification is determined from
a difference ∆E(= E′ − E) of a current energy
E = f(x) and a modified energy E′ = f(x′), and
the temperature parameter T . Metropolis et al.6)

introduced a simple algorithm to provide an effi-
cient simulation. That is, if ∆E ≤ 0, the modi-
fication is accepted. In case ∆E > 0, the mod-
ification is accepted at certain probability. This
algorithm can be defined as:

PACCEPT =

{
1 if ∆E ≤ 0

exp(−∆E
T

) otherwise
(1)

The temperature T is the important parameter
to control the acceptance of the modified solution.
At the beginning of the simulation, both the tem-
perature and the acceptance levels are high. As
the simulation proceeds and the temperature de-
creases, solutions that have the bigger fitness val-
ues.

Cooling is the operation to generate the tem-
perature of the next state Tk+1 from the temper-
ature of the current state Tk.

The simulation begins with the initial solution
x with energy of E and the initial temperature
T . The solution is then randomly modified to x′

with energy of E′. The acceptance of the mod-
ification is calculated from the difference of en-
ergy, ∆E(= E′ − E), and the temperature Tk.

If accepted, the solution x′ becomes the starting
point of the next step. These operations are re-
peated long enough at each temperature for the
system to reach a steady state, or equilibrium.
When reaching the steady state at Tk, the tem-
perature is cooled to Tk+1 and the simulation is
repeated until reaching steady state again. Users
define the terminal criterion, such as the num-
ber of evaluations. The simulation is concluded
when the temperature becomes low enough and a
terminal criterion is met.

2.2 Genetic Algorithm

Genetic Algorithm (GA) is the optimization algo-
rithm that imitates the evolution of living crea-
tures. In nature, inadaptable creatures to an
environment meet extinction, and only adapted
creatures can survive and reproduce. A repeti-
tion of this natural selection spreads the superior
genes to conspecifics and then the species pros-
pers. GA models this process of nature on com-
puters.

GA can be applied to several types of optimiza-
tion problems by encoding design variables of in-
dividuals. Searching for the solution proceeds by
performing the three genetic operations on the
individuals; selection, crossover, and mutation,
which play an important role in GA.

Selection is an operation that imitates the sur-
vival of the fittest in nature. The individuals are
selected for the next generation according to their
fitness.

Crossover is an operation that imitates the re-
production of living creatures. The crossover
exchanges the information of the chromosomes
among individuals.

Mutation is an operation that imitates the fail-
ure that occurs when copying the information of
DNA. Mutating the individuals in a proper prob-
ability maintains the diversity of the population.

3 Parallel SA using Genetic
Crossover

Parallel Simulated Annealing using Genetic
Crossover (PSA/GAc) is the optimization
method to exchange the informations of solutions
among SAs running in parallel by the genetic
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crossover2) . In this algorithm, the total number
of SAs running in parallel is defined as population
size and each SA is defined as individual2) .

Procedure of PSA/GAc is stated below:

step 1 SAs start running in parallel with initial
solutions.

step 2 When number of annealing reaches a cer-
tain number d, two solutions (individuals)
from the parallel SAs are randomly paired.

step 3 For each pair of individuals, the crossover
operation is performed and two new individ-
uals are generated. The crossover operation
used in PSA/GAc is one-point crossover be-
tween the design variables.

step 4 Among the two parents and the two off-
springs, the two individuals with the better
fitness are selected as new searching points.

step 5 A certain number d of annealing is per-
formed from the new searching points.

step 6 Each pair of individuals performs step 3
to step 5.

step 7 Step 2 to step 6 are repeated until the
terminal criterion is met.

A concept of PSA/GAc is illustrated in Figure
1.
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Figure 1: Concept of Parallel Simulated Anneal-
ing using Genetic Crossover

Figure 2 describes the concept of steps 3 and 4.
The figure describes the case of three design vari-
ables where the randomly selected boundary be-
tween the first and the second variables becomes a
crossover point. After evaluating the individuals,
the individuals with higher evaluations (parent 2
and offspring 2) are chosen as the next searching
points.
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Figure 2: Concept of crossover and selection

In case the optimal values of some design vari-
ables are obtained, the crossover operation works
to transfer the values to other individuals. Thus,
the convergence of the annealing is precipitated.

The former experiments of applying PSA/GAc
on some continuous minimization problems show
that PSA/GAc has a better convergence property
than SSA, and on the problems difficult for GA
to solve, PSA/GAc has also been confirmed to be
effective2) .

4 Energy Minimization of

Proteins by PSA/GAc

In this research, PSA/GAc is applied to the en-
ergy minimization of larger proteins to verify its
performance and also to study some of its param-
eters.

4.1 Target Proteins

The target proteins of this research are C-peptide
and Parathyroid Hormone Fragment(1-34). C-
peptide consists of 13 amino residues, has 13 pairs
of dihedral angles (φ, ψ) in the backbone, and 38
dihedral angles in the side chains. PTH(1-34)
consists of 34 amino residues, has 34 pairs of di-
hedral angles in the backbone, and 110 dihedral
angles in the side chains.

The energy minimization of these proteins is
gas-phase simulation based on the energy param-
eters of ECEPP/27, 8, 12) . The dihedral angles
of backbone and side chains are applied as de-
sign variables. Values of the dihedral angles are
in the range of [-180◦, 180◦]. Each dihedral an-
gle is generated and given the accept criterion
sequentially, and then the temperature is cooled.
In this paper, this series of operations are defined
as a Monte Carlo Sweep (MCsweep). Thus, 64
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Metropolis criterions are performed in one MC-
sweep in the case of C-peptide and 178 in the
case of PTH(1-34).

Okamoto’s experiments, using the energy func-
tion that adopts ECEPP/2 energy parameters,
show that C-peptide has the lowest energy con-
formation when eight residues (4-11) form an α-
helix. The energy of this lowest energy confor-
mation was -42.0 kcal/mol9) . Also, the low-
est energy conformation of C-peptide obtained
in this experiment corresponds with the struc-
ture deduced from the X-ray crystallography
experiment1) .

It is known by the NMR experiment that
PTH(1-34) has two α-helices5) . The lowest en-
ergy conformation of PTH(1-34) deduced from
Okamoto’s experiment also had two α-helices and
its energy is -210.0 kcal/mol11) .

4.2 Energy Minimization of
C-peptide

In the energy minimization of C-peptide,
Okamoto made 20 runs of SSA with each run
consisting of 10,000 MCsweeps9) . In or-
der to equalize the total number of MCsweeps
with Okamoto’s experiment, the parameters of
PSA/GAc were set to 24 individuals × 4,165 MC-
sweeps and two runs were made. All the exper-
iments were started from random initial confor-
mations. Next, states of the dihedral angles are
generated stochastically from the neighborhood
range using uniform distribution. Neighborhood
range [max,min] is determined as:


 max = 180◦ − 180◦ × 0.7 × #s.weep

Total # sweeps
min = −max

(2)

Other parameters are shown in Table 1. The
initial and the final temperature are the same val-
ues as Okamoto’s10) .

The result of the experiment signified that the
lowest energy conformation was obtained when
the crossover interval was set to 32. Table 2
lists the main-chain dihedral angles of the con-
formation with the lowest energy, which was -
53.9 kcal/mol. The conformation is considered
as α-helical when the dihedral angles (φ, ψ) fall
in the range (−60± 45◦,−50± 45◦)9) , therefore,

the lowest energy conformation exhibits α-helices
in nine residues. The α-helical residues are in-
dicated with a in Table 2. Figure 3 shows the
lowest energy conformation of C-peptide obtained
in the experiment. The lowest energy conforma-
tion derived from the experiment had a lower en-
ergy than that of Okamoto and the α-helices were
in accord with the known conformation. Conse-
quently, PSA/GAc has high convergence property
on the energy minimization of C-peptide.

Table 1: Parameters of PSA/GAc
Parameter Value
Initial Temperature 2.0 (1000K)
Final Temperature 0.1 (50K)
Crossover Interval 8, 16, 32, 64

Table 2: Amino acid sequence of C-peptide and
the dihedral angles of the lowest energy confor-
mation

5
Sequence Ly+ Gl- Thr Ala Ala

23 -79 -76 -67 -66
-66 102 86 -27 -32

- - - a a

10
Ala Ly+ Phe Glu Ar+

-79 -62 -65 -65 -63
-40 -43 -41 -41 -41

a a a a a

13
Gln Hi+ Met

-72 -69 -82
-30 -40 105

a a -

Energy = −53.9 kcal/mol

Figure 3: Lowest energy conformation of C-
peptide obtained by PSA/GAc
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4.3 Energy Minimization of
PTH(1-34)

In the energy minimization of PTH(1-34),
Okamoto made 20 runs of SSA with each run
consisting of 10,000 MCsweeps11) . In or-
der to equalize the total number of MCsweeps
with Okamoto’s experiment, the parameters of
PSA/GAc was set to 24 individuals × 4,165 MC-
sweeps, and two runs were made. All the exper-
iments were started from random initial confor-
mations. Other parameters are shown in Table
1.

The result of the experiment signified that the
lowest energy conformation was obtained when
the crossover interval was set to eight. Table 3
lists the main-chain dihedral angles of the con-
formation with lowest energy, which was -236.6
kcal/mol. The lowest energy conformation ex-
hibits α-helices in residues 2-8 and 15-18. Fig-
ure 4 shows the lowest energy conformation of
PTH(1-34) obtained in the experiment.

Figure 4: Lowest energy conformation of PTH(1-
34) obtained by PSA/GAc

As stated in section 4.1, PTH(1-34) is known
to have two α-helices from both NMR and
Okamoto’s experiment. The lowest energy con-
formation obtained by PSA/GAc also exhibited
two α-helices and retained lower energy than the
Okamoto’s. Consequently, PSA/GAc has high
convergence property on the energy minimization
of PTH(1-34).

Table 3: Amino acid sequence of PTH(1-34) and
the dihedral angles of the lowest energy confor-
mation

5
Sequence Ser Val Ser Glu Ile

93 -65 -68 -76 -71
157 -26 -36 -37 -35

- a a a a

10
Gln Leu Met His Asn

-64 -70 -55 -64 -112
-41 -44 -43 -96 145

a a a - -

15
Leu Gly Lys His Leu

-105 76 -95 -90 -73
108 -90 165 -1 -22

- - - - a

20
Asn Ser Met Glu Ar+

-85 -85 -74 -88 -142
-20 -37 -30 64 -60

a a a - -

25
Val Glu Trp Leu Ar+

-134 -85 -64 -65 -155
-58 73 131 108 112

- - - - -

30
Lys Lys Leu Gln Asp

-113 -105 -148 -64 -65
63 -32 148 -55 145

- - - a -

34
Val His Asn Phe

48 -55 -60 -84
71 -46 153 118

- a - -

Energy = −236.6 kcal/mol

4.4 Study on the Number of
MCsweeps and Crossover

4.4.1 Abstract of the Experiment

PSA/GAc performs genetic crossover, one of the
operations of GA, to transfer the solutions among
SAs running in parallel. In case the optimal val-
ues of some design variables are obtained, the
crossover operation works to transfer the values
to other individuals. Thus, the convergence of
the annealing can be precipitated. Therefore the
frequency of the crossover operation gives signif-
icant influence on the performance of PSA/GAc.
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(a) 16 individuals × 6,000 MCsweep
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(b) 32 individuals × 3,000 MCsweep
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(c) 64 individuals × 1,500 MCsweep

Figure 5: Energy history of C-peptide. Each figure presents the result of PSA and PSA/GAc with
crossover intervals ranging from 16 to 64.
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(c) 64 individuals × 1,500 MCsweep

Figure 6: Lowest energies of C-peptide obtained in each run are plotted in the descending order. Each
figure presents the result of PSA and PSA/GAc with crossover intervals ranging from 16 to 64.

Thus, in this section, the influence of the to-
tal number of MCsweeps and the frequency of
the crossover on the convergence property of
PSA/GAc are studied. In the experiment, pa-
rameters of PSA/GAc are set to 16 individuals
× 6,000 MCsweeps, 32 individuals × 3,000 MC-
sweeps, and 64 individuals × 1,500 MCsweeps
with crossover intervals of 16, 32, and 64. Among
PSA/GAcs, Parallel SA (PSA) is also applied.
PSA is the method to fetch the best solution from
plural SSAs running in parallel.

Total number of evaluations in every run of the
experiment is approximately united.

4.4.2 Result of C-peptide

The results of the energy minimization of C-
peptide by PSA/GAc with parameters of 16 indi-
viduals × 6,000 MCsweep, 32 individuals × 3,000

MCsweep, and 64 individuals × 1,500 MCsweep
are summarized in Figure 5(a), Figure 5(b), and
Figure 5(c), respectively which show the best of
the individuals as the number of MCsweeps pro-
ceeds. The figures show the average of 50 runs.
Each figure also shows the result with crossover
intervals of 16, 32, and 64. The horizontal and
the vertical axes each represent the number of
proceeded MCsweeps and the energy of protein
(kcal/mol).

Figure 6(a), Figure 6(b), and Figure 6(c)
present the lowest energies obtained in each run
of PSA and PSA/GAc with crossover intervals
of 16, 32, and 64, respectively. Each energy is
plotted in the descending order. The horizontal
and the vertical axes each represent the number
of runs and the energy of proteins(kcal/mol).
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Figure 7: Energy history of PTH(1-34). Each figure presents the result of PSA and PSA/GAc with
crossover intervals ranging from 16 to 64.
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(a) 16 individuals × 6,000 MCsweep
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(c) 64 individuals × 1,500 MCsweep

Figure 8: Lowest energies of PTH(1-34) obtained in each run are plotted in descending order. Each figure
presents the result of PSA and PSA/GAc with crossover intervals ranging from 16 to 64.

4.4.3 Result of PTH(1-34)

The result for the energy minimization of PTH(1-
34) by PSA/GAc with parameters of 16 individ-
uals × 6,000 MCsweep, 32 individuals × 3,000
MCsweep, and 64 individuals × 1,500 MCsweep
are summarized in Figure 7(a), Figure 7(b), and
Figure 7(c), respectively which show the best of
the individuals as the number of MCsweeps pro-
ceeds. The figures show the average of 20 runs.
Each figure also shows the result with crossover
intervals of 16, 32, and 64. The horizontal and
the vertical axes each represent the number of
proceeded MCsweeps and the energy of proteins
(kcal/mol).

Figure 8(a), Figure 8(b), and Figure 8(c)
present the lowest energies obtained in each run
of PSA and PSA/GAc with crossover interval of
16, 32, and 64. Each energy is plotted in the de-

scending order. The horizontal and the vertical
axes each represent the number of runs and the
energy of proteins (kcal/mol).

4.4.4 Result of Met-enkephalin

Results for the energy minimization of small
protein consisted of five residues called Met-
enkephalin are shown below for comparison.

Figure 9(a) presents the transition of energy
obtained by PSA/GAc with the parameters of 16
individuals × 6,000 MCsweeps, respectively. The
transition is an average of 50 runs. Figure 9(b)
and Figure 9(c) each present the lowest energy
obtained in 50 runs of PSA/GAc with the param-
eters of 16 individuals × 6,400 MCsweeps and 64
individuals × 1,500 MCsweeps. The energies are
plotted in the descending order.
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Figure 9: Transition of the energy and the lowest energies obtained in the energy minimization of Met-
enkephalin.

4.4.5 Discussion of the Results

The following observations can be made from the
results of both C-peptide and PTH(1-34).

Firstly, we made a comparison of PSA/GAc
with the large and small total number of MC-
sweeps. In each case PSA/GAc with the larger
number of MCsweeps acquired better conver-
gence. This is because the total number of MC-
sweeps is linked with the cooling schedule; thus,
PSA/GAc with longer MCsweeps could search
in both global and local areas of the searching
domain sufficiently. On the other hand, Fig-
ure 9(c) reveals that PSA/GAc with 64 indi-
viduals × 1,500 MCsweeps has the best con-
vergence property in the energy minimization of
Met-enkephalin. Because Met-enkephalin is a
small protein with 19 dihedral angles, it can be
considered to be simple as an optimization prob-
lem. Therefore, the small number of MCsweeps
and the short crossover interval are sufficient for
the search on the energy minimization of Met-
enkephalin. On the other hand, for the energy
minimization of larger proteins such as C-peptide
and PHT(1-34), larger number of MCsweeps is
required to obtain enough convergence.

Secondly, we focused on the effect of the
crossover operation. By comparison the results
of PSA/GAc with those of PSA that does not
have the cross over operation, it can be said
that PSA/GAc derived better solutions. Thus,
crossover operation is working effectively on the

energy minimization of these proteins.
Comparison of the crossover interval also

revealed that the convergence property of
PSA/GAc is improved by the crossover opera-
tion. The smaller the crossover interval is (the
higher frequency of the crossover operation is) in
either results the faster the convergence becomes.
When the total number of MCsweeps is large, this
trend is prominent.

In the case of the energy minimization of Met-
enkephalin, it is obvious from Figure 9(a) that
the crossover interval has almost no influence on
the convergence property of PSA/GAc in spite of
the total number of MCsweeps. Figure 9(b) in-
dicates that the performance of PSA/GAc with
a crossover interval of 16 is inferior to PSA/GAc
with other crossover intervals. That is, when the
total number of MCsweeps for the energy mini-
mization of small proteins is unnecessarily large,
setting a short crossover interval yields a decre-
ment in the diversity of individuals, and there-
fore, the performance decreases. From the dis-
cussion, it can be speculated that PSA/GAc and
the crossover operation are especially effective for
the energy minimization of large proteins that re-
quire the large number of MCsweeps.

5 Conclusions

In this paper, Parallel Simulated Annealing using
Genetic Crossover (PSA/GAc) has confirmed its
effectiveness on the energy minimization of the
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small protein called Met-enkephalin and applied
to the energy minimization of larger proteins; C-
peptide and PTH(1-34).

Firstly, to compare the performance of
PSA/GAc with Okamoto’s Sequential SA (SSA),
PSA/GAc was applied to the energy minimiza-
tion of C-peptide and PTH(1-34). The result
demonstrated that PSA/GAc has a better con-
vergence property than SSA on the energy mini-
mization of both proteins.

Secondly, PSA/GAc and Parallel SA (PSA)
were applied to the energy minimization of above
proteins to make a comparison of the perfor-
mances. (Number of individuals) × (total num-
ber of MCsweeps) was set to constant (total num-
ber of evaluation is approximately equal) to study
the influence of total numbers of MCsweeps and
the crossover operation. The result revealed that
PSA/GAc obtains lower energy than PSA. In ad-
dition, the result also indicates that the shorter
the crossover interval is, the more frequently the
lower energies were obtained.

Studying the above results, we can say that the
crossover operation of PSA/GAs is working ef-
fectively on the energy minimization of proteins.
Additionally, it can be concluded that PSA/GAc
is also effective on the energy minimization of
larger proteins.
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