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Abstract

At least three factors in the existing migrating systems
make them less suitable in Grid systems especially when the
goal is to improve the response times for individual applica-
tions - separate policies for suspension and migration of ex-
ecuting applications employed by these migration systems,
the use of pre-defined conditions for suspension and migra-
tion and the lack of knowledge of the remaining execution
time of the applications. In this paper we describe a mi-
gration framework for performance oriented Grid systems
that implements tightly coupled policies for both suspen-
sion and migration of executing applications. The suspen-
sion and migration policies take into account both the load
changes on systems as well the remaining execution times
of the applications thereby taking into account both system
load and application characteristics. The main goal of our
migration framework is to improve the response times for
individual applications. We also present some results that
demonstrate the usefulness of our migrating system.

1. Introduction

Computational Grids [9] involve large system dynamics
that the ability to migrate executing applications onto dif-
ferent sets of resources assumes great importance. Specif-
ically, the main motivations for migrating applications in
Grid systems are to provide fault tolerance and to adapt to
load changes on the systems.

In this paper, we focus on migration of applications
executing on the distributed and Grid systems when the
loads on the system resources change. There are at least
two disadvantages in using the existing migration systems
[13, 7, 12, 18, 22, 10, 12] for improving the response times
of executing applications. Due to the separate policies em-
ployed by these migration systems for suspension of exe-
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cuting applications and migration of the applications to dif-
ferent systems, the applications can incur lengthy waiting
times between when they are suspended and when they are
restarted on new systems. Secondly, due to the use of pre-
defined conditions for suspension and migration and due
to the lack of knowledge of the remaining execution time
of the applications, the applications can be suspended and
migrated even when they are about to finish execution in
a short period of time. This is certainly less desirable in
performance oriented Grid systems where the large load
dynamics will to lead to frequent satisfaction of the pre-
defined conditions and hence will lead to frequent invoca-
tion of suspension and migration decisions.

In this paper, we describe a framework that defines and
implements scheduling policies for migrating applications
executing on distributed and Grid systems in response to
system load changes. In our framework, the migration of
applications depends on

1. the amount of increase or decrease in loads on the re-
sources,

2. the time of the application execution when load is in-
troduced into the system,

3. the performance benefits that can be obtained for the
application due to migration.

Thus, our migrating framework takes into account both the
load and application characteristics. The policies are im-
plemented in such a way that the executing applications are
suspended and migrated only when better systems are found
for application execution thereby invoking the migration de-
cisions as infrequently as possible. The framework has been
implemented and tested on top of the GrADS system [2].
Our test results indicate that our migrating system is useful
for applications on the Grid.

In Section 2, we describe the GrADS system and the life
cycle of GrADS applications. In Section 3, we introduce
our migration framework by describing the different com-
ponents for migration. In Section 4, we describe our exper-
iments and provide various results. In Section 5, we present
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related work in the field of migration. We give concluding
remarks and explain our future plans in Section 6.

2. The GrADS System

GrADS [2] is an ongoing research project involving a
number of institutions and its goal is to simplify distributed
heterogeneous computing in the same way that the World
Wide Web simplified information sharing over the Inter-
net. The University of Tennessee investigates issues re-
garding integration of numerical libraries in the GrADS sys-
tem. In our previous work [14], we demonstrated the ease
with which numerical libraries like ScaLAPACK can be in-
tegrated into the Grid system and the ease with which the
libraries can be used over the Grid. We also showed some
results to prove the usefulness of a Grid in solving large
numerical problems.

In the architecture of GrADS, the user wanting to solve a
numerical application over the Grid invokes the GrADS ap-
plication manager. The life cycle of the GrADS application
manager is shown in Figure 1.

As a first step, the application manager invokes a com-
ponent called Resource Selector. The Resource Selector ac-
cesses the Globus Monitoring and Discovery Service(MDS)
[8] to get a list of machines in the GrADS testbed that are
alive and then contacts the Network Weather Service(NWS)
[20] to get system information for the machines. The ap-
plication manager then invokes a component called Per-
formance Modeler with problem parameters, machines and
machine information. The Performance Modeler, using an
execution model built specifically for the application, deter-

mines the final list of machines for application execution.
By employing the application specific execution model,
GrADS follows the AppLeS [3] approach to scheduling.
The problem parameters and the final list of machines are
passed as a contract to a component called Contract De-
veloper. The Contract Developer can either approve or re-
ject the contract. If the contract is rejected, the application
manager develops a new contract by starting from the re-
source selection phase again. If the contract is approved,
the application manager passes the problem, its parame-
ters and the final list of machines to Application Launcher.
The Application Launcher spawns the job on the given ma-
chines using Globus job management mechanism and also
spawns a component called Contract Monitor. The Con-
tract Monitor through an Autopilot mechanism [16] moni-
tors the times taken for different parts of applications. The
GrADS architecture also has a GrADS Information Repos-
itory(GIR) that maintains the different states of the appli-
cation manager and the states of the numerical application.
After spawning the numerical application through the Ap-
plication Launcher, the application manager waits for the
job to complete. The job can either complete or suspend
its execution due to external intervention. These applica-
tion states are passed to the application manager through
the GIR. If the job has completed, the application manager
exits, passing success values to the user. If the application is
stopped, the application manager waits for a resume signal
and then collects new machine information by starting from
the resource selection phase again.

3. The Migration Framework

The ability to migrate applications in the GrADS system
is implemented by adding a component calledRescheduler
to the GrADS architecture The migrating numerical appli-
cation,migrator, thecontract monitorthat monitors the ap-
plication’s progress and thereschedulerthat decides when
to migrate, together form the core of the migrating frame-
work. The interactions between the different components
involved in the migration framework is illustrated in Figure
2. These components are described in detail in the follow-
ing subsections.

3.1. The Migrator

We have implemented a user-level checkpointing library
called SRS (Stop RestartSoftware). The application by
making calls to SRS gets the ability to checkpoint data, to
be stopped at a particular point in execution, to be restarted
later on a different configuration of processors and to be
continued from the previous point of execution. The SRS
library is implemented on top of MPI and hence can be used
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only with MPI based parallel programs. Since checkpoint-
ing in SRS is implemented at the application layer and not
at the MPI layer, migration is achieved by clean exit of the
entire application and restarting the application over a new
configuration of machines. Due to the clean exit of the ap-
plication during migration, no interaction with the resource
allocation manager is necessary during rescheduling. The
application interfaces for SRS look similar to CUMULVS
[11], but unlike CUMULVS, SRS does not require a PVM
virtual machine to be setup on the hosts. Also, SRS allows
reconfiguration of applications between migrations.

The SRS library consists of 6 main functions
- SRSInit(), SRSFinish(), SRSRestartValue(),
SRSCheckStop(), SRSRegister() and SRSRead().
The user calls SRSInit() and SRSFinish() in his ap-
plication after MPIInit() and before MPIFinalize()
respectively. Since SRS is a user-level checkpointing
library, the application may contain conditional statements
to execute certain parts of the application in the start mode
and certain other parts in the restart mode. In order to know
if the application is executed in the start or restart mode,
the user calls SRSRestartValue() that returns 0 and 1 on
start and restart modes respectively. The user also calls
SRSCheckStop() at different phases of the application
to check if an external component wants the application
to be stopped. If the SRSCheckStop() returns 1, then
the application has received a stop signal from an external
component and hence can perform application-specific stop
actions.

SRS library uses Internet Backplane Protocol(IBP)[15]
for storage of the checkpoint data. IBP depots are started
on all the machines of the GrADS testbed. The user
calls SRSRegister() in his application to register the vari-

ables that will be checkpointed by the SRS library. When
an external component stops the application, the SRS li-
brary checkpoints only those variables that were registered
through SRSRegister(). The user reads in the checkpointed
data in the restart mode using SRSRead(). The user,
through SRSRead(), also specifies the previous and cur-
rent data distributions. By knowing the number of proces-
sors and the data distributions used in the previous and cur-
rent execution of the application , the SRS library automat-
ically performs the appropriate data redistribution. Thus,
for example, the user can start his application on 4 proces-
sors with block distribution of data, stop the application and
restart it on 8 processors with block-cyclic distribution. The
details of the SRS API for accomplishing the automatic re-
distribution of data is beyond the scope of the current dis-
cussion. For the current discussion, it is suffice to notice
that the SRS library is generic and has been tested with ap-
plications like ScaLAPACK and PETSC.

An external component(e.g., the rescheduler) wanting
to stop an executing application interacts with a daemon
called Runtime Support System (RSS). RSS exists for the
entire duration of the application and spans across multi-
ple migrations of the application. Before the actual paral-
lel application is started, the RSS is launched by the ap-
plication launcher on the machine where the user invokes
the GrADS application manager. The actual application
through the SRS library knows the location of the RSS from
the GIR and interacts with RSS to perform some initializa-
tion, to check if the application needs to be stopped during
SRSCheckStop(), to store pointers to the checkpointed
data, to retrieve pointers to the checkpointed data and to
store the present processor configuration and data distribu-
tion used by the application.

3.2. Contract Monitor

Contract Monitor is a component that uses the Autopilot
infrastructure to monitor the progress of the applications in
GrADS. Autopilot [16] is a real-time adaptive control in-
frastructure built by the Pablo group at University of Illi-
nois, Urbana-Champaign. An autopilot manager is started
before the launch of the numerical application. The numeri-
cal application is instrumented with calls to send the execu-
tion times taken for the different phases of the application
to the contract monitor. The contract monitor compares the
actual execution times with the predicted execution times
and calculates the ratio between them. The tolerance limits
of the ratio are specified as inputs to the contract monitor.

When a given ratio is greater than the upper tolerance
limit, the contract monitor calculates the average of the
computed ratios. If the average is greater than the upper
tolerance limit, it contacts the rescheduler, requesting for
migrating the application. The average of the ratios is used



by the contract monitor to contact the rescheduler due to the
following reasons:

1. A competing application of short duration on one of
the machines may have increased the load on the ma-
chine and hence the loss in performance of the appli-
cation. Contacting the rescheduler for migration on
noticing few losses in performance will result in un-
necessary migration in this case since the competing
application will end soon and the application’s perfor-
mance will be back to normal.

2. The average of the ratios also captures the history of
the behavior of the machines on which the application
is running. If the application’s performance on most of
the iterations has been satisfactory, then few losses of
performance may be due to sparse occurrences of load
changes on the machines.

3. The average of the ratios also takes into account the
percentage completed time of application’s execution.

If the rescheduler refuses to migrate the application, the
contract monitor adjusts its tolerance limits to new values.
Similarly when a given ratio is less than the lower tolerance
limit, the contract monitor calculates the average of the ra-
tios and adjusts the tolerance limits if the average is less
than the lower tolerance limit. The dynamic adjusting of
tolerance limits not only reduces the amount of communi-
cation between the contract monitor and the rescheduler but
also hides the deficiencies in the application-specific execu-
tion time model.

3.3. Rescheduler

Rescheduler is the component that evaluates the perfor-
mance benefits that can be obtained due to the migration
of an application and initiates the migration of the appli-
cation. The rescheduler is a daemon that operates in two
modes:migration on requestandopportunistic migration.
When the contract monitor detects intolerable performance
loss for an application, it contacts the rescheduler request-
ing it to migrate the application. This is called migration
on request. In other cases when no contract monitor has
contacted the rescheduler for migration, the rescheduler pe-
riodically queries the GrADS Information Repository(GIR)
for recently completed applications. If a GrADS applica-
tion was recently completed, the rescheduler determines if
performance benefits can be obtained for an executing ap-
plication by migrating it to use the resources that were freed
by the completed application. This is called opportunistic
rescheduling.

In both cases, the rescheduler first contacts the Network
Weather Service (NWS) to get the updated information for

Rescheduling Phase Time
(seconds)

Writing checkpoints 40
Waiting for NWS to update resource in-
formation

90

Time for application manager to get new
resource information from NWS

120

Evolving new application-level schedule80
Other grid overhead 10
Starting application 60
Reading checkpoints and Data redistri-
bution

500

Total 900

Table 1. Times for rescheduling phases

the machines in the Grid. It then contacts the application-
specific performance modeler to evolve a new schedule for
the application. Based on the total percentage completion
time for the application and the total predicted execution
time for the application with the new schedule, the resched-
uler calculates the remaining execution time,ret new, of the
application if it were to execute on the machines in the new
schedule. The rescheduler also calculatesret current, the
remaining execution time of the numerical application if it
were to to continue executing on the original set of ma-
chines. The rescheduler then calculates the rescheduling
gain as

rescheduling gain =
(ret current� (ret new + 900))

ret current

The number 900 in the numerator of the fraction is the
worst case time in seconds needed to reschedule the appli-
cation. The various times involved in rescheduling is given
in Table 1. The times shown in Table 1 were obtained by
conducting a number of experiments with different problem
sizes and obtaining the maximum times for each phases of
rescheduling. Thus the rescheduling strategy adopts pes-
simistic approach for rescheduling where migration of ap-
plications will be avoided in certain cases where migration
can yield performance benefits.

If the rescheduling gain is greater than 30%, the resched-
uler sends STOP signal to the application, and stores the
stop status in GIR. The application manager then waits for
the RESUME signal. The rescheduler stores the RESUME
value in the GIR thus prompting the application manager to
evolve a new schedule and restart the application on the new
schedule. If the rescheduling gain is less than 30% and if the
rescheduler is operating in themigration on requestmode,
the rescheduler contacts the contract monitor prompting the
contract monitor to adjust its tolerance limits.

The rescheduling threshold [19] which the performance



gain due to rescheduling must cross for rescheduling to
yield significant performance benefits depends on the load
dynamics of the system resources, the accuracy of the
measurements of resource information and may also de-
pend on the particular application for which rescheduling
is made. Since the measurements made by NWS are fairly
accurate, the rescheduling threshold for our experiments
depended only on the load dynamics of the system re-
sources. By means of trail-and-error experiments we deter-
mined the rescheduling threshold for our testbed to be 30%.
Rescheduling decisions made below this threshold may not
yield performance benefits in all cases.

4. Experiments and Results

The GrADS experimental testbed consists of about 40
machines that reside in institutions across United States in-
cluding University of Tennessee, University of Illinois, Uni-
versity of California at San Diego, Rice University etc. For
the sake of clarity, our experimental testbed consists of two
clusters, one in University of Tennessee and another in Uni-
versity of Illinois, Urbana-Champaign. The Tennessee clus-
ter consists of 8 933 MHz dual- processor Pentium III ma-
chines running Linux and connected to each other by 100
Mb switched Ethernet. The Illinois cluster consists of 16
450 MHz single-processor Pentium II machines running
Linux and connected to each other by 1.28 Gbit/second full
duplex myrinet. The two clusters are connected by means
of Internet.

In our experiments, ScaLAPACK QR factorization was
used as the end application. The application was instru-
mented with calls to SRS library such that the application
can be stopped by the rescheduler at any point of time and
can be continued on a different configuration of machines.
The data that were checkpointed by the SRS library for the
application included the matrix, A and the right-hand side
vector, B.

4.1. Migration on Request

In all the experiments in this section, 4 Tennessee ma-
chines and 8 Illinois machines were used. A given ma-
trix size for the QR factorization problem was input to the
application manager. Since the Tennessee machines were
faster than the Illinois machines, the application manager
by means of the performance modeler chose the 4 Ten-
nessee machines for the end application run. A few min-
utes after the start of the end application, artificial load is
introduced into the 4 Tennessee machines. This artificial
load is achieved by executing a certain number of loading
programs on each of the Tennessee machines. The loading
program used was a sequential C code that consists of a sin-
gle looping statement that loops forever. This program was

compiled without any optimization in order to achieve the
loading effect.

Due to the loss in predicted performance caused by the
artificial load, the contract monitor requested the resched-
uler to migrate the application. The rescheduler evaluated
the potential performance benefits that can be obtained by
migrating the application to the 8 Illinois machines and ei-
ther migrated the application or allowed the application to
continue on the 4 Tennessee machines. The rescheduler was
operated in two modes - a default and a non-default mode.
The normal operation of the rescheduler is its default mode
and the non-default mode of the rescheduler is when the
rescheduler code was modified to force the application to ei-
ther migrate or continue on the same set of resources. Thus
in cases when the default mode of the rescheduler was to
migrate the application, the non-default mode was to con-
tinue the application on the same set of resources and in
cases when the default mode of the rescheduler was to not
migrate the application, the non-default mode was to force
the rescheduler to migrate the application by adjusting the
rescheduling cost parameters. For each experimental run,
results were obtained for both when rescheduler was oper-
ated in the default and non-default mode. This allowed us
to compare both scenarios and to verify if the rescheduler
made the right decision.

Three parameters were involved in each set of experi-
ments - the size of the matrices, the amount of load and the
time after the start of the application when the load was in-
troduced into the system. The following three sets of exper-
iments were obtained by fixing two of the parameters and
varying the other parameter.

In the first set of experiments, the artificial load consist-
ing of 10 loading programs was introduced into the system
5 minutes after the start of the end application. The bar
chart in Figure 3 was obtained by varying the size of the
matrices, i.e. the problem size on the x-axis. The y-axis
represents the execution time in seconds of the entire prob-
lem including the Grid overhead. For each problem size, the
bar on the left represents the execution time when the appli-
cation was not migrated and the bar on the right represents
the execution time when the application was migrated.

Several points can be observed from Figure 3. The time
for reading checkpoints occupied most of the reschedul-
ing cost since it involves moving data across the Internet
from Tennessee to Illinois and redistribution of data from
4 to 8 processors. On the other hand, the time for writ-
ing checkpoints is insignificant since the checkpoints are
written to local disks. The rescheduling benefits are more
for large problem sizes since the remaining lifetime of the
end application when load is introduced is larger for larger
problem sizes. There is a particular size of the problem
below which the migrating cost overshadows the perfor-
mance benefit due to rescheduling. Except for matrix size
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8000, the rescheduler made the correct decision for all ma-
trix sizes. For matrix size 8000, the rescheduler assumed
a worst-case rescheduling cost of 900 seconds while the
actual rescheduling cost was close to about 420 seconds.
Thus the rescheduler evaluated the performance benefit to
be negligible while the actual scenario points to the con-
trary. Thus the pessimistic approach followed by using a
worst-case rescheduling cost in the rescheduler will lead to
underestimating the performance benefits due to reschedul-
ing in some cases.

In the second set of experiments, matrix size 12000 was
chosen for the end application and artificial load was in-
troduced 20 minutes into the execution of the application.
In this set of experiments, the amount of artificial load was
varied by varying the number of loading programs that were
executed. In Figure 4, the x-axis represents the number of
loading programs and the y-axis represents the execution
time in seconds. For each amount of load, the bar on the
left represents the case when the application was continued
on 4 Tennessee machines and the bar on the right represents
the case when the application was migrated to 8 Illinois ma-
chines.

Similar to the first set of experiments, we find only
one case when the rescheduler made incorrect decision for
rescheduling. This case, when the number of loading pro-
grams was 5 was due to the insignificant performance gain
that can be obtained due to rescheduling. When the num-
ber of loading programs was 3, we were not able to force
the rescheduler to migrate the application since the applica-
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tion completed at the time of rescheduling decision. Also,
more the amount of load, the more the performance bene-
fit due to rescheduling because of larger performance losses
for the application in the presence of heavier loads. But
the most significant result in Figure 4 was that the execu-
tion times when the application was rescheduled remained
almost constant irrespective of the amount of load. This is
because, as can be observed from the results when the num-
ber of loading programs was 10 and when the number was
20, the more the amount of load, the earlier the application
was rescheduled. Hence our rescheduling framework was
able to adapt to the external load.

In the third set of experiments, shown in Figure 5, equal
amount of load consisting of 7 loading programs was in-
troduced at different points of execution of the end appli-
cation for the same problem of matrix size 12000. The x-
axis represents the elapsed time in minutes of the execution
of end application when the load was introduced. The y-
axis represents the total execution time in seconds. Simi-
lar to the previous experiments, the bars on the left denote
the cases when the application was not rescheduled and the
bars on the right represent the cases when the application
was rescheduled.

As can be observed from Figure 5, there are diminishing
returns due to rescheduling as the load is introduced later
into the program execution. The rescheduler made wrong
decisions in two cases - when the load introduction times
are 15 and 20 minutes after the start of end application ex-
ecution. While the wrong decision for 20 minutes can be
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attributed to the pessimistic approach of rescheduling, the
wrong decision of the rescheduler for 15 minutes was de-
termined to be due to the faulty functioning of the perfor-
mance model for the ScaLAPACK QR problem for UIUC
machines. The most startling result in Figure 5 is when the
load was introduced 23 minutes after the start of the end ap-
plication. At this point, the program almost completed and
hence rescheduling will not yield performance benefits for
the application. The rescheduler was able to evaluate the
scenario and avoid unnecessary rescheduling of the appli-
cation. Most rescheduling frameworks will not be capable
of achieving this since they do not possess the knowledge
regarding remaining execution time of the application.

4.2. Opportunistic Migration

In this set of experiments, we illustrate opportunistic mi-
gration in which the rescheduler tries to migrate an execut-
ing application when some other application completes. For
these experiments, two problems were involved. For the
first problem, matrix size of 14000 was input to the applica-
tion manager and 6 Tennessee machines were made avail-
able. The application manager, through the performance
modeler chose the 6 machines for the end application run.
Two minutes after the start of the end application for the first
problem, a second problem of a given matrix size was input
to the application manager. For the second problem, the 6

Tennessee machines on which the first problem was exe-
cuting and 2 Illinois machines were made available. Due
to the presence of the first problem, the 6 Tennessee ma-
chines alone were insufficient to accommodate the second
problem. Hence the performance model chose the 6 Ten-
nessee machines and 2 Illinois machines for the end appli-
cation and the actual application run involved communica-
tion across the Internet.

In the middle of the execution of the second application,
the first application completed and hence the second appli-
cation can be potentially migrated to use only the 6 Ten-
nessee machines. Although this involved constricting the
number of processors of the second application from 8 to
6, there can be potential performance benefits due to the
non-involvement of Internet. The rescheduler evaluated the
potential performance benefits due to migration and made
an appropriate decision.

Figure 6 shows the results for two illustrative cases when
matrix sizes of the second application were 13000 and
14000. The x-axis represents the matrix sizes and the y-axis
represents the execution time in seconds. For each applica-
tion run, three bars are shown. The bar on the left represents
the execution time for the first application that was executed
on 6 Tennessee machines. The middle bar represents the
execution time of the second application when the entire
application was executed on 6 Tennessee and 2 Illinois ma-
chines. The bar on the right represents the execution time
of the second application, when the application was initially
executed on 6 Tennessee and 2 Illinois machines and later
migrated to execute on only 6 Tennessee machines when the
first application completed.

In both problem cases, matrix sizes 13000 and 14000,
for the second problem, the rescheduler made the correct
decision of migrating the application. We also find that for
both problem cases, the second application was almost im-
mediately rescheduled after the completion of the first ap-
plication.

5. Related Work

Different systems have been implemented to migrate ex-
ecuting applications onto different sets of resources. These
systems migrate applications either to efficiently use under-
utilized resources [13, 17, 5, 4, 21, 18, 6], to provide fault
resilience [1] or to reduce the obtrusiveness to workstation
owner [1, 12]. The particular projects that are closely re-
lated to our work are Dynamite [18], MARS [10], LSF [22]
and Condor [12].

The Dynamite system [18] based on Dynamic PVM
[6] migrates applications when the loads of certain ma-
chines gets under-utilized or over-utilized as defined by
application-specified thresholds. Although this method
takes into account application-specific characteristics it
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does not necessarily evaluate the remaining execution time
of the application and the resulting performance benefits
due to migration. MARS [10] migrates applications taking
into account both the system loads and application char-
acteristics. But the migration decisions are made only at
different phases of the applications unlike our migration
framework where the applications are continuously moni-
tored and migration decisions are made whenever the appli-
cations are not making sufficient progress.

In LSF [22], jobs can be submitted to queues which have
pre-defined migration thresholds. A job can be suspended
when the load of the resource increases beyond a particular
limit. When the time since the suspension becomes higher
than the migration threshold for the queue, the job is mi-
grated and submitted to a new queue. Thus LSF suspends
jobs to maintain the load level of the resources while our
migration framework suspends jobs only when it is able to
find better resources where the jobs can be migrated. By
adopting a strict approach to suspending jobs based on pre-
defined system limits, LSF gives less priority to the stage
of the application execution whereas our migration frame-
work suspends an application only when the application has
large enough remaining execution time so that performance
benefits can be obtained due to migration. And lastly, due
to the separation of the suspension and migration decisions,
a suspended application in LSF can wait for a long time
before it restarts executing on a suitable resource. In our
migration framework, a suspended application is immedi-
ately restarted due to the tight coupling of suspension and

migration decisions.

Of the Grid computing systems, only Condor [12] seems
to migrate applications under workload changes. Con-
dor provides powerful and flexible ClassAd mechanism by
means of which the administrator of resources can define
policies for allowing jobs to execute on the resources, sus-
pending the jobs and vacating the jobs from the resources.
The fundamental philosophy of Condor is to increase the
throughput of long running jobs and also respect the own-
ership of the resource administrators. The main goal of our
migration framework is to increase the response times of
individual applications. Similar to LSF, Condor also sepa-
rates the suspension and migration decisions and hence has
the same problems mentioned for LSF in taking into into
account the performance benefits of migrating the applica-
tions. Unlike our metascheduler framework, the Condor
system does not possess the knowledge about the remain-
ing execution time of the applications. Thus suspension and
migrating decisions can be invoked frequently in Condor
based on system load changes. This may be less desirable
in Grid systems where system load dynamics are fairly high.

6. Conclusions and Future Work

Many existing migrating systems that migrate applica-
tions under loading conditions implement simple policies
that cannot be applied to Grid systems. We have imple-
mented a migration framework that takes into account both
the system load and application characteristics. The migrat-
ing decisions are based on factors like the amount of load,
the time of the application when the load is introduced and
the size of the applications. We have also implemented a
framework that migrates executing applications to make use
of additional free resources. Experiments were conducted
and results were presented to demonstrate the capabilities
of the migration framework.

Of the various costs involved in rescheduling, the cost
for data redistribution is the only significant cost that de-
pends on the number and amount of checkpointed data, the
data distributions used for the data and the current and fu-
ture processors sets for the application. We are planning
to modify the SRS library to store these information in the
Runtime Support System (RSS). The rescheduler, instead of
associating a fixed worst-case redistribution cost for the ap-
plication, will then use relevant information from RSS and
also the NWS information for bandwidth and latency be-
tween the machines to calculate the redistribution cost dy-
namically. Also, instead of fixing the rescheduler thresh-
old at 30%, our future work will involve determining the
rescheduling threshold dynamically based on the dynamic
observation of load behavior on the system resources.
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