
Adaptive Scheduling for Task Farmingwith Grid Middleware
Henri Casanova � MyungHo Kim y James S. Plank zJack J. Dongarraz xJune 16, 1999AbstractScheduling in metacomputing environments is an active �eld of research as the vi-sion of a Computational Grid becomes more concrete. An important class of Grid ap-plications are long-running parallel computations with large numbers of somewhat in-dependent tasks (Monte-Carlo simulations, parameter-space searches, etc.). A numberof Grid middleware projects are available to implement such applications but schedul-ing strategies are still open research issues. This is mainly due to the diversity ofboth Grid resource types and of their availability patterns. The purpose of this workis to develop and validate a general adaptive scheduling algorithm for task farmingapplications along with a user interface that makes the algorithm accessible to do-main scientists. Our algorithm is general in that it is not tailored to a particular Gridmiddleware and that it requires very few assumptions concerning the nature of theresources. Our �rst testbed is NetSolve as it allows quick and easy development of thealgorithm by isolating the developer from issues such as process control, I/O, remotesoftware access, or fault-tolerance. KeywordsFarming, Master-Slave Parallelism, Scheduling, Metacomputing, Grid Computing.�Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA92093-0114, USAySchool of Computing, SoongSil University, Seoul, 156-743 KoreazDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, USAxMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

1 IntroductionThe concept of a Computational Grid envisioned in [1] has emerged to capture the visionof a network computing system that provides broad access not only to massive informationresources, but to massive computational resources as well. Such computational grids will usehigh-performance network technology to connect hardware, software, instruments, databases,and people into a seamless web that supports a new generation of computation-rich problemsolving environments for scientists and engineers. Grid resources will be ubiquitous therebyjustifying the analogy to the Power Grid.Those features have generated interest among many domain scientists and new classesof applications arise as being potentially griddable. Grid resources and their access policiesare inherently very diverse, ranging from directly accessible single workstations to clustersof workstations managed by Condor [2], or MPP systems with batch queuing management.Furthermore, the availability of these resources changes dynamically in a way that is close tounpredictable. Lastly, predicting networking behavior on the grid is an active but still openresearch area. Scheduling applications in such a chaotic environment according the end-users' need for fast response-time is not an easy task. The concept of a universal schedulingparadigm for any application at the current time is intractable and the current trend inthe scheduling research community is to focus on schedulers for broad classes of applica-tions. Given the characteristics of the Grid, it is not surprising that even applications withextremely simple structures raise many challenges in terms of scheduling.In this paper we address applications that have simple task-parallel structures (master-slave) but require large number of computational resources. We call such applications taskfarming applications according to the terminology introduced in [3]. Examples of such ap-plications include Monte-Carlo simulations and parameter-space searches. Our goal is notonly to design a scheduling algorithm but also to provide a convenient user interface thatcan be used by domain scientists that have no knowledge about the Grid structure.Section 2 shows how some of the challenges can be addressed by using a class of gridmiddleware projects as underlying operating environments, while others need to be addressedspeci�cally with adaptive scheduling algorithms. Section 3 gives an overview of relatedresearch work and highlights the original elements of this work. Section 4 contains a briefoverview of NetSolve, the grid middleware that we used as a testbed. Sections 5 and 6describe the implementation of the task farming interface and the implementation of theadaptive scheduling algorithm underneath that interface. Section 7 presents experimentalresults to validate the scheduling strategy. Section 8 concludes with future research andsoftware design directions.2 Motivation and Challenges for FarmingOur intent is to design and build an easily accessible computational framework for task farm-ing applications. An obvious di�culty then is to isolate the users from details such as I/O,process control, connections to remote hosts, fault-tolerance, etc. Fortunately an emergingclass of Grid middleware projects provides the necessary tools and features to transparently2

handle most of the low-level issues on behalf of the user. We call these middleware projectsfunctional metacomputing environments, the user's interface to the Grid is a functional re-mote procedure call (i.e a call without side e�ects). The middleware intercepts the procedurecall and treats it as a request for service. The procedure call arguments are wrapped up andsent to the Grid resources that are currently best able to service the request, and when therequest has been serviced, the results are shipped back to the user, and his or her procedurecall returns. The middleware is responsible for the details of managing the service on theGrid { resource selection and allocation, data movement, I/O, and fault-tolerance.There are two main functional metacomputing environments available today. These areNetSolve (see Section 4) and Ninf [4]. Building our framework on top of such architecturesallows us to focus on meaningful issues like the scheduling algorithm rather than building awhole system from the ground up. Our choice of NetSolve as a testbed is motivated by theauthors' experience with that system. Section 5 describes our �rst attempts at an API.Of course, the main challenge is scheduling. Indeed, for long running farming applicationsit is to be expected that the availability and workload of resources within the server poolwill change dynamically. We must therefore design and validate an adaptive schedulingalgorithm (see Section 6). Furthermore, that algorithm should be general and applicable notonly for a large class of applications but also for any operating environment. The algorithmis therefore designed to be portable to other metacomputing environments [4, 5, 6, 2, 7].3 Related WorkNimrod [7] is targeted to computational applications based on the \exploration of a rangeof parameterized scenarios" which is similar to our de�nition of task farming. The userinterfaces in Nimrod are at the moment more evolved than the API described in Section 5.However, we believe that our API will be a building block for high-level interfaces (see Sec-tion 8). The current version of Nimrod (or Clustor, the commercial version available from [8])does not use any metacomputing infrastructure project whereas our task farming frameworkis built on top of grid middleware. However, a recent e�ort, Nimrod/G [9], plans to buildNimrod directly on top of Globus [5]. We believe that a project like NetSolve (or Ninf) isa better choice for this research work. First, NetSolve is freely available. Second, NetSolveprovides a very simple interface, letting us focus on scheduling algorithms rather than Gridinfrastructure details. Third, NetSolve can and probably will be implemented on top of mostGlobus services and will then leverage the Grid infrastructure without modi�cations of ourscheduling algorithms. Another distinction between this work and Nimrod is that the latterdoes not contain adaptive algorithms for scheduling like the one described in Section 6. Infact, it is not inconceivable that the algorithms eventually produced by this work could beincorporated seamlessly into Nimrod.Calypso [10] is a programming environment for a loose collection of distributed resources.It is based on C++ and shared memory, but exploits task-based parallelism of relativelyindependent jobs. It has an eager scheduling algorithm and like the functional metacom-puting environments described in this paper, uses the idempotence of the tasks to enable areplication-based fault-tolerance. 3

A system implemented on top of the Helios OS that allows users to program master-slaveprograms using a \Farming" API is described in[3, 11]. Like in Calypso, the idempotence oftasks is used to achieve fault-tolerance. They do not focus on scheduling.The AppLeS project [12, 13] develops metacomputing scheduling agents for broad classesof computational applications. Part of the e�ort targets scheduling master-slave applica-tions [14] (task farming applications with our terminology). A collaboration between theNetSolve and the AppLeS team has been initiated and and integration of AppLeS technol-ogy, the Network Weather Service (NWS) [15] NetSolve-like systems, and the results in thisdocument is underway.As mentioned earlier, numerous ongoing projects are trying to establish the foundationsof the Computational Grid envisioned in [1]. Ninf [4] is similar to NetSolve in that it istargeted to domain scientists. Like NetSolve, Ninf provides simple computational servicesand and the development teams are collaborating to make the two system interoperate andstandardize the basic protocols. At a lower-level are Globus [5] and Legion [6] which aim atproviding basic infrastructure for the grid. Condor [2, 16] de�nes and implements a powerfulmodel for grid components by allowing the idle cycles of networks of workstation to beharvested for the bene�t of grid users without penalizing local users.4 Brief Overview of NetSolve

Figure 1: The NetSolve System4

The NetSolve project is under development at the University of Tennessee and the OakRidge National Laboratory. Its original goal is to alleviate the di�culties that domain sci-entists usually encounter when trying to locate/install/use numerical software, especially onmultiple platforms. With NetSolve, the user does not need to be concerned with the loca-tion/type of the hardware resources being used or with the software installation. Further-more, NetSolve provides transparent fault-tolerance mechanisms and implements schedulingalgorithms to minimize overall response time. As seen on Figure 1 NetSolve has a three-tiered design in that a client consults an agent prior to sending requests to a server. Let usgive basic concepts about those three components as well as information about the currentstatus of the project.The NetSolve Server: A NetSolve server can be started on any hardware resource (singleworkstation, cluster of workstations, MPP). It can then provide access to arbitrary softwareinstalled on that resource (NetSolve provides mechanisms to integrate any software compo-nent into a server so that it may become available to NetSolve clients [17]).The NetSolve Agent: The NetSolve agent is the key to the computation-resource map-ping decisions as it maintains a database about the statuses and capabilities of servers. Ituses that database to make scheduling decisions for incoming user requests. The agent is alsothe primary participant in the fault-tolerance mechanisms. Note that there can be multipleinstances of the NetSolve agent to manage a confederation of servers.The NetSolve Client: The user can submit (possibly simultaneous) requests to the sys-tem and retrieve results with one of the provided interfaces (C, Fortran, Matlab [18], Math-ematica [19], Java APIs or Java GUI).Current Status of NetSolve: At this time, a pre-version of NetSolve 1.2, containingfull-
edge software for all UNIX
avors, Win32 C, and Matlab APIs, can be downloadedfrom the homepage at: http://www.cs.utk.edu/netsolveThe NetSolve Users' Guide [20] contains general purpose information and examples. Detailsabout the NetSolve agent can be found in [21]. Recent developments and applications ofNetSolve are described in [22]. Lastly, technical details about the current NetSolve imple-mentation are to be found in [23].5 Task Farming API5.1 BasicsIn this work, we assume that a functional metacomputing environment is available (seeSection 2). That environment provides an API that contains two functions: (i)submit() tosend a request asynchronously for computation and (ii)poll() to poll asynchronously for the5

completion of a request. Polling returns immediately with the status of the request. If thecomputation is complete, the result is returned as well. The NetSolve and Ninf APIs satisfythese requirements. In addition, the environment provides access to pre-installed softwareand hardware resources. The user just provides input data and a way to identify whichsoftware should be used to process that data. Again, both NetSolve and Ninf comply.A farming job is one composed of a large number of independent requests that may beserviced simultaneously. This is sometimes referred to as the \bag-of-tasks" model [24, 25].Farming jobs fall into the class of \embarrassingly parallel" programs, for which it is veryclear how to partition the jobs for parallel programming environments. Many importantclasses of problems, such as Monte-Carlo simulations (e.g. [26]) and parameter-space searches(e.g. [7]) fall into this category.Without a farming API, the user is responsible for managing the requests himself. Onepossibility would be to submit all the desired requests at once and let the system schedulethem. However, we have seen that scheduling on the grid is a challenging issue and as aresult, the available grid middleware projects implement only minimal scheduling capabilitiesthat do not optimize even this simple class of parallel programs. A second possibility is forthe user to manually manage a ready queue by having at most n requests submitted to thesystem at any point in time. This solution seems more reasonable; however the optimalvalue of n depends on Grid resource availability, which is beyond the user's control and isdynamic.5.2 APIIt is di�cult to design an API that is both convenient for the end-user and sophisticatedenough to handle many real applications. Our farming API contains one function, farm(),with which the user speci�es all data for all the computation tasks. The main idea is toreplace multiple calls to submit() by one call to farm() whose arguments are lists of argu-ments to submit(). In this �rst implementation, we assume that arguments to submit()are either integers or pointers (which is consistent with the NetSolve speci�cation). Ex-tending the call to support other argument types would be trivial. The �rst argument tofarm() speci�es the number of request by declaring an induction variable and de�ning itsrange. The syntax if "i=%d,%d" (see example below). The second argument is the identi�erfor the computational functionality in the metacomputing environment (a string with Ninfand NetSolve). Then follow a (variable) number of argument lists. Our implementationprovides three functions that need to be called to generate such lists:(i)expr() allows an ar-gument to computation i to be an integer computed as an arithmetic expression containingi; (ii)int array() allows an integer argument to computation i to be an element of an inte-ger array indexed by the value of an arithmetic expression containing i; (iii)ptr array() issimilar to int array() but handles pointer arguments. Arithmetic expressions are speci�edwith Bourne Shell syntax (accessing the value of i with `$i').Let us show an example assuming that the underlying metacomputing environment pro-vides a computational function called \foo". The code:double x[10],y[30],z[10]; 6

submit("foo",2,x,10);submit("foo",4,y,30);submit("foo",6,z,10);makes three requests to run the "foo" software with the sets of arguments: (2,x,10),(4,y,30) and (6,z,10). Note that x, y and z will hold the results of the NetSolve call.With farming these calls are replaced byneeds to be replaced byvoid *ptrs[3];int *ints[3];ptrs[0] = x; ptrs[1] = y; ptrs[2] = z;ints[0] = 10; ints[1] = 30; ints[2] = 10;farm("i=0,2","foo",expr("2*($i+1)"),ptr_array(ptrs,"$i"),int_array(ints,"$i"));We expect to use this API as a basis for more evolved interfaces (e.g. graphical or Shell-based). So far, we have used the API directly to implement basic example computations(2D block-cyclic matrix-multiply, Mandelbrot set computation) and to build a Shell inter-face to MCell (see Section 7). Section 8 describes how we plan to generalize this work toautomatically generate high-level interfaces.6 Scheduling Strategy6.1 The Scheduling AlgorithmThe main idea behind the scheduling algorithm has already been presented in Section 5.1:managing a ready queue. We mentioned that the user had no elements on which to basethe choice for n, the size of the ready queue. Our farming algorithm manages a readyqueue and adapts to the underlying metacomputing environment by modifying the value ofn dynamically according to constant computation throughput measurement. The algorithmreally sees the environment as an opaque entity that gives varying responses (request responsetimes) to repeated occurrence of the same event (the sending of a request).Let us go through the algorithm shown in Figure 2. First, the algorithm chooses theinitial value of n. That choice can be arbitrary but it may bene�t from additional informationprovided by the underlying metacomputing environment. NetSolve provides a way to querythe agent about the number of available servers for a given computation and that number isthe initial guess for n in this �rst implementation. Second, the algorithm sets the schedulingfactor � which takes values in [0; 1) and determines the behavior of the algorithm. Indeed thevalue of nmay be changed only when more than n tasks completed during one iteration of theoutermost while loop. A value of � = 1 causes the algorithm to be extremely conservative(only when all n requests are completed instantly may the value of n be changed). Thesmaller � the more often will the algorithm try to modify n. The algorithm keeps a running7

n = initial guess on the queue size;� = scheduling factor;� = 1;while (tasks remaining) fwhile (number of pending tasks < n) fsubmit();gforeach (pending task) fpoll();gif (n� number of pending tasks � n� �) fif (average task response time has improved) fn = n + �;� = � + 1;gelse fn = n� �;� = 1;ggg Figure 2: Adaptive scheduling algorithm

8

history of the average request response times for all requests in the queue. That historyis used to detect improvements or deterioration in performance and modify the value of naccordingly.This algorithm is rather straightforward at the moment but it will undoubtedly be im-proved after more experiments have been conducted. However, early experimental resultsshown in Section 7 are encouraging.6.2 Current ImplementationIn our testbed implementation of farming for NetSolve, we implement farm() as an addi-tional layer on top of the traditional NetSolve API, exactly as detailed in Section 5.2. Asimilar implementation would be valid for a system like Ninf. In other metacomputing en-vironments, placing the scheduling algorithm within the client library might not be feasible,in which case the algorithm needs to be implemented in other parts of the system (centralscheduler, client proxy, etc..). However, the algorithm is designed to rest on top of themetacomputing system, rather than merged with the internals of system.6.3 Possible ExtensionsThe NetSolve farming interface is very general and we believe that it can serve as a low-levelbuilding-block for deploying various classes of applications. However, this generality leadsto shortcomings. The embedded scheduler cannot take advantage of application-speci�cfeatures, such as exploitable data patterns. Real applications are likely to manipulate verylarge amounts of data and it may be possible for the scheduler to make decisions based onI/O requirements. For instance, one can imagine that a subset of the tasks to farm make usesof one or more constant input data. This is a frequent situation in MCell (see Section 7.1) forexample. Such input data could then be shared (via �les for instance) by multiple resourcesas opposed to being replicated across all the resources. Another possibility would be forthe farming application to contain simple data dependences between tasks. In that case,our framework could detect those dependences and schedule the computations accordingly.Another shortcomings of the farming interface that is a direct cause of its generality is thatthe call to farm() is completely atomic. This is an advantage from the point of view ofease-of-use, but it prevents such things as visualization of results as they become availablefor instance. Once again, such a feature would be desirable for MCell. Section 8 lays groundfor research in these directions and work is under way in the context of MCell.7 Preliminary Experimental Results7.1 MCellMCell [26, 27] is a general Monte Carlo simulator of cellular microphysiology. MCell usesMonte Carlo di�usion and chemical reaction algorithms in 3D to simulate the complex bio-chemical interactions of molecules inside and outside of living cells. MCell is a collaborativee�ort between the Terry Sejnowski lab at the Salk Institute, and the Miriam Salpeter lab9

Scheduling Time Resource Availability Relative performanceadaptive 3982 s 64 % 100 %n = 25 4518 s 62 % 85 %n = 5 10214 s 63 % 38 %Table 1: Preliminary experimental resultsat Cornell University. Like any Monte Carlo simulation, MCell must run large numbers ofidentical, independent simulations for di�erent values of its random number generator seed.It therefore quali�es as a task farming application and was our �rst motivation to develop afarming API along with a scheduling algorithm.As mentioned earlier, we developed for MCell a Shell-based interface on top of the Cfarming API. This interface takes as input a user-written script and automatically generatesthe call to farm(). The script is very intuitive as it follows the MCell command-line syntaxby just adding the possibility for ranges of values as opposed to �xed values. For instance,instead of calling MCell as:mcell foo1 1mcell foo1 2....mcell foo1 100it is possible to call MCell asmcell foo1 [1-100]which is simpler, uses Grid computational resources from NetSolve and ensures good schedul-ing with the use of the algorithm described in Section 6.7.2 ResultsThe results presented in this section were obtained by using a NetSolve system spanning 5to 25 servers on a network of Sun workstations (Sparc ULTRA 1) interconnected via 100MbEthernet. The farming application uses MCell to compute the shape of the parameter spacewhich describes the possible modes of operation for the process of synaptic transmissionat the vertebrate neuromuscular junction. Since MCell's results include the true stochasticnoise in the system the signal must be averaged at each parameter space point. This is doneby running each point 10 times with 10 di�erent values of the random number generator seed.In this example, three separate 3-D parameter spaces are sampled, each parameter-space isof dimension 3� 3� 3. The number of tasks to farm is therefore 3� 3� 3� 3� 10 = 810and each task generates 10 output �les.These preliminary experiments were run on a dedicated network. However, we simulateda dynamically changing resource pool by linearly increasing and decreasing the number ofavailable NetSolve computational servers. Results are shown in Table 1 for our adaptivescheduling, a �xed queue size of n = 25 and a �xed queue size of n = 5.10

The resource availability measures the fraction of servers available during one run ofthe experiment. As this number changes throughout time, the availability is de�ned asthe sum of the number of servers available servers over all time steps (10 seconds). Wecompare scheduling strategies by measuring relative performance which we de�ne as a ratioof adjusted elapsed times, taking the adaptive scheduling as a reference. Adjusted elapsedtimes are computed by assuming a 100% availability and scaling the real elapsed timesaccordingly. One can see that the adaptive strategy performs 15% better than the strategywith n = 25. Of course, the strategy with n = 5 performs very poorly since it does not takeadvantage of all the available resources.These �rst results are encouraging but not as satisfactory as expected. This is due tothe implementation of NetSolve and the way the experiment was set-up. Indeed, NetSolvecomputational tasks are not interrupted when a NetSolve server is terminated. Terminatinga server only means that no further requests will be answered but that pending requestsare allowed to terminate. Thus, this experiment does not re
ect the worst case scenario ofmachines being shutdown causing all processes to terminate. We expect our adaptive strategyto perform even better in an environment where tasks are terminated prematurely and needto be restarted from scratch on remaining available resources. Due to time constraints,this article does not contain results to corroborate this assumption, but experiments areunderway.8 Conclusion and Future WorkIn this paper we have motivated the need for schedulers tailored to broad classes of appli-cations running on the Computational Grid. The extreme diversity of Grid resource types,availabilities and access policies makes the design of schedulers a di�cult task. Our ap-proach is to build on existing and available metacomputing environments to access the Gridas easily as possible and to implement a interface and scheduling algorithm for task farmingapplications. An adaptive scheduling algorithm was described in Section 6. That algorithmis independent from the internal details of the Grid and of the metacomputing environmentof choice. We chose NetSolve as a testbed for early experiments with the MCell applica-tion. The e�ectiveness of our scheduler is validated by preliminary experimental results inSection 7. Thanks to our framework for farming, a domain scientist can easily submit largecomputations to the Grid in a convenient manner and have an e�cient adaptive schedulermanage execution on their behalf.There are many ways in which this work can be further extended. We already mentionedin Section 6.3 that it is possible to use the farming API to detect data dependencies or sharedinput data between requests. The adaptive scheduling algorithm could be augmented to takeinto account such patterns. A possibility is for the farming interface to take additional ar-guments that describe domain-speci�c features and that may activate more sophisticatedscheduling strategies if any. A �rst approach would be to consider only input or output com-ing from �les (which is applicable to MCell and other applications) and partition the requestspace such as to minimize the number of �le transfers and copies. This will require that theunderlying metacomputing environment provide feature to describe such dependences. Work11

is being done in synergy with the NetSolve project to take into account data locality and thefarming interface will undoubtedly take advantage of these developments [28]. This will befertile ground for scheduling and data logistic research. The scheduling algorithm can also bemodi�ed to incorporate more sophisticated techniques. For instance, if the metacomputingenvironment provides and API to access more details about the status of available resources,it might be the case that n, the size of the ready queue, can be tuned e�ectively. The dangerhowever is to lose portability as the requirements for the metacomputing environment (seeSection 5.1) would be more stringent. Experiments will be conducted in order to investigatewhether such requirements can be used to signi�cantly improve scheduling.The farming API can be enhanced so that certain tasks may be performed upon submit-ting each request and receiving each result. For instance, the user may want to visualize thedata as it is coming back as opposed to have to wait for completion of all the requests. Thisis not possible at the moment as the call to farm() is atomic and does not provide controlover each individual request. A possibility would be to pass pointers to user de�ned functionsfor farm() and execute them for events of interest (e.g. visualization for each reception ofa result). Such functions could take arbitrary arguments for the sake of versatility. Some ofthe available metacomputing environments provide attractive interactive interface to whicha farming call could be contributed. Examples include Matlab (NetSolve) and Mathematica(NetSolve,Ninf). In order to make our task farming framework easily accessible to a grow-ing number of domain scientists, we need to develop ways to use the C farming API as abasis for more usable high-level interfaces. Steps in that direction have already been takenwith the Shell-interface for MCell (see Section 7.1). It would be rather straightforward todesign or use an existing speci�cation language to describe speci�c farming applications andautomatically generate custom Shell-based of graphical interfaces like the ones in [7].9 AcknowledgmentsThis material is based upon work supported by the National Science Foundation undergrant CCR-9703390, by NASA/NCSA Project Number 790NAS-1085A, under SubawardAgreement #790 and by the National Science Foundation Science and Technology CenterCooperative Agreement No. CCR-8809615.References[1] Ian Foster and Carl Kesselman, editors. The Grid, Blueprint for a New computing Infrastruc-ture. Morgan Kaufmann Publishers, Inc., 1998.[2] M. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Workstations. In Proc. ofthe 8th International Conference of Distributed Computing Systems, pages 104{111. Depart-ment of Computer Science, University of Winsconsin, Madison, June 1988.[3] L. Silva, B. Veer, and J. Silva. How to Get a Fault-Tolerant Farm. In World TransputerCongress, pages 923{938, Sep. 2993. 12

[4] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Network basedInformation Library for Globally High Performance Computing. In Proc. of Parallel Object-Oriented Methods and Applications (POOMA), Santa Fe, 1996.[5] I. Foster and K Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In Proc.Workshop on Environments and Tools. SIAM, to appear.[6] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Jr. Reynolds. A Synopsis of the LegionProject. Technical Report CS-94-20, Department of Computer Science, University of Virginia,1994.[7] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, and R. Sutherst. The Nimrod Compu-tational Workbench: A Case Study in Desktop Metacomputing. In Proceedings of the 20thAutralasian Computer Science Conference, Feb. 1997.[8] http://www.activetools.com.[9] D. Abramson and J. Giddy. Scheduling Large Parametric Modelling Experiments on a Dis-tributed Meta-computer. In PCW'97, Sep. 1997.[10] A. Baratloo, P. Dasgupta, and Z. Kedem. Calypso: A Novel Software System for Fault-Tolerant Parallel Processing on Distributed Platforms. In 4th IEEE International Symposiumon High Performance Distributed Computing, Aug. 1995.[11] L. M. Silva, J. G. Silva, S. Chapple, and L. Clarke. Portable checkpointing and recovery. InProceedings of the HPDC-4, High-Performance Distributed Computing, pages 188{195, Wash-ington, DC, August 1995.[12] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level Scheduling onDistributed Heterogeneous Networks. In Proc. of Supercomputing'96, Pittsburgh, 1996.[13] F. Berman and R. Wolski. The AppLeS Project: A Status Report. In Proc. of the 8th NECResearch Symposium, Berlin, Germany, 1997.[14] F. Berman, R. Wolski, and G. Shao. Performance E�ects of Scheduling Strategies for Mas-ter/Slave Distributed Applications. Technical Report TR-CS98-598, U. C., San Diego, 1998.[15] R. Wolski. Dynamically forecasting network performance using the network weather service.Technical Report TR-CS96-494, U.C. San Diego, October 1996.[16] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. In Proc.of IEEE Workshop on Experimental Distributed Systems. Department of Computer Science,University of Winsconsin, Madison, 1990.[17] H. Casanova and J. Dongarra. Providing Uniform Dynamic Access to Numerical Software.In M. Heath, A. Ranade, and R. Schrieber, editors, IMA Volumes in Mathematics and itsApplications, Algorithms for Parallel Processing, volume 105, pages 345{355. Springer-Verlag,1998.[18] The Math Works Inc. MATLAB Reference Guide. The Math Works Inc., 1992.[19] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and CambridgeUniversity Press, 1996. 13

[20] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. Technical ReportCS-96-343, Department of Computer Science, University of Tennessee, 1996.[21] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational ScienceProblems. The International Journal of Supercomputer Applications and High PerformanceComputing, 1997.[22] H. Casanova and J. Dongarra. NetSolve's Network Enabled Server: Examples and Applica-tions. IEEE Computational Science & Engineering, 5(3):57{67, September 1998.[23] H. Casanova and J. Dongarra. NetSolve version 1.2: Design and Implementation. TechnicalReport to appear, Department of Computer Science, University of Tennessee, 1998.[24] D. E. Bakken and R. D. Schilchting. Supporting fault-tolerant parallel programming in linda.IEEE Transactions on Parallel and Distributed Systems, 6(3):287{302, March 1995.[25] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary experi-ence with piranha. In International Conference on Supercomputing, pages 417{427, Washing-ton, D.C., June 1992. ACM.[26] J.R. Stiles, T.M. Bartol, E.E. Salpeter, , and M.M. Salpeter. Monte Carlo simulation ofneuromuscular transmitter release using MCell, a general simulator of cellular physiologicalprocesses. Computational Neuroscience, pages 279{284, 1998.[27] J.R. Stiles, D. Van Helden, T.M. Bartol, E.E. Salpeter, , and M.M. Salpeter. Miniature end-plate current rise times <100 microseconds from improved dual recordings can be modeledwith passive acetylcholine di�usion form a synaptic vesicle. In Proc. Natl. Acad. Sci. U.S.A.,volume 93, pages 5745{5752, 1996.[28] M. Beck, J. Plank, T. Moore, and W. Elwasif. Why IBP Now. The International Journal ofSupercomputer Applications and High Performance Computing, to appear.

14

