PROVIDING INFRASTRUCTURE AND INTERFACE TO
HIGH-PERFORMANCE APPLICATIONS IN A DISTRIBUTED
SETTING

Dorian C. Arnold and Jack Dongarra*
Computer Science Department
University of Tennessee
Knoxville, TN 37996
[darnold, dongarra]@cs.utk.edu

Keywords: Distributed Computing, Problem Solv-
ing Environments, Sub-Surface Modeling, Heterogeneous
Network Computing.

ABSTRACT

The NetSolve project was established to aid scientists
who prefer not to be concerned with the usual tedium as-
sociated with finding and maintaining software libraries
which they use to create programs, toolkits and problem
solving environments particular to their scientific domain.
This article introduces the reader to the NetSolve system
and discusses how it can be leveraged to build robust in-
frastructure for simulation frameworks, toolkits and other
programs. The IPARS simulator is used as a concrete ex-
ample of this approach. We further show how the ubiqg-
uity of the web and web browsers can be exploited to
make simulators generally available without the need for
downloading software.

1 INTRODUCTION

Two things remain consistent in the realm of computer
science: a need for more computational power than we
have at any given point, and a desire for the simplest,
yet most complete interface to our resources. Recently,
much attention has been given to the area of Grid Com-
puting (Foster and Kesselman 1998), but while we are
making great advances in our ability to harness the cu-
mulative functionalities of disparate resources, we have
done little to minimize the effort and know-how that one
needs to properly and productively utilize this collection

*Mathematical Science Section, Oak Ridge National Laboratory,
Oak Ridge, TN 37831

Wonsuck Lee and Mary F. Wheeler
Center for Sub-Surface Modeling
University of Texas
Austin, TX 78712
[wslee, mfw]@ticam.utexas.edu

of computational resources. The problem is that the sys-
tems that do for us what we need tend to require large
investments of time (including installation and program-
ming), knowledge of distributed computing, and a total
commitment to the system involved. On the other hand,
the systems that present easy-to-use interfaces are often
lacking in functionality.

In this article, we briefly describe our approach to
Grid Computing, NetSolve. NetSolve allows for the easy
access to computational resources distributed in both ge-
ography and ownership. We also describe a parallel sim-
ulator with support for visualization that runs on work-
station clusters and show how we have used NetSolve to
provide an interface that allows one to use the simula-
tor without obtaining the simulator software or the tools
needed for visualization. This methodology can be easily
extended to make arbitrary simulation tools or program-
ming software widely available, easily accessible, and, per-
haps most importantly, executed remotely. Sections 2 and
3 provide overviews of the NetSolve and IPARS systems
respectively. We describe how IPARS was integrated into
the NetSolve system, and the benefits of such an integra-
tion in Section 4. Section 5 describes related work, and
finally, Section 6 summarizes the work and its implica-
tions.

2 NETWORK-ENABLED SOLVERS

The NetSolve project is being developed at the University
of Tennessee and the Oak Ridge National Laboratory. Its
original motivation was to alleviate the difficulties that
domain scientists usually encounter when trying to lo-
cate/install /use numerical software, especially on multi-
ple platforms. NetSolve provides remote access to com-
putational resources, both hardware and software. Built
upon standard Internet protocols, like TCP/IP sockets,

it is available for all popular variants of the UNIX operat-
ing system, and parts of the system are available for the
Microsoft Windows ’95, ’98 and NT platforms.

. NS
Appllcatlons@@

NS Agent
Resource Discovery Load Balancing
Resource Allocation Fgit Tolerance
NS
ver

E & @

Figure 1: Architectural Overview of the NetSolve System

Users

Figure 1 shows the infrastructure of the NetSolve
system and its relation to the applications that use it.
NetSolve and systems like it are often referred to as Grid
Middleware; this figure helps to make the reason for this
terminology clearer. The shaded parts of the figure rep-
resent the NetSolve system. It can be seen that Net-
Solve acts as glue layer that brings the application or
user together with the hardware and/or software it needs
to complete useful tasks.

At the top tier, the NetSolve client library is linked
in with the user’s application. The application then
makes calls to NetSolve’s application programming in-
terface (API) for specific services. Through the API,
NetSolve client-users gain access to aggregate resources
without the users needing to know anything about com-
puter networking or distributed computing. In fact, the
user does not even have to know remote resources are
involved.

A =read_matrix();
B = read_matrix();
C = matmul (A, B);

A =read_matrix();
B = read_matrix();
status = netsolve("matmul”, A, B, C);

Figure 2: Sample C code: Left side before NetSolve, right
side after NetSolve integration

Figure 2 helps to show what the programming code
would look like before and after the NetSolve API has
been integrated. The (hidden) semantics of a NetSolve

request are:
1. Client contacts the agent for a list of capable servers.

2. Client contacts server and sends input parameters.

w

Server runs appropriate service.

4. Server returns output parameters or error status to
client.

There are many advantages to using a system like Net-
Solve. NetSolve provides access to otherwise unavailable
software. In cases where the software is in hand, it can
make the power of supercomputers accessible from low-
end machines like notebook computers. Furthermore, as
explained below, NetSolve adds heuristics that attempt
to find the most expeditious route to solve any given
problem. NetSolve currently supports the C, FORTRAN,
Matlab, and Mathematica programming interfaces as lan-
guages of implementation for client programs.

The NetSolve agent represents the gateway to the
NetSolve system. It maintains a database of NetSolve
servers along with their capabilities (hardware perfor-
mance and allocated software) and dynamic usage statis-
tics. It uses this information to allocate server resources
for client requests. The agent, in its resource allocation
mechanism, attempts to find the server that will service
the request the quickest, balance the load amongst its
servers and keep track of failed servers. Requests are
directed away from failed servers. The agent also adds
fault-tolerant features that attempt to use every likely
server until it finds one that successfully services the re-
quest.

The NetSolve server is the computational backbone
of the system. It is a daemon process that awaits client
requests. The server can run on single workstations, clus-
ters of workstations, symmetric multi-processors or ma-
chines with massively parallel processors. A key compo-
nent of the NetSolve server is a source code generator
which parses a NetSolve problem description file (PDF).
This PDF contains information that allows the NetSolve
system to create new modules and incorporate new func-
tionalities. In essence, the PDF defines a wrapper that
NetSolve uses to call the function being incorporated.

For more detailed information on the NetSolve
sytem and its usage, refer to (Casanova and Dongarra
1998) and (Casanova et al. 1996).

2.1 The Status Of NetSolve

The next official release of NetSolve is planned for
March of 2000. Features to be implemented in this
release include a Java GUI to aid in the creation of
PDFs, a Microsoft Excel interface, more object datatypes,

more server modules included with the distribution, and
enhanced load balancing among other things. Cur-
rently, NetSolve-1.2, including APIs for the Win32 plat-
form, can be downloaded from the project web site at
www.cs.utk.edu/netsolve. NetSolve has been recog-
nized as a significant effort in research and development,
and was named in R&D Magazine’s top 100 list for 1999.

3 A FRAMEWORK FOR RESERVOIR
AND ENVIRONMENTAL SIMULA-
TION

It is pointed out by J. Wheeler (Wheeler 1998) that the
need for a simulation framework that supports reservoir
and fluid-flow dynamics research arises from shear size
of realistic simulators; on the order of 20,000 lines of
code may be required to support a physical model. It
is difficult and inefficient for individual researchers to de-
velop such a framework before even beginning to test their
ideas. The Integrated Parallel Accurate Reservoir Simu-
lator (IPARS) is designed to lay the ground work that
makes it easier for such researchers to carry out their
work. IPARS is a simulation framework to study fluid
flow through porous media or, more practically, through
underground structure. It houses petroleum engineering
applications and environmental geological models. Con-
stant work is being done to increase the number of phys-
ical models.

IPARS Framework
New Model

Input/Output Visualization Block Interface

User's module

Figure 3: IPARS framework which houses several physical
models and framework support modules.

Models

Linear Solvers Massage Passing Steering

3.1 Framework Characteristics

TPARS is designed to provide many common parts of a
simulation framework including an input/output inter-
face, visualization, and message passing interfaces etc.,
see Figure 3. The ability to model complex physical
processes such as geochemistry and coupled geomechan-
ics cannot readily be added to existing simulators. The
same is true of many computational enhancements, such
as unstructured grids and interactive simulation. IPARS

is structured to support multiple physical and mathemat-
ical models. Thus, IPARS makes individual research at
universities and industries more efficient.

In addition to the advantages of framework sup-
port described above, IPARS has several distinguishing
aspects in simulation capabilities. Most reservoir simula-
tions today sacrifice grid resolution to reduce cost; fewer
than 100,000 grid elements may be used even though one
grid block covers a few kilometers in field. It is intended
that TPARS be able to economically solve problems in-
volving a million or more grid elements and thereby
greatly improve grid resolution.

Efficient, realistic well management is an unsolved
problem in reservoir/aquifer simulation; for some large
reservoirs, over 50% of both CPU and manpower costs
are directly attributable to well management. In addi-
tion, well management is primarily a sequential calcula-
tion; efficient implementation on parallel computers will
be difficult (perhaps impossible.) The IPARS simulator
provides a platform for attacking this problem too.

The simulator framework supports three dimen-
sional transient flow of multiple phases containing mul-
tiple components through immobile phases (rock/soil).
The bulk phase of medium (ie. rock plus fluid) can be
regarded compressible to include elastic property of bulk
rock. The thermodynamic quantities, for example, phase
densities, compressibility factor, viscosities may be ar-
bitrary functions of pressure and composition or may be
represented by simpler functions (e.g. constant compress-
ibility). The initial system is isothermal but an effort is
being made to include incorporation of non-isothermal
calculations.

The most general mathematical representation of
such a system without mutual solubility between hydro-
carbon and water phases is

NP
W —V'Z%Tf]ﬂ%j (Pj —yAD) =g; .

J
for N. hydrocarbon phases and N, consisting phases.
Here the first term with time derivative represents change
of i-th phase mass in time, the term containing the inner
product with a gradient operator is change due to trans-
port of phase. The right hand side is a source/sink term.
A detailed explanation, which is out of scope of this pa-
per, of this equation can be found in any advanced book
in petroleum reservoir engineering (Peaceman 1977).

The reservoir consists of one or more fault blocks.

Each fault block has an independent user-defined coor-
dinate system and gravity vector. Flow between fault
blocks, however, can occur only through a common flat
face. The primary grid imposed on each fault block is

a logical cube but may be geometrically irregular. Cur-
rently, the framework supports both rectangular grids and
corner-point grids. Dynamic grid refinement of the pri-
mary grid on each fault block is supported by the frame-
work but also must be supported by the individual physi-
cal models. Grid elements may be keyed out to efficiently
represent irregular shapes and impermeable strata.

The simulator is formulated for parallel distributed
memory machines. For the message passing interface, the
MPI standard is used, however, the system is designed so
that any reasonable message passing system can be sub-
stituted. On multiprocessor machines, the grid system is
partitioned among the processors such that each proces-
sor is assigned a subset of the total grid system. Dynamic
domain decomposition is used to distribute grid elements
among the processors. Each CPU separately processes
the data input file, but the control processor (a single pro-
cessor) collects the data to prepare the output. Dynamic
load balancing is provided. Here we have described the
computationally intensive aspects of IPARS focusing on
high performance scientific computation, see the IPARS
manual (Wheeler 1998) for full functionality of IPARS.

3.2 IPARS User Interface

Free-form keyword input is used for direct data input to
the computation stage of the simulator. The ASCII key-
word input file(s) is explicitly defined to serve as an out-
put file from a graphical front end or geostatistical grid
and property generator. Multiple levels of output are
provided in the simulator. These will range from selective
memory dumps for debugging to minimal output for auto-
matic history matching. Visualization is controlled by the
input file and produces an ASCII output file which is read-
able by TECPLOT (AMTEC ENGINEERING n.d.), the
commercial software chosen for visualization. TECPLOT
has useful functionalities for three dimensional data sets
and fluid properties.

4 INTEGRATING IPARS INTO NET-
SOLVE

The interface into and out of the IPARS sub-system as ex-
plained in Sect. 3.2 is straightforward. The task at hand
was to make the TPARS system known to NetSolve via
this interface yielding the availability of a parallel instal-
lation of TPARS, and the hardware to run it on, from a
single function call.

4.1 The IPARS-Enabled NetSolve Server

After installing and testing a version of the IPARS code
that runs on a cluster of dual-node Linux work stations,
we moved to incorporate that system into NetSolve. We
wrote a functional wrapper to the TIPARS system that
takes as parameters an input and several output file-
names. This wrapper runs the simulation and also calls
the scripts which uses TECPLOT to post-process the out-
put into a series of graphical frames. These frames repre-
sent snapshots of different parameters being observed in
the field of study. The UNIX utility, convert, is then used
to convert each set of frames (corresponding to different
parameters) into a single movie file for each set. These
movie files, along with the ascii output file are placed in
the files specified by the output filename parameters.

As described in Sect. 2, the NetSolve system pro-
vides a code generator that parses a NetSolve PDF in
order to extend the servers’ functional capabilities. In-
evitably, this was the tool used to create a NetSolve server
with IPARS capability.

@PROBLEM ipars

@INCLUDE "ipars.h"

@L1B /home/user/lib/libipars.a
@DESCRIPTION

Parallel Sub-Surface Flow Simulator
@INPUT 2

@OBJECT STRING CHAR model
IPARS physical model to use
@OBJECT FILE CHAR infile
Input datafile

Figure 4: Portion of PDF File Used for Integration

Figure 4 shows a segment of the PDF that was used.
The PROBLEM parameter of this file defines the name
we want client applications to use when referring to this
module. The INCLUDE and LIB directives are used in
the compilation of the module. This module will take two
inputs, a string of characters and a character file, as de-
scribed by the last five lines shown. Among other things,
this PDF will eventually describe the code that deter-
mines how to call the abovementioned wrapper with the
inputs given from a client program. After this configura-
tion and a compilation, the NetSolve server is ready to be
attached to a NetSolve agent /system and service requests.
Note that although we only talk about one server-cluster,
it is also possible to have several IPARS-enabled server
clusters or parallel machines attached to the system; the
NetSolve agent would dynamically marshal requests to
the best performing candidate.

/* codetoinitialize input file, model, etc. */
status = netsolve("ipars', modd, infile, outfile, ...);

/* code to view output files*/

Figure 5: Sample C code used to request IPARS module
using NetSolve

4.2 Using The NetSolve Client Interface

At this point, one can now use any of the NetSolve client
interfaces to access the IPARS simulator. Figure 5 shows
an example of how this might be done from the C lan-
guage API. Recall Section 3.2 where it was stated that
the TPARS input file was designed so that it could easily
be created by a graphical front end or geostatistical grid
and property generator. This sample code shows how
easily NetSolve can be used from such a program. The
call to netsolve() can be made after the point where the
entire input file has been processed. Integrating IPARS
and NetSolve in this way has three major impacts:

1. With a single installation of IPARS many users can
use the simulator without having to go through the
hassles of installation and maintenance.

2. From any NetSolve host machine (even architectures
to which IPARS has not been ported) IPARS can
be used. Currently, IPARS can be run only on the
LINUX platform.

3. Individual users can achieve significant speedup by
accessing server clusters that are orders of magnitude
faster than their local resource.

The use of the NetSolve client means that the users
have the added benefit of access to all the functional com-
ponents of NetSolve, not just the IPARS system. This
includes on the order of one hundred numerical solver
routines to solve things like systems of equations, eigen-
vectors and eigenvalues, matrix multiplies, etc.

4.3 The Finishing Touch

To further facilitate the user, we have taken our interface
a step further. We have made the IPARS simulator acces-
sible to the standard web browser. Using HTML forms
and the Common Gateway Interface(CGI), we have cre-
ated a complete Web interface to IPARS that basically

Interfaces to IPARS Simulator

FORTRAN @
Web Mathematica

MATLAB

NetSolve
Agent

IPARS-Enabled Servers
Single Processor Clusters

MPPs and SMPs

Figure 6: Overview of the NetSolve/TPARS Integration

sits on top of the NetSolve middleware system. The to-
tal package has all the components that every applica-
tion should have: complete portability, an easy and in-
tuitive interface, and run-time load-balancing to ensure
maximum performance. All this is achieved without ever
downloading or installing any special components.

5 RELATED WORK

The WebFlow (Haupt et al. 1999b) system was devel-
oped at the Northeast Parallel Architectural Center at
Syracuse University. It has a three tier design similar
to that of NetSolve, where the front-end is a web applet
that utilizes visual icons and a drag-and-drop technique to
formulate computational graphs that represent execution
modes and data flow. A distributed object based, scal-
able and reusable Web server and Object broker forms the
middle tier. Back-end services that provide access to high
performance computational resources form the final tier.
The Gateway (Haupt et al. 1999a) project is the successor
to WebFlow that acts on some of the same premises, but
includes enhancements like fault tolerance and security.
WebSubmit (McCormack et al. n.d.) and UNI-
CORE (Almond and Snelling 1998) are very similar
projects that use the World Wide Web as interfaces to
create a simple, yet seamless, mode of access to high per-
formance computational resources. The main thrust of
their effort is to provide uniform access to multiple vari-
ations of hardware resources and queuing systems, so as
to relieve users of the daunting task of learning the pe-
culiarities of each system. Their differences lie in their
implementation and scope. WebSubmit is implemented
using CGI and TCL, while UNICORE uses Java. Also,
WebSubmit is meant for independent tasks at a single

site, whereas UNICORE is extended for interdependent
tasks at multiple, geographically distributed sites.

WebOS (Vahdat et al. 1998), primarily developed at
the University of California at Berkeley, is an effort to pro-
vide a common set of operating system services to wide-
area applications. These services include mechanisms for
naming, remote execution, persistent storage, resource
management, authentication and security. WebOS helps
to make distributed applications highly available, incre-
mentally scalable, and dynamically reconfigurable.

Coincidentally, other projects have taken advantage
of NetSolve and use it in a similar fashion as TPARS.
MCell (Bartol and Stiles n.d.) is a general Monte
Carlo simulator of cellular microphysiology. MCell uses
Monte Carlo diffusion and chemical reaction algorithms
in 3D to simulate the complex biochemical interactions of
molecules inside and outside of living cells. Collaborative
Environment for Nuclear Technology Software (CENTS)
is a project of the Oak Ridge National Laboratory that
aims to lay the foundation for a Web-based distance com-
puting facility for executing nuclear engineering codes.
CENTS allows users to focus on the problem to be solved
instead of the specifics of a particular nuclear code. In
both cases, users submit their problems via Web browsers,
and both graphical and text based output is brought back
to the user, through the use of NetSolve.

6 CONCLUSION

In this article, we described our use of the NetSolve
system to facilitate distributing high-performance ap-
plications. TPARS is a parallel simulator that we make
widely and easily accessible to those that wish to use
it. Our design is by no means specific and can be used
to provide the same convenience to other users wishing
to use other software systems or library toolkits. Our
belief is that, using our approach, very little effort is
required for users to tap into all the resources they need
to achieve the computation they want.

Acknowledgements: This project was supported
in part by the National Science Foundation (contract
#ACI-9876895,) the National Partnership for Advanced
Computational Infrastructure (P.O. #10152763 under
Prime Contract #ACI-96-19020) and the Center for
Research on Parallel Computation (Subcontract #292-3-
54397). We also wish to thank Michelle Miller and Terry
Moore, both of the University of Tennessee, for their
helpful editing comments.

References

Almond, J. and Snelling, D. (1998), UNICORE: Se-
cure and Uniform Access to Distributed Resources
via the World Wide Web. A white paper from
http://www .kfa-juelich.de/zam/RD/coop/unicore/.

AMTEC ENGINEERING, I. (n.d.), ‘Visualize Imple-
ment, Achieve Performance’. Project Web Site:
http://www.amtec.com.

Bartol, T. and Stiles, J. R. (n.d.), ‘A General Monte Carlo
Simulator of Cellular Microphysiology’. Project Web
Site: http://www.mcell.cnl.salk.edu/.

Casanova, H. and Dongarra, J. (1998), ‘NetSolve’s
Network Enabled Server: Examples and Applica-

tions’, IEEE Computational Science € Engineering
5(3), b7-67.

Casanova, H., Dongarra, J. and Seymour, K. (1996),
Client User’s Guide to Netsolve, Technical Report
(CS-96-343, Department of Computer Science, Uni-
versity of Tennessee.

Foster, I. and Kesselman, C., eds (1998), The Grid,
Blueprint for a New computing Infrastructure, Mor-
gan Kaufmann Publishers, Inc.

Haupt, T., Akarsu, E. and Fox, G. (1999a), The Gate-
way System: Uniform Web Based Access to Remote
Resources, in ‘ACM 1999 Java Grande Conference’.

Haupt, T., Akarsu, E. and Fox, G. (1999b), WebFlow: a
Framework for Web Based Metacomputing, in ‘High
Performance Computing and Networking ’99’.

McCormack, R., Koontz, J. and Devaney, J. (n.d.),
Seamless Computing with WebSubmit. Concur-
rency: Practice and Experience (in press). Found at
http://www.itl.nist.gov/div895/sasg/cpeRev.ps.

Peaceman, D. W. (1977), ‘Fundamentals of numerical
reservoir simulation’, FElsevier Scientific Publishing
Company .

Vahdat, A., Anderson, T., Dahlin, M., Culler, D., Belani,
E., Eastham, P. and Yoshikawa, C. (1998), WebOS:
Operating System Services for Wide Area Applica-
tions, in ‘The Seventh IEEE Symposium on High
Performance Distributed Computing’.

Wheeler, J. (1998), IPARS Simulator Framework User’s
Guide, Technical report, University of Texas at
Austin. TICAM Technical Reports.

