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Abstract

This chapter discusses the design of modern numerical linear algebra problem solving en-
vironments. Particular emphasis is placed on three essential components out of which such
environments are constructed, namely well-designed numerical software libraries, software tools
that generate optimized versions of a collection of numerical kernels for various processor ar-
chitectures, and software systems that transform disparate, loosely-connected computers and
software libraries into a uni�ed, easy-to-access computational service.

A brief description of the \pioneers", namely the EISPACK and LINPACK software libraries
as well as their successor, the Linear Algebra PACKage (LAPACK), illustrates the essential im-
portance of block-partitioned algorithms for shared-memory, vector, and parallel processors.
Indeed, these algorithms reduce the frequency of data movement between di�erent levels of
hierarchical memory. A key idea in this approach is the use of the Basic Linear Algebra Sub-
programs (BLAS) as computational building blocks. An outline of the ScaLAPACK software
library, which is a distributed-memory version of LAPACK, highlights the equal importance of
the above design principles to the development of scalable algorithms for MIMD distributed-
memory concurrent computers. The impact of the architecture of high performance computers
on the design of such libraries is stressed.

Producing hand-optimized implementations of even a reduced set of well designed software
components such as the BLAS for a wide range of architectures is an expensive and tedious
proposition. For any given architecture, customizing a numerical kernel's source code to optimize
performance requires a comprehensive understanding of the exploitable hardware resources of
that architecture. Since this time-consuming customization process must be repeated whenever
a slightly di�erent target architecture is available, the relentless pace of hardware innovation
makes the tuning of numerical libraries a constant burden. This chapter presents an innovative
approach to automating the process of producing such optimized kernels for various processor
architectures.

Finally, many scientists and researchers increasingly tend nowadays to use simultaneously
a variety of distributed computing resources such as massively parallel processors, networks
and clusters of workstations and \piles" of PCs. This chapter describes the NetSolve software
system that has been speci�cally designed and conceived to e�ciently use such a diverse and
lively computational environment and to tackle the problems posed by such a complex and
innovative approach to scienti�c problem solving. NetSolve provides the user with a pool of
computational resources. These resources are computational servers that provide run-time access
to arbitrary optimized numerical software libraries. This uni�ed, easy-to-access computational
service can make enormous amounts of computing power transparently available to users on
ordinary platforms.
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1 Introduction

The increasing availability of advanced-architecture computers is having a very signi�cant e�ect
on all spheres of scienti�c computation, including algorithm research and software development in
numerical linear algebra. Linear algebra|in particular, the solution of linear systems of equations|
lies at the heart of most calculations in scienti�c computing. In this chapter, particular attention
will be paid to dense general linear system solvers, and these will be used as examples to highlight the
most important factors that must be considered in designing linear algebra software for advanced-
architecture computers. We use these general linear system solving algorithms for illustrative
purpose not only because they are relatively simple, but also because of their importance in several
scienti�c and engineering applications [Ede93] that make use of boundary element methods. These
applications include for instance electromagnetic scattering [Har90, Wan91] and computational 
uid
dynamics problems [Hes90, HS67].

This chapter discusses some of the recent developments in linear algebra software designed to exploit
these advanced-architecture computers. Since most of the work is motivated by the need to solve
large problems on the fastest computers available, we focus on three essential components out of
which current and modern problem solving environments are constructed:

1. well-designed numerical software libraries providing a comprehensive functionality and con-
�ning most machine dependencies into a small number of kernels, that o�er a wide scope for
e�ciently exploiting computer hardware resources,

2. automatic generation and optimization of such a collection of numerical kernels on various
processor architectures, that is, software tools enabling well-designed software libraries to
achieve high performance on most modern computers in a transportable manner,

3. software systems that transform disparate, loosely-connected computers and software libraries
into a uni�ed, easy-to-access computational service, that is, a service able to make enormous
amounts of computing power transparently available to users on ordinary platforms.

For the past twenty years or so, there has been a great deal of activity in the area of algorithms and
software for solving linear algebra problems. The linear algebra community has long recognized
the need for help in developing algorithms into software libraries, and several years ago, as a
community e�ort, put together a de facto standard identifying basic operations required in linear
algebra algorithms and software. The hope was that the routines making up this standard, known
collectively as the Basic Linear Algebra Subprograms (BLAS) [LHK+79, DDH+88, DDH+90],
would be e�ciently implemented on advanced-architecture computers by many manufacturers,
making it possible to reap the portability bene�ts of having them e�ciently implemented on a wide
range of machines. This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for advanced-architecture
computers is that the frequency with which data is moved between di�erent levels of the memory
hierarchy must be minimized in order to attain high performance. Thus, our main algorithmic
approach for exploiting both vectorization and parallelism in our implementations is the use of
block-partitioned algorithms, particularly in conjunction with highly-tuned kernels for performing
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matrix-vector and matrix-matrix operations. In general, the use of block-partitioned algorithms
requires data to be moved as blocks, rather than as vectors or scalars, so that although the total
amount of data moved is unchanged, the latency (or startup cost) associated with the movement
is greatly reduced because fewer messages are needed to move the data. A second key idea is
that the performance of an algorithm can be tuned by a user by varying the parameters that
specify the data layout. On shared-memory machines, this is controlled by the block size, while on
distributed-memory machines it is controlled by the block size and the con�guration of the logical
process mesh.

Section 2 presents an overview of some of the major numerical linear algebra software library
projects aimed at solving dense and banded problems. We discuss the role of the BLAS in portability
and performance on high-performance computers as well as the design of these building blocks, and
their use in block-partitioned algorithms.

The Linear Algebra PACKage (LAPACK) [ABB+95], for instance, is a typical example of such a
software design, where most of the algorithms are expressed in terms of a reduced set of compu-
tational building blocks, in this case called the Basic Linear Algebra Subprograms (BLAS). These
computational building blocks support the creation of software that e�ciently expresses higher-level
block-partitioned algorithms, while hiding many details of the parallelism from the application de-
veloper. These subprograms can be optimized for each architecture to account for the deep memory
hierarchies [AD89, DMR91] and pipelined functional units that are common to most modern com-
puter architectures, and thus provide a transportable way to achieve high e�ciency across diverse
computing platforms. For fastest possible performance, LAPACK requires that highly optimized
block matrix operations be already implemented on each machine, that is, the correctness of the
code is portable, but high performance is not|if we limit ourselves to a single source code.

Speed and portable optimization are thus con
icting objectives that have proved di�cult to satisfy
simultaneously, and the typical strategy for addressing this problem by con�ning most of the
hardware dependencies in a small number of heavily-used computational kernels has limitations.
For instance, producing hand-optimized implementations of even a reduced set of well-designed
software components for a wide range of architectures is an expensive and tedious task. For any
given architecture, customizing a numerical kernel's source code to optimize performance requires
a comprehensive understanding of the exploitable hardware resources of that architecture. This
primarily includes the memory hierarchy and how it can be utilized to maximize data-reuse, as
well as the functional units and registers and how these hardware components can be programmed
to generate the correct operands at the correct time. Clearly, the size of the various cache levels,
the latency of 
oating point instructions, the number of 
oating point units and other hardware
constants are essential parameters that must be taken into consideration as well. Since this time-
consuming customization process must be repeated whenever a slightly di�erent target architecture
is available, or even when a new version of the compiler is released, the relentless pace of hardware
innovation makes the tuning of numerical libraries a constant burden.

The di�cult search for fast and accurate numerical methods for solving numerical linear algebra
problems is compounded by the complexities of porting and tuning numerical libraries to run on
the best hardware available to di�erent parts of the scienti�c and engineering community. Given
the fact that the performance of common computing platforms has increased exponentially in the
past few years, scientists and engineers have acquired legitimate expectations about being able
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to immediately exploit these available resources at their highest capabilities. Fast, accurate, and
robust numerical methods have to be encoded in software libraries that are highly portable and
optimizable across a wide range of systems in order to be exploited to their fullest potential.

Section 3 discusses an innovative approach [BAC+97, WD97] to automating the process of produc-
ing such optimized kernels for RISC processor architectures that feature deep memory hierarchies
and pipelined functional units. These research e�orts have so far demonstrated very encouraging
results, and have generated great interest among the scienti�c computing community.

Many scientists and researchers increasingly tend nowadays to use simultaneously a variety of
distributed computing resources such as massively parallel processors, networks and clusters of
workstations and \piles" of PCs. In order to use e�ciently such a diverse and lively computa-
tional environment, many challenging research aspects of network-based computing such as fault-
tolerance, load balancing, user-interface design, computational servers or virtual libraries, must
be addressed. User-friendly, network-enabled, application-speci�c toolkits have been speci�cally
designed and conceived to tackle the problems posed by such a complex and innovative approach
to scienti�c problem solving [FK98]. Section 4 describes the NetSolve software system [CD95] that
provides users with a pool of computational resources. These resources are computational servers
that provide run-time access to arbitrary optimized numerical software libraries. The NetSolve
software system transforms disparate, loosely-connected computers and software libraries into a
uni�ed, easy-to-access computational service. This service can make enormous amounts of com-
puting power transparently available to users on ordinary platforms.

The NetSolve system allows users to access computational resources, such as hardware and software,
distributed across the network. These resources are embodied in computational servers and allow
users to easily perform scienti�c computing tasks without having any computing facility installed on
their computer. Users' access to the servers is facilitated by a variety of interfaces: Application Pro-
gramming Interfaces (APIs), Textual Interactive Interfaces and Graphical User Interfaces (GUIs).
As the NetSolve project matures, several promising extensions and applications will emerge. In this
chapter, we provide an overview of the project and examine some of the extensions being developed
for NetSolve: an interface to the Condor system [LLM88], an interface to the ScaLAPACK parallel
library [BCC+97], a bridge with the Ninf system [SSN+96], and an integration of NetSolve and
ImageVision [ENB96].

Future directions for research and investigation are �nally presented in Section 5.

2 Numerical Linear Algebra Libraries

This section �rst presents a few representative numerical linear algebra packages in a chronological
perspective. We then focus on the software design of the LAPACK and ScaLAPACK software
libraries. The importance of the BLAS as a key to (trans)portable e�ciency as well as the derivation
of block-partitioned algorithms are discussed in detail.
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2.1 Chronological Perspective

The EISPACK, LINPACK, LAPACK and ScaLAPACK numerical linear algebra software libraries
are brie
y outlined below in a chronological order. The essential features of each of these packages
are in turn rapidly described in order to illustrate the reasons for this evolution. Particular emphasis
is placed on the impact of the high-performance computer architecture on the design features of
these libraries.

2.1.1 The Pioneers: EISPACK and LINPACK

The EISPACK and LINPACK software libraries were designed for supercomputers used in the
seventies and early eighties, such as the CDC-7600, Cyber 205, and Cray-1. These machines
featured multiple functional units pipelined for good performance [HJ81]. The CDC-7600 was
basically a high-performance scalar computer, while the Cyber 205 and Cray-1 were early vector
computers.

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors
of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,
real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and
generalized real symmetric matrices. In addition, two routines are included that use singular value
decomposition to solve certain least-squares problems. EISPACK is primarily based on a collection
of Algol procedures developed in the sixties and collected by J. H. Wilkinson and C. Reinsch in a
volume entitled Linear Algebra in the Handbook for Automatic Computation [WR71] series. This
volume was not designed to cover every possible method of solution; rather, algorithms were chosen
on the basis of their generality, elegance, accuracy, speed, or economy of storage. Since the release
of EISPACK in 1972, over ten thousand copies of the collection have been distributed worldwide.

LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and linear
least-squares problems. The package solves linear systems whose matrices are general, banded,
symmetric inde�nite, symmetric positive de�nite, triangular, and tridiagonal square. In addition,
the package computes the QR and singular value decompositions of rectangular matrices and applies
them to least-squares problems. LINPACK is organized around four matrix factorizations: LU
factorization, pivoted Cholesky factorization, QR factorization, and singular value decomposition.
The term LU factorization is used here in a very general sense to mean the factorization of a square
matrix into a lower triangular part and an upper triangular part, perhaps with pivoting. Some of
these factorizations will be treated at greater length later, but, �rst a digression on organization
and factors in
uencing LINPACK's e�ciency is necessary.

LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of reference.
This means that if a program references an item in a particular block, the next reference is likely to
be in the same block. By column orientation we mean that the LINPACK codes always reference
arrays down columns, not across rows. This works because Fortran stores arrays in column major
order. Thus, as one proceeds down a column of an array, the memory references proceed sequentially
in memory. On the other hand, as one proceeds across a row, the memory references jump across
memory, the length of the jump being proportional to the column's length. The e�ects of column
orientation are quite dramatic: on systems with virtual or cache memories, the LINPACK codes
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will signi�cantly outperform codes that are not column oriented.

Another important in
uence on the e�ciency of LINPACK is the use of the Level 1 BLAS [LHK+79].
These BLAS are a small set of routines that may be coded to take advantage of the special fea-
tures of the computers on which LINPACK is being run. For most computers, this simply means
producing machine-language versions. However, the code can also take advantage of more exotic
architectural features, such as vector operations. Further details about the BLAS are presented
below in Section 2.2.1.

2.1.2 LAPACK

The development of LAPACK [ABB+95] in the late eighties was intended to make the EIS-
PACK and LINPACK libraries run e�ciently on shared-memory vector supercomputers. LA-
PACK [Dem89] provides routines for solving systems of simultaneous linear equations, least-squares
solutions of linear systems of equations, eigenvalue problems, and singular value problems. The
associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-
vided, along with related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In
all areas, similar functionality is provided for real and complex matrices, in both single and double
precision. LAPACK is in the public domain and available from netlib [DG87].

The original goal of the LAPACK project was to make the widely used EISPACK and LINPACK
libraries run e�ciently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are ine�cient because their memory access patterns disregard the mul-
tilayered memory hierarchies of the machines, thereby spending too much time moving data in-
stead of doing useful 
oating point operations. LAPACK addresses this problem by reorganizing
the algorithms to use block matrix operations, such as matrix multiplication, in the innermost
loops [AD90, Dem89]. These block operations can be optimized for each architecture to account
for the memory hierarchy [AD89, DMR91], and so provide a transportable way to achieve high
e�ciency on diverse modern machines. Here we use the term \transportable" instead of \portable"
because, for fastest possible performance, LAPACK requires that highly optimized block matrix
operations be already implemented on each machine. In other words, the correctness of the code
is portable, but high performance is not|if we limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all the
capabilities of these two packages and much more besides. LAPACK improves on LINPACK and
EISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACK
and EISPACK are based on the vector operation kernels of the Level 1 BLAS [LHK+79], LA-
PACK was designed at the outset to exploit the Level 3 BLAS [DDH+90] | a set of speci�cations
for Fortran subprograms that do various types of matrix multiplication and the solution of tri-
angular systems with multiple right-hand sides. Because of the coarse granularity of the Level 3
BLAS operations, their use tends to promote high e�ciency on many high-performance computers,
particularly if specially coded implementations are provided by the manufacturer.
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2.1.3 ScaLAPACK

The ScaLAPACK [BCC+97] software library is extending the LAPACK library to run scalably
on MIMD distributed-memory concurrent computers. For such machines the memory hierarchy
includes the o�-processor memory of other processors, in addition to the hierarchy of registers,
cache, and local memory on each processor. Like LAPACK, the ScaLAPACK routines are based
on block-partitioned algorithms in order to minimize the frequency of data movement between
di�erent levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACK
library are parallel (distributed-memory) versions of the BLAS (PBLAS) [CDO+95], and a set
of Basic Linear Algebra Communication Subprograms (BLACS) [WD95] for communication tasks
that arise frequently in parallel linear algebra computations. In the ScaLAPACK routines, all
interprocessor communication occurs within the PBLAS and the BLACS, so that the source code
of the top software layer of ScaLAPACK looks very similar to that of LAPACK.

The ScaLAPACK library contains routines for the solution of systems of linear equations, linear
least squares problems and eigenvalue problems. The goals of the LAPACK project, which continue
into the ScaLAPACK project, are e�ciency so that the computationally intensive routines execute
as fast as possible; scalability as the problem size and number of processors grow; reliability,
including the return of error bounds; portability across machines; 
exibility so that users may
construct new routines from well designed components; and ease of use. Towards this last goal the
ScaLAPACK software has been designed to look as much like the LAPACK software as possible.

Many of these goals have been attained by developing and promoting standards, especially spec-
i�cations for basic computational and communication routines. Thus LAPACK relies on the
BLAS [LHK+79, DDH+88, DDH+90], particularly the Level 2 and 3 BLAS for computational
e�ciency, and ScaLAPACK [BCC+97] relies upon the BLACS [WD95] for e�ciency of communi-
cation and uses a set of parallel BLAS, the PBLAS [CDO+95], which themselves call the BLAS
and the BLACS. LAPACK and ScaLAPACK will run on any machines for which the BLAS and
the BLACS are available. A PVM [GBD+94] version of the BLACS has been available for some
time and the portability of the BLACS has recently been further increased by the development of
a version that uses MPI [MPI+94, SOH+96].

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-
partitioned algorithms to minimize data movement between di�erent levels in hierarchical memory.
Thus, the ideas discussed in this chapter for developing a library for dense linear algebra computa-
tions are applicable to any computer with a hierarchical memory that imposes a su�ciently large
startup cost on the movement of data between di�erent levels in the hierarchy, and for which the
cost of a context switch is too great to make �ne grain size multithreading worthwhile. The target
machines are, therefore, medium and large grain size advanced-architecture computers. These in-
clude respectively \traditional" shared-memory vector supercomputers, such as the Cray Y-MP and
C90, and MIMD distributed-memory concurrent computers, such as massively parallel processors
(MPPs) and networks or clusters of workstations.

The ScaLAPACK software has been designed speci�cally to achieve high e�ciency for a wide range
of modern distributed-memory computers. Examples of such computers include the Cray T3 series,
the IBM Scalable POWERparallel SP series, the Intel iPSC and Paragon computers, the nCube-2/3
computer, networks and clusters of workstations (NoWs and CoWs), and \piles" of PCs (PoPCs).
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Future advances in compiler and hardware technologies in the mid to late nineties are expected
to make multithreading a viable approach for masking communication costs. Since the blocks
in a block-partitioned algorithm can be handled by separate threads, our approach will still be
applicable on machines that exploit medium and coarse grain size multithreading.

2.2 Software Design

Developing a library of high-quality subroutines for dense linear algebra computations requires to
tackle a large number of issues. On one hand, the development or selection of numerically stable
algorithms in order to estimate the accuracy and/or domain of validity of the results produced by
these routines. On the other hand, it is often required to (re)formulate or adapt those algorithms
for performance reasons that are related to the architecture of the target computers. This section
presents three fundamental ideas to this e�ect that characterize the design of the LAPACK and
ScaLAPACK software.

2.2.1 The BLAS as the Key to (Trans)portable E�ciency

At least three factors a�ect the performance of portable Fortran code:

1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straightfor-
ward. Indeed, for many computations there are several variants, all vectorizable, but with
di�erent characteristics in performance (see, for example, [Don84]). Linear algebra algorithms
can approach the peak performance of many machines|principally because peak performance
depends on some form of chaining of vector addition and multiplication operations, and this
is just what the algorithms require. However, when the algorithms are realized in straight-
forward Fortran 77 code, the performance may fall well short of the expected level, usually
because vectorizing Fortran compilers fail to minimize the number of memory references|that
is, the number of vector load and store operations.

2. Data movement. What often limits the actual performance of a vector, or scalar, 
oating
point unit is the rate of transfer of data between di�erent levels of memory in the machine.
Examples include the transfer of vector operands in and out of vector registers, the transfer
of scalar operands in and out of a high-speed scalar processor, the movement of data between
main memory and a high-speed cache or local memory, paging between actual memory and
disk storage in a virtual memory system, and interprocessor communication on a distributed-
memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms o�ers considerable
scope for loop-based parallelism. This is the principal type of parallelism that LAPACK and
ScaLAPACK presently aim to exploit. On shared-memory concurrent computers, this type of
parallelism can sometimes be generated automatically by a compiler, but often requires the
insertion of compiler directives. On distributed-memory concurrent computers, data must
be moved between processors. This is usually done by explicit calls to message passing
routines, although parallel language extensions such as Coherent Parallel C [FO88] and Split-
C [CDG+93] do the message passing implicitly.
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The question arises, \How can we achieve su�cient control over these three factors to obtain the
levels of performance that machines can o�er?" The answer is through use of the BLAS. There are
now three levels of BLAS:

Level 1 BLAS [LHK+79]: for vector-vector operations (y  �x + y),

Level 2 BLAS [DDH+88]: for matrix-vector operations (y  �Ax + �y),

Level 3 BLAS [DDH+90]: for matrix-matrix operations (C  �AB + �C).

Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.

Table 1: Speed (M
ops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. All matrices
are of order 500; U is upper triangular.

Number of processors: 1 2 4 8

Level 2: y  �Ax + �y 311 611 1197 2285

Level 3: C  �AB + �C 312 623 1247 2425

Level 2: x Ux 293 544 898 1613

Level 3: B  UB 310 620 1240 2425

Level 2: x U�1x 272 374 479 584

Level 3: B  U�1B 309 618 1235 2398

Peak 333 666 1332 2664

The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: they
perform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency on
most modern supercomputers. The Level 2 BLAS can achieve near-peak performance on many
vector processors, such as a single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine.
However, on other vector processors such as a CRAY-2 or an IBM 3090 VF, the performance of
the Level 2 BLAS is limited by the rate of data movement between di�erent levels of memory.
Machines such as the CRAY Y-MP can perform two loads, a store, and a multiply-add operation
all in one cycle, whereas the CRAY-2 and IBM 3090 VF cannot. For further details of how the
performance of the BLAS are a�ected by such factors see [DDS+91]. The Level 3 BLAS overcome
this limitation. This third level of BLAS performs O(n3) 
oating point operations on O(n2) data,
whereas the Level 2 BLAS perform only O(n2) operations on O(n2) data. The Level 3 BLAS also
allow us to exploit parallelism in a way that is transparent to the software that calls them. While
the Level 2 BLAS o�er some scope for exploiting parallelism, greater scope is provided by the
Level 3 BLAS, as Table 1 illustrates.

2.3 Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACK
so that they call Level 2 BLAS. Indeed, in the simplest cases the same 
oating point operations are
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done, possibly even in the same order: it is just a matter of reorganizing the software. To illustrate
this point, we consider the LU factorization algorithm, which factorizes a general matrix A in the
product of the triangular factors L and U .

Suppose the M � N matrix A is partitioned as shown in Figure 1, and we seek a factorization
A = LU , where the partitioning of L and U is also shown in Figure 1. Then we may write,

L00U00 = A00 (1)

L10U00 = A10 (2)

L00U01 = A01 (3)

L10U01 + L11U11 = A11 (4)

where A00 is r � r, A01 is r � (N � r), A10 is (M � r) � r, and A11 is (M � r) � (N � r). L00

and L11 are lower triangular matrices with ones on the main diagonal, and U00 and U11 are upper
triangular matrices.

= *

A 00 A 01 L 00 U00

L 10 U10A 10

L 01

L 11

U01

U11A 11

Figure 1: Block LU factorization of the partitioned matrix A. A00 is r� r, A01 is r� (N � r), A10

is (M � r)� r, and A11 is (M � r)� (N � r). L00 and L11 are lower triangular matrices with ones
on the main diagonal, and U00 and U11 are upper triangular matrices.

Equations 1 and 2 taken together perform an LU factorization on the �rst M � r panel of A (i.e.,
A00 and A10). Once this is completed, the matrices L00, L10, and U00 are known, and the lower
triangular system in Eq. 3 can be solved to give U01. Finally, we rearrange Eq. 4 as,

A0
11 = A11 � L10U01 = L11U11 (5)

From this equation we see that the problem of �nding L11 and U11 reduces to �nding the LU
factorization of the (M � r)� (N� r) matrix A0

11. This can be done by applying the steps outlined
above to A0

11 instead of to A. Repeating these steps K times, where

K = min (dM=re; dN=re); (6)

and dxe denotes the least integer greater than or equal to x, we obtain the LU factorization of the
original M � N matrix A. For an in-place algorithm, A is overwritten by L and U { the ones on
the diagonal of L do not need to be stored explicitly. Similarly, when A is updated by Eq. 5 this
may also be done in place.

After k of these K steps, the �rst kr columns of L and the �rst kr rows of U have been evaluated,
and the matrix A has been updated to the form shown in Figure 2, in which panel B is (M�kr)�r
and C is r � (N � (k � 1)r). Step k + 1 then proceeds as follows,
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1. factor B to form the next panel of L, performing partial pivoting over rows if necessary. This
evaluates the matrices L0, L1, and U0 in Figure 2,

2. solve the triangular system L0U1 = C to get the next row of blocks of U ,

3. do a rank-r update on the trailing submatrix E, replacing it with E0 = E � L1U1.

U

L B
E

C

U

L
E’

U

L

1

1

L0

U0

Figure 2: Stage k + 1 of the block LU factorization algorithm showing how the panels B and C,
and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already been
factored in previous steps. L has kr columns, and U has kr rows. In the step shown another r
columns of L and r rows of U are evaluated.

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS to perform
the triangular solve and rank-r update. We can regard the algorithm as acting on matrices that
have been partitioned into blocks of r � r elements. No extra 
oating point operations nor extra
working storage are required for simple block algorithms [DDS+91, GPS90].

2.4 High-Quality, Reusable, Mathematical Software

In developing a library of high-quality subroutines for dense linear algebra computations the design
goals fall into three broad classes: performance, ease-of-use and range-of-use.

2.4.1 Performance

Two important performance metrics are concurrent e�ciency and scalability. We seek good per-
formance characteristics in our algorithms by eliminating, as much as possible, overhead due to
load imbalance, data movement, and algorithm restructuring. The way the data are distributed
(or decomposed) over the memory hierarchy of a computer is of fundamental importance to these
factors. Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [FJL+88],
where the concurrent speedup is the execution time, Tseq, for the best sequential algorithm running
on one processor of the concurrent computer, divided by the execution time, T , of the parallel
algorithm running on Np processors. When direct methods are used, as in LU factorization, the
concurrent e�ciency depends on the problem size and the number of processors, so on a given
parallel computer and for a �xed number of processors, the running time should not vary greatly
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for problems of the same size. Thus, we may write,

�(N;Np) =
1

Np

Tseq(N)

T (N;Np)
(7)

where N represents the problem size. In dense linear algebra computations, the execution time is
usually dominated by the 
oating point operation count, so the concurrent e�ciency is related to
the performance, G, measured in 
oating point operations per second by,

G(N;Np) =
Np

tcalc
�(N;Np) (8)

where tcalc is the time for one 
oating point operation. Occasional examples where variation does
occur are sometimes dismissed as \pathological cases". For iterative routines, such as eigensolvers,
the number of iterations, and hence the execution time, depends not only on the problem size, but
also on other characteristics of the input data, such as condition number.

Table 2 illustrates the speed of the LAPACK routine for LU factorization of a real matrix, SGETRF
in single precision on CRAY machines, and DGETRF in double precision on all other machines.
Thus, 64-bit 
oating point arithmetic is used on all machines tested. A block size of one means that
the unblocked algorithm is used, since it is faster than { or at least as fast as { a block algorithm.
In all cases, results are reported for the block size which is mostly nearly optimal over the range of
problem sizes considered.

Table 2: SGETRF/DGETRF speed (M
ops) for square matrices of order n

Machine Block Values of n
(No. of processors) size 100 200 300 400 500

IBM RISC/6000-530 (1) 32 19 25 29 31 33
Alliant FX/8 (8) 16 9 26 32 46 57
IBM 3090J VF (1) 64 23 41 52 58 63
Convex C-240 (4) 64 31 60 82 100 112
CRAY Y-MP (1) 1 132 219 254 272 283
CRAY-2 (1) 64 110 211 292 318 358
Siemens/Fujitsu VP 400-EX (1) 64 46 132 222 309 397
NEC SX2 (1) 1 118 274 412 504 577
CRAY Y-MP (8) 64 195 556 920 1188 1408

LAPACK [ABB+95] is designed to give high e�ciency on vector processors, high-performance
\superscalar" workstations, and shared-memory multiprocessors. LAPACK in its present form is
less likely to give good performance on other types of parallel architectures (for example, massively
parallel SIMD machines, or MIMD distributed-memory machines). LAPACK can also be used
satisfactorily on all types of scalar machines (PCs, workstations, mainframes). The ScaLAPACK
project, described in Section 2.1.3, adapts LAPACK to distributed-memory architectures.

A parallel algorithm is said to be scalable [GK90] if the concurrent e�ciency depends on the problem
size and number of processors only through their ratio. This ratio is simply the problem size per
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processor, often referred to as the granularity. Thus, for a scalable algorithm, the concurrent
e�ciency is constant as the number of processors increases while keeping the granularity �xed.
Alternatively, Eq. 8 shows that this is equivalent to saying that, for a scalable algorithm, the
performance depends linearly on the number of processors for �xed granularity.

Figure 3 shows the scalability of the ScaLAPACK implementation of the LU factorization on the
Intel XP/S Paragon computer. Figure 3 shows the speed in M
ops per node of the ScaLAPACK
LU factorization routine for di�erent computer con�gurations. This �gure illustrates that when the
number of nodes is scaled by a constant factor, the same e�ciency or speed per node is achieved for
equidistant problem sizes on a logarithmic scale. In other words, maintaining a constant memory
use per node allows e�ciency to be maintained. This scalability behavior is also referred to as
isoe�ciency, or isogranularity.) In practice, however, a slight degradation is acceptable. The
ScaLAPACK driver routines, in general, feature the same scalability behavior up to a constant
factor that depends on the exact number of 
oating point operations and the total volume of data
exchanged during the computation. More information on ScaLAPACK performance can be found
in [BCC+97, BW98].
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Figure 3: LU Performance per Intel XP/S MP Paragon node

2.4.2 Ease-Of-Use

Ease-of-use is concerned with factors such as portability and the user interface to the library.
Portability, in its most inclusive sense, means that the code is written in a standard language,
such as Fortran, and that the source code can be compiled on an arbitrary machine to produce a
program that will run correctly. We call this the \mail-order software" model of portability, since
it re
ects the model used by software servers such as netlib [DG87]. This notion of portability
is quite demanding. It requires that all relevant properties of the computer's arithmetic and ar-
chitecture be discovered at runtime within the con�nes of a Fortran code. For example, if it is
important to know the over
ow threshold for scaling purposes, it must be determined at runtime
without over
owing, since over
ow is generally fatal. Such demands have resulted in quite large
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and sophisticated programs [DP87, Kah87] which must be modi�ed frequently to deal with new
architectures and software releases. This \mail-order" notion of software portability also means
that codes generally must be written for the worst possible machine expected to be used, thereby
often degrading performance on all others. Ease-of-use is also enhanced if implementation details
are largely hidden from the user, for example, through the use of an object-based interface to the
library [DPW93]. In addition, software for distributed-memory computers should work correctly
for a large class of data decompositions. The ScaLAPACK library has, therefore, adopted the block
cyclic decomposition [BCC+97] for distributed-memory architectures.

2.4.3 Range-Of-Use

The range-of-use may be gauged by how numerically stable the algorithms are over a range of input
problems, and the range of data structures the library will support. For example, LINPACK and
EISPACK deal with dense matrices stored in a rectangular array, packed matrices where only the
upper or lower half of a symmetric matrix is stored, and banded matrices where only the nonzero
bands are stored. In addition, some special formats such as Householder vectors are used internally
to represent orthogonal matrices. There are also sparse matrices, which may be stored in many
di�erent ways; but in this chapter we focus on dense and banded matrices, the mathematical types
addressed by LINPACK, EISPACK, LAPACK and ScaLAPACK.

3 Automatic Generation of Tuned Numerical Kernels

This section describes an approach for the automatic generation and optimization of numerical
software for processors with deep memory hierarchies and pipelined functional units. The pro-
duction of such software for machines ranging from desktop workstations to embedded processors
can be a tedious and time consuming customization process. The research e�orts presented below
aim at automating much of this process. Very encouraging results generating great interest among
the scienti�c computing community have already been demonstrated. In this section, we focus on
the ongoing Automatically Tuned Linear Algebra Software (ATLAS) [WD97] project developed at
the University of Tennessee (see http://www.netlib.org/atlas/). The ATLAS initiative ade-
quately illustrates current and modern research projects on automatic generation and optimization
of numerical software such as PHiPAC [BAC+97]. After having developed the motivation for this
research, the ATLAS methodology is outlined within the context of a particular BLAS function,
namely the general matrix-multiply operation. Much of the technology and approach presented
below applies to other BLAS and on basic linear algebra computations in general, and may be
extended to other important kernel operations. Finally, performance results on a large collection
of computers are presented and discussed.

3.1 Motivation

Straightforward implementation in Fortan or C of computations based on simple loops rarely achieve
the peak execution rates of today's microprocessors. To realize such high performance for even the
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simplest of operations often requires tedious, hand-coded, programming e�orts. It would be ideal if
compilers where capable of performing the optimization needed automatically. However, compiler
technology is far from mature enough to perform these optimizations automatically. This is true
even for numerical kernels such as the BLAS on widely marketed machines which can justify the
great expense of compiler development. Adequate compilers for less widely marketed machines are
almost certain not to be developed.

Producing hand-optimized implementations of even a reduced set of well-designed software com-
ponents for a wide range of architectures is an expensive proposition. For any given architecture,
customizing a numerical kernel's source code to optimize performance requires a comprehensive un-
derstanding of the exploitable hardware resources of that architecture. This primarily includes the
memory hierarchy and how it can be utilized to provide data in an optimum fashion, as well as the
functional units and registers and how these hardware components can be programmed to generate
the correct operands at the correct time. Using the compiler optimization at its best, optimizing
the operations to account for many parameters such as blocking factors, loop unrolling depths,
software pipelining strategies, loop ordering, register allocations, and instruction scheduling are
crucial machine-speci�c factors a�ecting performance. Clearly, the size of the various cache levels,
the latency of 
oating point instructions, the number of 
oating point units and other hardware
constants are essential parameters that must be taken into consideration as well. Since this time-
consuming customization process must be repeated whenever a slightly di�erent target architecture
is available, or even when a new version of the compiler is released, the relentless pace of hardware
innovation makes the tuning of numerical libraries a constant burden.

The di�cult search for fast and accurate numerical methods for solving numerical linear algebra
problems is compounded by the complexities of porting and tuning numerical libraries to run on
the best hardware available to di�erent parts of the scienti�c and engineering community. Given
the fact that the performance of common computing platforms has increased exponentially in the
past few years, scientists and engineers have acquired legitimate expectations about being able
to immediately exploit these available resources at their highest capabilities. Fast, accurate, and
robust numerical methods have to be encoded in software libraries that are highly portable and
optimizable across a wide range of systems in order to be exploited to their fullest potential.

For illustrative purpose, we consider the Basic Linear Algebra Subprograms (BLAS) described in
Section 2.2.1. As shown in Section 2, the BLAS have proven to be very e�ective in assisting portable,
e�cient software for sequential, vector, shared-memory and distributed-memory high-performance
computers. However, the BLAS are just a set of speci�cations for some elementary linear algebra
operations. A reference implementation in Fortran 77 is publically available, but it is not expected
to be e�cient on any particular architecture, so that many hardware or software vendors provide
an \optimized" implementation of the BLAS for speci�c computers. Hand-optimized BLAS are
expensive and tedious to produce for any particular architecture, and in general will only be created
when there is a large enough market, which is not true for all platforms. The process of generating
an optimized set of BLAS for a new architecture or a slightly di�erent machine version can be a
time consuming and expensive process. Many vendors have thus invested considerable resources in
producing optimized BLAS for their architectures. In many cases near optimum performance can
be achieved for some operations. However, the coverage and the level of performance achieved is
often not uniform across all platforms.
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3.2 The ATLAS Methodology

In order to illustrate the ATLAS methodology, we consider the following matrix-multiply operation
C  �AB + �C, where � and � are scalars, and A, B and C are matrices, with A an M-by-K
matrix, B a K-by-N matrix and C an M-by-N matrix. In general, the arrays A, B, and C containing
respectively the matrices A, B and C will be too large to �t into cache. It is however possible to
arrange the computations so that the operations are performed with data for the most part in
cache by dividing the matrices into blocks [DMR91]. ATLAS isolates the machine-speci�c features
of the operation to several routines, all of which deal with performing an optimized \on-chip"
matrix multiply, that is, assuming that all matrix operands �t in Level 1 (L1) cache. This section
of code is automatically created by a code generator which uses timings to determine the correct
blocking and loop unrolling factors to perform optimally. The user may directly supply the code
generator with as much detail as desired, i.e. size of the L1 cache size, blocking factor(s) to try, etc;
if such details are not provided, the code generator will determine appropriate settings via timings.
The rest of the code produced by ATLAS does not change across architectures; it is presented in
Section 3.2.1. It handles the looping and blocking necessary to build the complete matrix-matrix
multiply from the on-chip multiply. The generation of the on-chip multiply routine is discussed
in Section 3.2.2. It is obvious that with this many interacting e�ects, it would be di�cult, if not
impossible to predict a priori the best blocking factor, loop unrolling, etc. ATLAS provides a code
generator coupled with a timer routine which takes in some initial information, and then tries
di�erent strategies for loop unrolling and latency hiding and chooses the case which demonstrated
the best performance.

3.2.1 Building the General Matrix Multiply from the On-Chip Multiply

In this section, the routines necessary to build a general matrix-matrix multiply using a �xed-size
on-chip multiply are described. Section 3.2.2 details the on-chip multiply and its code generator.
For this section, it is enough to assume the availability of an e�cient on-chip matrix-matrix multiply
of the form C  ATB. This multiply is of �xed size, i.e. with all dimensions set to a system-speci�c
value, NB (M = N = K = NB). Also available are several \cleanup" codes, which handle the cases
caused by dimensions which are not multiples of the blocking factor.

The �rst decision to be taken by the general matrix multiply is whether the problem is large enough
to bene�t from our special techniques. The ATLAS algorithm requires copying of the operand
matrices; if the problem is small enough, this O(N2) cost, along with miscellaneous overheads such
as function calls and multiple layers of looping, can actually make the \optimized" general matrix
multiply slower than the traditional three do loops. The size required for the O(N3) costs to
dominate these lower order terms varies across machines, and so this switch point is automatically
determined at installation time. For these very small problems, a standard three-loop multiply
with some simple loop unrolling is called. This code will also be called if the algorithm is unable
to dynamically allocate enough space to do the blocking (see below for further details).

Assuming the matrices are large enough, ATLAS presently features two algorithms for performing
the general, o�-chip multiply. The two algorithms correspond to di�erent orderings of the main
loops. In the �rst algorithm, the outer loop is over M, i.e., the rows of A and the second loop
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is over N, i.e., the columns of B. In the second algorithm, this order is reversed. The common
dimension of A and B (i.e., the K loop) is currently always the innermost loop. Let us de�ne
the input matrix looped over by the outer loop as the outer or outermost matrix; the other input
matrix will therefore be the inner or innermost matrix. In the �rst algorithm, A is thus the outer
matrix and B is the inner matrix. Both algorithms have the option of writing the result of the
on-chip multiply directly to the matrix, or to an output temporary Ĉ. The advantages to writing
to Ĉ rather than C are:

1. address alignment may be controlled (i.e., one can ensure during the dynamic memory allo-
cation that one begins on a cache-line boundary),

2. Data is contiguous, eliminating possibility of unnecessary cache-thrashing due to ill-chosen
leading dimension (assuming the cache is non-write-through).

The disadvantage of using Ĉ is that an additional write to C is required after the on-chip operations
have completed. This cost is minimal if many calls to the on-chip multiply are made (each of which
writes to either C or Ĉ), but can add signi�cantly to the overhead when this is not the case. In
particular, an important application of matrix multiply is the rank-K update, where the write
to the output array C can be a signi�cant portion of the cost of the algorithm. Writing to Ĉ

essentially doubles the write cost, which is unacceptable. The routines therefore employ a heuristic
to determine if the number of times the on-chip multiply will be called in the K loop is large enough
to justify using Ĉ, otherwise the answer is written directly to C.

Regardless of which matrix is outermost, the algorithms try to dynamically allocate enough space
to store the NB � NB output temporary, Ĉ (if needed), one panel of the outermost matrix, and
the entire inner matrix. If this fails, the algorithms attempt to allocate enough space to hold Ĉ,
and one panel from both A and B. The minimum workspace required by these routines is therefore
2KNB, if writing directly to C, and NB

2 + 2KNB if not. If this amount of workspace cannot be
allocated, the previously mentioned small case code is called instead. If there is enough space to
copy the entire innermost matrix, we see several bene�ts to doing so:

� Each matrix is copied only one time,

� If all of the workspaces �t into L2 cache, we get complete L2 reuse on the innermost matrix,

� Data copying is limited to the outermost loop, protecting the inner loops from unneeded
cache thrashing.

Of course, even if the allocation succeeds, using too much memory might result in unneeded swap-
ping. Therefore, the user can set a maximal amount of workspace that ATLAS is allowed to have,
and ATLAS will not try to copy the innermost matrix if this maximum workspace requirement is
exceeded.

If enough space for a copy of the entire innermost matrix is not allocated, the innermost matrix
will be entirely copied for each panel of the outermost matrix, i.e. if A is the outermost matrix,
the matrix B will be copied dM=NBe times. Further, the usable size of the Level 2 (L2) cache is
reduced (the copy of a panel of the innermost matrix will take up twice the panel's size in L2 cache;
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the same is true of the outermost panel copy, but that will only be seen the �rst time through the
secondary loop). Regardless of which looping structure or allocation procedure used, the inner loop
is always along K. Therefore, the operation done in the inner loop by both routines is the same,
and it is shown in Figure 4.
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Figure 4: One step of the general matrix-matrix multiply

When a call to the matrix multiply is made, the routine must decide which loop structure to call
(i.e., which matrix to put as outermost). If the matrices are of di�erent size, L2 cache reuse can be
encouraged by deciding the looping structure based on the following criteria:

� If either matrix will �t completely into L2 cache, put it as the innermost matrix (we get L2
cache reuse on the entire inner matrix),

� If neither matrix �ts completely into L2 cache, put the one with the largest panel that will
�t into L2 cache as the outermost matrix (we get L2 cache reuse on the panel of the outer
matrix).

By default, the code generated by ATLAS does no explicit L2 blocking (the size of the L2 cache
is not known anywhere in the code), and so these criteria are not presently used for this selection.
Rather, if one matrix must be accessed by row-panels during the copy, that matrix will be put
where it can be copied most e�ciently. This means that if one has enough workspace to copy it
up front, the matrix will be accessed column-wise by putting it as the innermost loop and copying
the entire matrix; otherwise it will be placed as the outermost loop, where the cost of copying the
row-panel is a lower order term. If both matrices have the same access patterns, B will be made
the outermost matrix, so that C is accessed by columns.

3.2.2 Generation of the On-Chip Multiply

As previously mentioned, the ATLAS on-chip matrix-matrix multiply is the only code which must
change depending on the platform. Since the input matrices are copied into blocked form, only
one transpose case is required, which has been chosen as C  ATB + C. This case was chosen (as
opposed to, for instance C  AB+C), because it generates the largest (
ops)/(cache misses) ratio
possible when the loops are written with no unrolling. Machines with hardware allowing a smaller
ratio can be addressed using loop unrolling on the M and N loops (this could also be addressed by
permuting the order of the K loop, but this technique is not presently used in ATLAS.
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In a multiply designed for L1 cache reuse, one of the input matrices is brought completely into the
L1 cache, and is then reused in looping over the rows or columns of the other input matrix. The
present ATLAS code brings in the array A, and loops over the columns of B; this was an arbitrary
choice, and there is no theoretical reason it would be superior to bringing in B and looping over
the rows of A. There is a common misconception that cache reuse is optimized when both input
matrices, or all three matrices, �t into L1 cache. In fact, the only win in �tting all three matrices
into L1 cache is that it is possible, assuming the cache is not write-through, to save the cost of
pushing previously used sections of C back to higher levels of memory. Often, however, the L1
cache is write-through, while higher levels are not. If this is the case, there is no way to minimize
the write cost, so keeping all three matrices in L1 does not result in greater cache reuse. Therefore,
ignoring the write cost, maximal cache reuse for our case is achieved when all of A �ts into cache,
with room for at least two columns of B and one cache line of C. Only one column of B is actually
accessed at a time in this scenario; having enough storage for two columns assures that the old
column will be the least recently used data when the cache over
ows, thus making certain that all
of A is kept in place (this obviously assumes the cache replacement policy is least recently used).
While cache reuse can account for a great amount of the overall performance win, it is obviously not
the only factor. For the on-chip matrix multiplication, other relevant factors are outlined below.

Instruction cache over
ow: Instructions are cached, and it is therefore important to �t the on-
chip multiply's instructions into the L1 cache. This means that it won't be possible to completely
unroll all three loops, for instance.

Floating point instruction ordering: When we discuss 
oating point instruction ordering in
this section, it will usually be in reference to latency hiding. Most modern architectures possess
pipelined 
oating point units. This means that the results of an operation will not be available
for use until s cycles later, where s is the number of stages in the 
oating point pipe (typically
3 or 5). Remember that the on-chip matrix multiply is of the form C  ATB + C; individual
statements would then naturally be some variant of C[i] += A[j] * B[k]. If the architecture
does not possess a fused multiply/add unit, this can cause an unnecessary execution stall. The
operation register = A[j] * B[k] is issued to the 
oating point unit, and the add cannot be
started until the result of this computation is available, s cycles later. Since the add operation
is not started until the multiply �nishes, the 
oating point pipe is not utilized. The solution is
to remove this dependence by separating the multiply and add, and issuing unrelated instructions
between them. This reordering of operations can be done in hardware (out-of-order execution)
or by the compiler, but this will sometimes generate code that is not quite as e�cient as doing it
explicitly. More importantly, not all platforms have this capability, and in this case the performance
win can be large.

Reducing loop overhead: The primary method of reducing loop overhead is through loop un-
rolling. If it is desirable to reduce loop overhead without changing the order of instructions, one
must unroll the loop over the dimension common to A and B (i.e., unroll the K loop). Unrolling
along the other dimensions (the M and N loops) changes the order of instructions, and thus the
resulting memory access patterns.

Exposing parallelism: Many modern architectures have multiple 
oating point units. There are
two barriers to achieving perfect parallel speedup with 
oating point computations in such a case.
The �rst is a hardware limitation, and therefore out of our hands: All of the 
oating point units will
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need to access memory, and thus, for perfect parallel speedup, the memory fetch will usually also
need to operate in parallel. The second prerequisite is that the compiler recognizes opportunities
for parallelization, and this is amenable to software control. The �x for this is the classical one
employed in such cases, namely unrolling the M and/or N loops, and choosing the correct register
allocation so that parallel operations are not constrained by false dependencies.

Finding the correct number of cache misses: Any operand that is not already in a register
must be fetched from memory. If that operand is not in the L1 cache, it must be fetched from
further down the memory hierarchy, possibly resulting in large delays in execution. The number
of cache misses which can be issued simultaneously without blocking execution varies between
architectures. To minimize memory costs, the maximal number of cache misses should be issued
each cycle, until all memory is in cache or used. In theory, one can permute the matrix multiply to
ensure that this is true. In practice, this �ne a level of control would be di�cult to ensure (there
would be problems with over
owing the instruction cache, and the generation of such precision
instruction sequence, for instance). So the method used to control the cache-hit ratio is the more
classical one of M and N loop unrolling.

3.3 ATLAS Performance Results

In this section we present double precision (64-bit 
oating point arithmetic) timings across various
platforms. The timings presented here are di�erent than many BLAS timings in that the cache is

ushed before each call, and the leading dimensions of the arrays are set to greater than the number
of rows of the matrix. This means that the performance numbers shown below, even when timing
the same routine (for instance the vendor-supplied general matrix multiply routine) are lower than
those reported in other papers. However, these numbers are in general a much better estimate of
the performance a user will see in his application. More complete performance results and analysis
can be found in [WD97].

Figure 5 shows the performance of ATLAS versus the vendor-supplied matrix multiply (where
available) for a 500� 500 matrix multiply.

Figure 6 shows the performance of LAPACK's LU factorization. For each platform three results
are shown in the �gure: (1) LU factorization time linking to ATLAS matrix multiply, (2) LU
factorization time linking to vendor supplied BLAS, (3) LU factorization time linking only to the
reference Fortran 77 BLAS. These results demonstrate that the automatically generated ATLAS
routine provide good performance in practice.

4 Network-Enabled Solvers

Thanks to advances in hardware, networking infrastructure and algorithms, computing intensive
problems in many areas can now be successfully attacked using networked, scienti�c computing. In
the networked computing paradigm, vital pieces of software and information used by a computing
process are spread across the network, and are identi�ed and linked together only at run time.
This is in contrast to the current software usage model where one acquires a copy (or copies) of
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Figure 5: 500x500 matrix multiply performance across multiple architectures

Figure 6: 500x500 LU factorization performance across multiple architectures
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task-speci�c software package for use on local hosts. In this section, as a case study, we focus
on the ongoing NetSolve project developed at the University of Tennessee and at the Oak Ridge
National Laboratory (see http://www.cs.utk.edu/netsolve). This project adequately illustrates
the current and modern research initiatives on network-enabled solvers. We �rst present an overview
of the NetSolve project and examine some extensions being developed for NetSolve: an interface to
the Condor system [LLM88], an interface to the ScaLAPACK parallel library [BCC+97], a bridge
with the Ninf System [SSN+96], and an integration of NetSolve and ImageVision [ENB96].

4.1 The NetSolve System

The NetSolve system uses the remote computing paradigm: the program resides on the server; the
user's data is sent to the server, where the appropriate programs or numerical libraries operate on
it; the result is then sent back to the user's machine.
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Figure 7: NetSolve's organization

Figure 7 depicts the typical layout of the system. NetSolve provides users with a pool of com-
putational resources. These resources are computational servers that have access to ready-to-use
numerical software. As shown in the �gure, the computational servers can be running on sin-
gle workstations, networks of workstations that can collaborate for solving a problem, or Massively
Parallel Processor (MPP) systems. The user is using one of the NetSolve client interfaces. Through
these interfaces, the user can send requests to the NetSolve system asking for a numerical compu-
tation to be carried out by one of the servers. The main role of the NetSolve agent is to process this
request and to choose the most suitable server for this particular computation. Once a server has
been chosen, it is assigned the computation, uses its available numerical software, and eventually
returns the results to the user. One of the major advantages of this approach is that the agent
performs load-balancing among the di�erent resources.
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As shown in Figure 7, there can be multiple instances of the NetSolve agent on the network, and
di�erent clients can contact di�erent agents depending on their locations. The agents can exchange
information about their di�erent servers and allow access from any client to any server if desirable.
NetSolve can be used either via the Internet or on an intranet, such as inside a research department
or a university, without participating in any Internet based computation. Another important aspect
of NetSolve is that the con�guration of the system is entirely 
exible: any server/agent can be
stopped and (re-)started at any time without jeopardizing the integrity of the system.

4.1.1 The Computational Resources

When building the NetSolve system, one of the challenges was to design a suitable model for the
computational servers. The NetSolve servers are con�gurable so that they can be easily upgraded
to encompass ever-increasing sets of numerical functionalities. The NetSolve servers are also pre-
installed, meaning that the end-user does not have to install any numerical software. Finally, the
NetSolve servers provide uniform access to the numerical software, in the sense that the end-user
has the illusion that he or she is accessing numerical subroutines from a single, coherent numerical
library.

To make the implementation of such a computational server model possible, a general, machine-
independent way of describing a numerical computation as well as a set of tools to generate new
computational modules as easily as possible have been designed. The main component of this
framework is a descriptive language which is used to describe each separate numerical functionality
of a computational server. The description �les written in this language can be compiled by
NetSolve into actual computational modules executable on any UNIX or NT platform. These �les
can then be exchanged by any institution wanting to set up servers: each time a new description
�le is created, the capabilities of the entire NetSolve system are increased.

A number of description �les have been generated for a variety of numerical libraries: ARPACK,
FitPack, ItPack, MinPack, FFTPACK, LAPACK, BLAS, QMR, Minpack and ScaLAPACK. These
numerical libraries cover several �elds of computational science; Linear Algebra, Optimization, Fast
Fourier Transforms, etc.

4.1.2 The Client Interfaces

A major concern in designing NetSolve was to provide several interfaces for a wide range of users.
NetSolve can be invoked through C, Fortran, Java, Matlab [Mat92] and Mathematica [Wol96]. In
addition, there is a Web-enabled Java GUI. Another concern was keeping the interfaces as simple as
possible. For example, there are only two calls in the MATLAB interface, and they are su�cient to
allow users to submit problems to the NetSolve system. Each interface provides asynchronous calls
to NetSolve in addition to traditional synchronous or blocking calls. When several asynchronous
requests are sent to a NetSolve agent, they are dispatched among the available computational
resources according to the load-balancing schemes implemented by the agent. Hence, the user|
with virtually no e�ort|can achieve coarse-grained parallelism from either a C or Fortran program,
or from interaction with a high-level interface. All the interfaces are described in detail in the
\NetSolve's Client User's Guide" [CD95].
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4.1.3 The NetSolve Agent

Keeping track of what software resources are available and on which servers they are located is
perhaps the most fundamental task of the NetSolve agent. Since the computational servers use the
same framework to contribute software to the system (see Section 4.1.1), it is possible for the agent
to maintain a database of di�erent numerical functionalities available to the users.

Each time a new server is started, it sends an application request to an instance of the NetSolve
agent. This request contains general information about the server and the list of numerical func-
tions it intends to contribute to the system. The agent examines this list and detects possible
discrepancies with the other existing servers in the system. Based on the agent's verdict, the server
can be integrated into the system and available for clients.

The goal of the NetSolve agent is to choose the best-suited computational server for each incoming
request to the system. For each user request, the agent determines the set of servers that can
handle the computation and makes a choice between all the possible resources. To do so, the agent
uses computation-speci�c and resource-speci�c information. Computation-speci�c information is
mostly included in the user request whereas resource-speci�c information is partly static (server's
host processor speed, memory available, etc.) and partly dynamic (processor workload). Rationale
and further detail on these issues can be found in [BCD96], as well as a description of how NetSolve
ensures fault-tolerance among the servers.

Agent-based computing seems to be a promising strategy. NetSolve is evolving into a more elabo-
rate system and a major part of this evolution is to take place within the agent. Such issues as user
accounting, security, data encryption for instance are only partially addressed in the current imple-
mentation of NetSolve and already is the object of much work. As the types of hardware resources
and the types of numerical software available on the computational servers become more and more
diverse, the resource broker embedded in the agent need to become increasingly sophisticated.
There are many di�culties in providing a uniform performance metric that encompasses any type
of algorithmic and hardware considerations in a metacomputing setting, especially when di�erent
numerical resources, or even entire frameworks are integrated into NetSolve. Such integrations are
described in the following sections.

4.2 Integration of Computational Resources into NetSolve

In this section, we present how various computational resources can be integrated into NetSolve.
As explained in Section 4.1.1, traditional software libraries are easy to integrate into the NetSolve
system. We present however how four very di�erent and more complex computational resources
have been integrated. We selected a workstation manager environment, a parallel numerical library,
a global-wide computing infrastructure similar to NetSolve itself, and �nally a general purpose
image processing application.
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4.2.1 Interface to the Condor System

Condor [LLM88], developed at the University of Wisconsin, Madison, is an environment that can
manage very large collections of distributively owned workstations. Its development has been
motivated by the ever increasing need for scientists and engineers to exploit the capacity of such
collections, mainly by taking advantage of otherwise unused CPU cycles. Interfacing NetSolve and
Condor is a very natural idea. NetSolve provides remote easy access to computational resources
through multiple, attractive user interfaces. Condor allows users to harness the power of a pool of
machines while using otherwise wasted CPU cycles. The users at the consoles of those machines
are not penalized by the scheduling of Condor jobs. If the pool of machines is reasonably large,
it is usually the case that Condor jobs can be scheduled almost immediately. This could prove to
be very interesting for a project like NetSolve. Indeed, NetSolve servers may be started so that
they grant local resource access to outside users. Interfacing NetSolve and Condor could then give
priority to local users and provide underutilized only CPU cycles to outside users.

A Condor pool consists of any number of machines, that are connected by a network. Condor
daemons constantly monitor the status of the individual computers in the cluster. Two daemons
run on each machine, the startd and the schedd. The startdmonitors information about the machine
itself (load, mouse/keyboard activity, etc.) and decides if it is available to run a Condor job. The
schedd keeps track of all the Condor jobs that have been submitted to the machine. One of the
machine, the Central Manager, keeps track of all the resources and jobs in the pool. When a job
is submitted to Condor, the scheduler on the central manager matches a machine in the Condor
pool to that job. Once the job has been started, it is periodically checkpointed, can be interrupted
and migrated to a machine whose architecture is the same as the one of the machine on which
the execution was initiated. This organization is partly depicted in Figure 8. More details on the
Condor system and the software layers can be found in [LLM88].

Figure 8 shows how an entire Condor pool can be seen as a single NetSolve computational resource.
The Central Manager runs two daemons in addition to the usual startd and schedd: the negotiator
and the collector. A machine also runs a customized version of the NetSolve server. When this server
receives a request from a client, instead of creating a local child process running a computational
module, it uses the Condor tools to submit that module to the Condor pool. The negotiator on the
Central Manager then chooses a target machine for the computational module. Due to 
uctuations
in the state of the pool, the computational module can then be migrated among the machines in the
pool. When the results of the numerical computation are obtained, the NetSolve server transmits
that result back to the client.

The actual implementation of the NetSolve/Condor interface was made easy by the Condor tools
provided to the Condor user. However, the restrictions that apply to a Condor job concerning
system calls were di�cult to satisfy and required quite a few changes to obtain a Condor-enabled
NetSolve server. A major issue however still needs to be addressed; how does the NetSolve agent
perceive a Condor pool as a resource? Finding the appropriate performance prediction technique
is at the focus of the current NetSolve/Condor collaboration.

26



Condor Central Manager

Collector

Startd

Schedd

Machine 1

Startd

Schedd

   NetSolve
computational
    module

Machine N

Startd

Schedd

NetSolve Machine

Startd

Schedd

NetSolve Server

NetSolve
   Client

NetSolve
  Agent

Request

ChoiceReply

Condor pool

NetSolve system

Negotiator

Figure 8: NetSolve and Condor

4.2.2 Integrating Parallel Numerical Libraries

Integrating software libraries designed for distributed-memory concurrent computers into NetSolve
allows a workstation's user to access massively parallel processors to perform large computations.
This access can be made extremely simple via NetSolve and the user may not even be aware that
he or she is using a parallel library on such a computer. As an example, we describe in this section,
how the ScaLAPACK library [BCC+97] has been integrated into the NetSolve system.

As brie
y described in Section 2.1.3, the Scalable Linear Algebra Package (ScaLAPACK) is a library
of high-performance linear algebra routines for distributed-memory message-passing MIMD com-
puters as well as networks or clusters of workstations supporting PVM [GBD+94] orMPI [SOH+96].
It is a continuation of the LAPACK [ABB+95] project, and contains routines for solving systems
of linear equations, least squares problems, and eigenvalue problems. ScaLAPACK views the un-
derlying multi-processor system as a rectangular process grid. Global data is mapped to the local
memories of the processes in that grid assuming speci�c data-distributions. For performance and
load balance reasons, ScaLAPACK uses the two-dimensional block cyclic distribution scheme for
dense matrix computations. Inter-process communication within ScaLAPACK is done via the Basic
Linear Algebra Communication Subprograms (BLACS) [WD95].

Figure 9 is a very simple description of how the NetSolve server has been customized to use the
ScaLAPACK library. The customized server receives data input from the client in the traditional
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way. The NetSolve server uses BLACS calls to set up the ScaLAPACK process grid. ScaLAPACK
requires that the data already be distributed among the processors prior to any library call. This is
the reason why each user input is �rst distributed on the process grid according to the block cyclic
decomposition when necessary. The server can then initiate the call to ScaLAPACK and wait until
completion of the computation. When the ScaLAPACK call returns, the result of the computation
is distributed on the two-dimensional process grid. The server then gathers that result and sends it
back to the client in the expected format. This process is completely transparent to the user who
does not even realize that a parallel execution has been taking place.

  NetSolve
ScaLAPACK
    server

NetSolve
   client

2−
D B

lo
ck

 C
yc

lic

Dat
a 
Dist

rib
ut
io
n

2−D Block Cyclic

 Result G
athering

Dat
a

Result

Input 
Data

Result
Processor Grid
(NoW or MPP)

ScaLAPACK

Figure 9: The ScaLAPACK NetSolve Server Paradigm

This approach is very promising. A client can use MATLAB on a PC and issue a simple call like [x]
= netsolve('eig',a) and have an MPP system use a high-performance library to perform a large
eigenvalue computation. A prototype of the customized server running on top of PVM [GBD+94]
or MPI [SOH+96] has been designed. There are many research issues arising with integrating
parallel libraries in NetSolve, including performance prediction, choice of processor-grid size, choice
of numerical algorithm, processor availability, accounting, etc.

4.2.3 NetSolve and Ninf

Ninf [SSN+96], developed at the Electrotechnical Laboratory, Tsukuba, is a global network-wide
computing infrastructure project which allows users to access computational resources including
hardware, software, and scienti�c data distributed across a wide area network with an easy-to-use
interface. Computational resources are shared as Ninf remote libraries and are executable at remote
Ninf servers. Users can build an application by calling the libraries with the Ninf Remote Proce-
dure Call, which is designed to provide a programming interface similar to conventional function
calls in existing languages, and is tailored for scienti�c computation. In order to facilitate loca-
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tion transparency and network-wide parallelism, the Ninf MetaServer maintains global resource
information regarding computational server and databases. It can therefore allocate and schedule
coarse-grained computations to achieve good global load balancing. Ninf also interfaces with ex-
isting network service such as the WWW for easy accessibility. Clearly, NetSolve and Ninf bear
strong similarities both in motivation and general design. Allowing the two systems to coexist and
collaborate should lead to promising developments.

Some design issues prevent an immediate seamless integration of the two softwares (conceptual
di�erences between the NetSolve agent and the Ninf Metaserver, problem speci�cations, user in-
terfaces, data transfer protocols, etc.). In order to overcome these issues, the Ninf team started
developing two adapters: a NetSolve-Ninf adapter and a Ninf NetSolve-adapter. Thanks to those
adapters, Ninf clients can use computational resources administrated by a NetSolve system and
vice-versa.

Ninf−NetSolve
     Adapter

NetSolve
  Agent

  Ninf
Server

NetSolve
  Server

NetSolve
  Client

Ninf−NetSolve
     Adapter

NetSolve
  Agent

     Ninf
MetaServer

 Ninf
Client

  Ninf
Server

NetSolve
  Server

(ii)(i)

Figure 10: Going (i) from NetSolve to Ninf and (ii) from Ninf to NetSolve

Figure 10(i) shows the Ninf-NetSolve adapter allowing access to Ninf resource from a NetSolve
client. The adapter is just seen by the NetSolve agent as any other NetSolve server. When a
NetSolve client sends a request to the agent, it can then be told to use the NetSolve adapter. The
adapter performs protocol translation, interface translation, and data transfer, asks a Ninf server
to perform the required computation and returns the result to the user.

In Figure 10(ii), the NetSolve-Ninf adapter can be seen by the Ninf MetaServer as a Ninf server, but
in fact plays the role of a NetSolve client. This is a little di�erent from the Ninf-NetSolve adapter
because the NetSolve agent is a resource broker whereas the Ninf MetaServer is a proxy server.
Once the adapter receives the result of the computation from some NetSolve server, it transfers
that result back to the Ninf client.

There are several advantages of using such adapters. Updating the adapters to re
ects the evolu-
tions of NetSolve or Ninf seems to be an easy task. Some early implementation evaluations tend
to show that using either system via an adapter causes acceptable overheads, mainly due to addi-
tional data transfers. Those �rst experiments appear encouraging and will de�nitely be extended
to e�ectively enable an integration of NetSolve and Ninf.
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4.2.4 Extending ImageVision by the Use of NetSolve

In this section, we describe how NetSolve can be used as a building block for a general purpose
framework for basic image processing, based on the commercial ImageVision library [ENB96]. This
project is under development at the ICG institute at Graz University of Technology, Austria. The
scope of the project is to make basic image processing functions available for remote execution
over a network. The goals of the project include two objectives that can be leveraged by NetSolve.
First, the resulting software should prevent the user from having to install complicated image
processing libraries. Second, the functionalities should be available via Java-based applications.
The ImageVision Library (IL) [ENB96] is an object-oriented library written in C++ by Silicon
Graphics, Inc. (SGI) and shipped with newer workstations. It contains typical image processing
routines to e�ciently access, manipulate, display, and store image data. ImageVision has been
judged quite complete and mature by the research team at ICG and seems therefore a good choice
as an \engine" for building a remote access image processing framework. Such a framework will
make IL accessible from any platform (and not only from SGI workstations) and is described
in [Obe97].

The reasons why NetSolve has been a �rst choice for such a project are diverse. First, NetSolve
is easy to understand, use, and extend. Second, NetSolve is freely available. Third, NetSolve
provides language binding to Fortran, C, and Java. And �nally, NetSolve's agent-based design
allows load monitoring and balancing among the available servers. New NetSolve computational
modules corresponding to the desired image processing functionalities will be created and integrated
into the NetSolve servers. A big part of the project at ICG is to build a Java GUI to IL.

NetSolve
  Agent

SGI back endVisualization

NetSolve
   Client

     Java GUI

2. choice of a server

3. send data

4. retrieve result

1. netsl("rotate",...)

Figure 11: ImageVision and NetSolve

Figure 11 shows a simple example of how ImageVision can be accessed via NetSolve. A Java GUI
can be built on top of the NetSolve Java API. As shown on the �gure, this GUI o�ers visualization
capabilities. For computations, it uses an embedded NetSolve client and contacts SGI servers that
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have access to IL. The user of the Java GUI does not realize that NetSolve is the back end of
the system, or that he or she uses a SGI library without running the GUI on a SGI machine!
The protocol depicted in the �gure is of course simplistic. In order to obtain acceptable levels
of performance, the network tra�c needs to be minimized. There are several ways of attacking
this problem: keeping a \state" in the server, combine requests, reference images with URLs for
instance, etc.

5 Conclusions

This chapter presented some of the recent developments in linear algebra software designed to ex-
ploit advanced-architecture computers. We focused on three essential components out of which cur-
rent and modern problem solving environments are constructed: well-designed numerical software
libraries, automatic generators of optimized numerical kernels and 
exible, easy-to-access software
systems enabling the hardware and software computational resources. Each of these components
was concretely illustrated with existing and/or ongoing research projects. We summarize below the
most important features of these components. We hope the insight we gained from our work will
in
uence future developers of hardware, compilers and systems software so that they provide tools
to facilitate development of high quality portable scienti�c problem solving environments.

5.1 Well-Designed Numerical Software Libraries

Portability of programs has always been an important consideration. Portability was easy to
achieve when there was a single architectural paradigm (the serial von Neumann machine) and a
single programming language for scienti�c programming (Fortran) embodying that common model
of computation. Architectural and linguistic diversity have made portability much more di�cult,
but no less important, to attain. Users simply do not wish to invest signi�cant amounts of time
to create large-scale application codes for each new machine. Our answer is to develop portable
software libraries that hide machine-speci�c details.

In order to be truly portable, parallel software libraries must be standardized. In a parallel comput-
ing environment in which the higher-level routines and/or abstractions are built upon lower-level
computation and message-passing routines, the bene�ts of standardization are particularly appar-
ent. Furthermore, the de�nition of computational and message-passing standards provides vendors
with a clearly de�ned base set of routines that they can implement e�ciently.

From the user's point of view, portability means that, as new machines are developed, they are
simply added to the network, supplying cycles where they are most appropriate.

From the mathematical software developer's point of view, portability may require signi�cant e�ort.
Economy in development and maintenance of mathematical software demands that such develop-
ment e�ort be leveraged over as many di�erent computer systems as possible. Given the great
diversity of parallel architectures, this type of portability is attainable to only a limited degree, but
machine dependences can at least be isolated.

Like portability, scalability demands that a program be reasonably e�ective over a wide range

31



of number of processors. The scalability of parallel algorithms, and software libraries based on
them, over a wide range of architectural designs and numbers of processors will likely require that
the fundamental granularity of computation be adjustable to suit the particular circumstances in
which the software may happen to execute. The ScaLAPACK approach to this problem is block
algorithms with adjustable block size.

Scalable parallel architectures of the present and the future are likely to be based on a distributed-
memory architectural paradigm. In the longer term, progress in hardware development, operating
systems, languages, compilers, and networks may make it possible for users to view such distributed
architectures (without signi�cant loss of e�ciency) as having a shared-memory with a global address
space. Today, however, the distributed nature of the underlying hardware continues to be visible at
the programming level; therefore, e�cient procedures for explicit communication will continue to
be necessary. Given this fact, standards for basic message passing (send/receive), as well as higher-
level communication constructs (global summation, broadcast, etc.), have become essential to the
development of scalable libraries that have any degree of portability. In addition to standardizing
general communication primitives, it may also be advantageous to establish standards for problem-
speci�c constructs in commonly occurring areas such as linear algebra.

Traditionally, large, general-purpose mathematical software libraries have required users to write
their own programs that call library routines to solve speci�c subproblems that arise during a com-
putation. Adapted to a shared-memory parallel environment, this conventional interface still o�ers
some potential for hiding underlying complexity. For example, the LAPACK project incorporates
parallelism in the Level 3 BLAS, where it is not directly visible to the user.

When going from shared-memory systems to the more readily scalable distributed-memory sys-
tems, the complexity of the distributed data structures required is more di�cult to hide from the
user. One of the major design goal of High Performance Fortran (HPF) [KLS+94] was to achieve
(almost) a transparent program portability to the user, from shared-memory multiprocessors up
to distributed-memory parallel computers and networks of workstations. But writing e�cient nu-
merical kernels with HPF is not an easy task. First of all, there is the need to recast linear algebra
kernels in terms of block operations (otherwise, as already mentioned, the performance will be
limited by that of Level 1 BLAS routines). Second, the user is required to explicitly state how the
data is partitioned amongst the processors. Third, not only must the problem decomposition and
data layout be speci�ed, but di�erent phases of the user's problem may require transformations
between di�erent distributed data structures. Hence, the HPF programmer may well choose to call
ScaLAPACK routines just as he called LAPACK routines on sequential processors with a memory
hierarchy. To facilitate this task, an interface has been developed [BDP+98]. The design of this
interface has been made possible because ScaLAPACK is using the same block-cyclic distribution
primitives as those speci�ed in the HPF standards. Of course, HPF can still prove a useful tool at
a higher level, that of parallelizing a whole scienti�c operation, because the user will be relieved
from the low level details of generating the code for communications.
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5.2 Automatic Generation and Optimization of Numerical Kernels on Various
Processor Architectures

The ATLAS package presently available on netlib is organized around the matrix-matrix multipli-
cation. This operation is the essential building block of all of the Level 3 BLAS. Initial research
using publicly available matrix-multiply-based BLAS implementations [KLV93, DDP94] suggests
that this provides a perfectly acceptable Level 3 BLAS. As time allows, we can avoid some of
the O(N2) costs associated with using the matrix-multiply-based BLAS by supporting the Level 3
BLAS directly in ATLAS. We also plan on providing the software for complex data types.

We have preliminary results for the most important Level 2 BLAS routine (matrix-vector multiply)
as well. This is of particular importance, because matrix vector operations, which have O(N2)
operations and O(N2) data, demand a signi�cantly di�erent code generation approach than that
required for matrix-matrix operations, where the data is O(N2), but the operation count is O(N3).
Initial results suggest that ATLAS will achieve comparable success with optimizing the Level 2
BLAS as has been achieved for Level 3 (this means that the ATLAS timings compared to the vendor
will be comparable; obviously, unless the target architecture supports many pipes to memory, a
Level 2 BLAS operation will not be as e�cient as the corresponding Level 3 BLAS operation).

Another avenue of ongoing research involves sparse algorithms. The fundamental building block
of iterative methods is the sparse matrix-vector multiply. This work leverages the present research
(in particular, make use of the dense matrix-vector multiply). The present work uses compile-time
adaptation of software. Since matrix-vector multiply may be called literally thousands of times
during the course of an iterative method, run-time adaptation is also investigated. These run-
time adaptations may include matrix dependent transformations [Tol97], as well as speci�c code
generation.

ATLAS has demonstrated the ability to produce highly optimized matrix multiply for a wide range
of architectures based on a code generator that probes and searches the system for an optimal set
of parameters. This avoids the tedious task of generating by hand routines optimized for a speci�c
architecture. We believe these ideas can be expanded to cover not only the Level 3 BLAS, but
Level 2 BLAS as well. In addition there is scope for additional operations beyond the BLAS, such
as sparse matrix-vector operations, and FFTs.

5.3 The NetSolve Problem Solving Environment

We have discussed throughout this chapter how NetSolve can be customized, extended, and used
for a variety of purposes. We �rst described in Sections 4.2.1 and 4.2.2 how NetSolve can encompass
new types of computing resources, resulting in a more powerful and 
exible environment and raising
new research issues. We next discussed in Section 4.2.3 how NetSolve and Ninf can be merged into
a single metacomputing environment. Finally, in Section 4.2.4, we gave an example of an entire
application that uses NetSolve as an operating environment to build general image processing
framework. All these developments take place at di�erent levels in the NetSolve project and have
had and will continue to have an impact on the project itself, causing it to improve and expand.

The scienti�c community has long used the Internet for communication of email, software, and
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documentation. Until recently there has been little use of the network for actual computations.
This situation is changing rapidly and will have an enormous impact on the future. Novel user
interfaces that hide the complexity of scalable parallelism require new concepts and mechanisms for
representing scienti�c computational problems and for specifying how those problems relate to each
other. Very high level languages and systems, perhaps graphically based, not only would facilitate
the use of mathematical software from the user's point of view, but also help to automate the
determination of e�ective partitioning, mapping, granularity, data structures, etc. However, new
concepts in problem speci�cation and representation may also require new mathematical research
on the analytic, algebraic, and topological properties of problems (e.g., existence and uniqueness).

Software and Documentation Availability

Most of the software mentioned in this document and the corresponding documentations are in the
public domain, and are available from netlib (http://www.netlib.org/) [DG87]. For instance,
the EISPACK, LINPACK, LAPACK, BLACS, ScaLAPACK, and ATLAS software packages are
in the public domain, and are available from netlib. Moreover, these publically available software
packages can also be retrieved by e-mail. For example, to obtain more information on LAPACK, one
should send the following one-line email message to netlib@ornl.gov: send index from lapack.
Information for other packages can be similarly obtained. Real-time information on the NetSolve
project can be found at the following web address http://www.cs.utk.edu/netsolve.
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