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1 Introduction

Tiling is a widely used compiler technique to increase the granularity of
computations and the locality of data references. Indeed, as pointed out by
Carter et al [8], “Good parallel algorithms are not enough; computer fea-
tures such as the memory hierarchy and processor architecture need to be
exploited to achieve high-performance on parallel machines”. The basic idea
of tiling (also known as “loop blocking”) is to group elemental computation
points into tiles that will be viewed as computational units. The larger the
tiles, the more efficient the computations performed using state-of-the-art
processors with pipelined arithmetic units and a multilevel memory hier-
archy. This is best illustrated by the recasting of numerical linear algebra
algorithms in terms of blocked Level 3 BLAS kernels [12, 10]. Another
advantage of tiling is the decrease in communication time (which is propor-
tional to the surface of the tile) relative to the computation time (which is
proportional to the volume of the tile). The price to pay for tiling may be an
increased latency (if there are data dependencies, for example, we need to
wait for the first processor to complete the whole execution of the first tile
before another processor can start the execution of the second one, and so
on), as well as some load-imbalance problems (the larger the tile, the more
difficult to distribute computations equally among the processors).

The tiling technique was originally restricted to perfect loop nests with
uniform dependencies, as defined by Banerjee [4], but has been extended
to sets of fully permutable loops [24, 16, 11]. Tiling has been studied by
several researchers and in different contexts [15, 21, 23, 20, 22, 5, 6, 18, 1,
9, 17, 7, 14, 3]*. Most of the work amounts to partitioning the iteration
space of a uniform loop nest into tiles whose shape and size are optimized
according to some criteria (such as the communication-to-computation ra-
tio): see Section 2 for an example. Once the tile shape and size are defined,
there remains to distribute the tiles to physical processors and to compute
the final scheduling. Little attention has been paid to this last problem.
For example, if each physical processor is assigned several tiles, what should
be the computation ordering of these tiles? An in-depth study has been
presented by Ohta et al [18], who have extended results of Hiranandani et
al. [13] on fine grain pipelining for DOACROSS loops. We survey their work
in Section 3.

In this paper, we build upon the work of Ohta et al [18]. We reformulate
the problem of tiling with limited resources using more realistic assump-

!This small list is far from being exhaustive.



tions on data dependences and communication-computation overlap than
those used in [18]. Our most important result is the derivation of an opti-
mal mapping to assign tiles to physical processors. This result is important
because it has clear practical implications: indeed, it turns out that in most
situations, a columnwise or rowwise mapping is optimal, which greatly sim-
plifies the task of code generation. All our results are presented in Sections 4
and 5. Finally, we state some conclusions in Section 6.

2 Tiling as a loop transformation technique

When targeting a data-parallel or SPMD style of programming, classical
constraints in the literature to define tiles are the following:

Tiles are bounded For scalability reasons, we want the number of points
inside a tile to be bounded by a constant independent of the domain
size.

Tiles are identical by translation This constraint is imposed to allow
for automatic code generation: a tile must be the image by a transla-
tion of any other one unless it crosses the computation domain bound-
aries.

Tiles are “atomic” Each tile is a unit of computation: all synchronization
points are beginnings and ends of tiles. The order on tiles must be
compatible with the order on nodes: one must avoid that two distinct
tiles depend upon each other.

Consider the following simple example:

for s =0 to N7 do
for 5 =0 to N» do
a(i,j) =a(i —3,75) +ali,j —2)
b(i,j) =a(i —2,7 —3)+b(i —2,5 — 1)
enddo
enddo

This loop nest has depth 2. The dependences are uniform (intuitively,
dependence vectors are translations), and they can be encapsulated into the

dependence matrix
3 0 2 2
D= ( 0 2 31 ) '



The atomicity constraint can be expressed by the analytical condition
HD > 0, where H is the matrix of vectors normal to the faces (or the edges
in two-dimensional problems) of the tile [15]. In Figure 1, we sketch a valid
tiling for our example. The matrix H is the one derived using the scalable
communication-to-computation criteria of Boulet et al. [5]:

1
Hol(0 %Y
16\ 3 0

We check that HD > 0. Note that the volume of the tile, which represents
the number of computations per tile, is given by the determinant of H!:
Veomp = det(H ~1) = 96. The number of communications is the following:
each tile sends

e 24 data items to its right neighbor,
e 34 data items to its lower neighbor,
e and 6 data items to its lower-right neighbor.

Note that the third message (the diagonal communication) may be routed
horizontally and then vertically, or the other way round, and even may be
combined with any of the first two messages.

Please insert Figure 1 here

It is important to point out that the dependences between tiles are sum-

marized by the vector pair
1 0
()0

In other words, the computation of a tile cannot be started before both its
left and upper neighbor tiles have been executed.

As stated above, the atomicity constraint implies that inter-processor
communications only take place at the end of the processing of each tile.
Note that current architectures do allow for communications and computa-
tions to overlap, and it is important to point out that the atomicity con-
straint does not prevent a given processor from simultaneously communi-
cating boundary data of one tile (whose execution it just completed) and
starting the computation of another tile. Also, minimizing communication



start-up overheads is a “sine-qua-non” condition towards achieving good
performance. Even though sophisticated routing strategies are designed
and implemented in hardware, communication start-up costs remain very
expensive as opposed to the elemental time for communicating one data
item (and even worse for performing a computation). Frequent exchanges
of short messages should therefore be replaced by fewer sends and receives
of longer messages. To summarize, in the context of distributed memory
architectures, tiling is a technique that permits to optimize communications
while increasing the granularity of computations.

3 Tiling with resource constraints

Ohta et al. [18] aim at determining the best tile size under the following
hypotheses:

(H1) There are P available processors interconnected as a ring.

(H2) The computation domain is a two-dimensional rectangle of size Ny x
N,.

(H3) Tiles are rectangular and their edges are parallel to the axes (see
Figure 2). The size of a tile is n; X ng, where n; and ng are unknowns.

1
(H4) Dependences between tiles are summarized by the vector pair { < 0 ) , <

(as in the example of Section 2).

(H5) Tiles are assigned to processor using a one-dimensional cyclic distri-
bution: in other words, tile (7, j) is allocated to processor j mod P.

(H6) The scheduling of the tiles is column-wise: at step 0, processor Py
executes tile (0,0) and the computed value is communicated to the
adjacent processor P, (more precisely, a rectangular slice of width w
and height ny is sent). At step 1, processors Py and P; execute tiles
(0,1) and (1, 0) simultaneously. After having executed a whole column
of tiles, a processor moves on to its next column.

Please insert Figure 2 here

0
1

)



A step is the time required to compute a tile and to communicate data.
Ohta et al. [18] use the following expression:

Tyjte = comp T Teomm = ningt + (a + b’n2)

where ¢ is the elemental computation time, a is a communication start-up
and b is the inverse of the communication bandwidth times the width w of
the slice being communicated (the communication cost is a linear expression
in the message size).

To compute the total execution time, Ohta et al. [18] use the formula
(M + My)Tyie, where M; = P — 1 is the latency (the step at which the
last processor begins to work) and M, = % is the number of tiles per
processor (assumed to be an integer). Using the approximation M; = P,
they derive the total execution time 7" as
N1 N

2 )(nlngt +a+ bng).
Pn1n2

T=(P+

The execution time is found to be minimal when choosing n; = % and ny =

\/E
Nit*

The objective of this paper is to discuss the hypotheses (H1) to (H6)
of Ohta et al., and to reformulate their results using a more accurate mod-
eling of current architectures. Indeed, their study is conducted while as-
suming that processors cannot simultaneously communicate bordering data
items of the last tile and perform computations for the next tile. However,
overlapping computations and communications is a facility provided by all
distributed memory computers, so we relax this restriction. This simple
modification has a tremendous effect on the determination of the best tile
size.

4 Allowing for communication-computation over-
lap

4.1 On the model

Hypotheses (H2), (H3) and (H4) may appear very restricting. However, we
point out the following justifications:

Tile shape We assume that the tiles are rectangular. This is to be un-
derstood as the outcome of previous program transformations. The



first step in tiling amounts to determining the best shape and size of
the tiles, assuming an infinite grid of virtual processors. Because this
step will lead to tiles whose edges are parallel to extremal dependence
vectors in the convex hull of the dependence cone, we can perform a
unimodular transformation and rewrite the original loop nest along
the edge axes. The resulting domain may not be a rectangular, but
we can approximate it using the smallest bounding box (however, this
approximation may impact the accuracy of our results).

Dependence vectors We assume that dependencies are summarized by
the vector pair V = {(1,0)¢, (0,1)!}. Note that these are dependencies
between tiles, not between elementary computations. Hence, having
right- and top-neighbor dependencies is a very general situation if the
tiles are large enough. In the example of Section 2, we had 4 depen-
dence vectors in the original loop nest, but we ended up with V after
tiling. Technically, since we deal with a set of fully permutable loops,
all dependence vectors have nonnegative components only, so that V
permits all other dependence vectors to be generated by transitivity.
Note that having a dependence vector (0,a)! with a > 2 between tiles,
instead of having vector (0,1)!, would mean unusually long depen-
dencies in the original loop nest (in the example of Section 2, a(i, j)
would depend upon a(i, 7 — 8) but not on a(i,j — x) for x < 7), while
having (0,a)! in addition to (0,1)! as a dependence vector between
tiles is simply redundant. In practical situations, we might have an
additional diagonal dependence vector (1,1)! between tiles, but the
diagonal communication may be routed horizontally and then verti-
cally, or the other way round, and even may be combined with any
of the other two messages (induced by dependence vectors (0,1)! and

(1,009

On the other hand, hypotheses (H5) and (H6) are unnecessarily restric-
tive, because the mapping and scheduling of the tiles should be an output
decision of the procedure of tiling with limited resources, rather than being
given a priori. We overcome this restriction in Section 5.

4.2 Revisiting the results of Ohta et al.

The total execution time is given by the following proposition:

Proposition 1 Under the hypotheses (H1) to (H6) of Section 3, and allow-
ing for communication-computation overlap, the total computation time T



is (assuming all fractions to be integer):

T = (M — 1)(ningt + a + bny) + Nanqt otherwise

ni

T { Ty = (P —1)(ninat + a + bng) + 2824 if Nonyt > P(ninat + a + bny)

(1)

Proof According to hypothesis (H4), the computation goes column-wise.
When a processor has completed the execution of a whole column of tiles,
it starts the next column that has been assigned to it. The time to process
a whole column of tiles is the number of tiles in the column, namely g—;,
times the time to compute a tile, namely Teomp = ninot. We obtain the
value Nynt for processing a whole tile column.

Now, according to hypothesis (H5), tile columns are distributed cycli-
cally to processors. If a processor starts the execution of the first tile in
a given column at time-step ¢, its right neighbor cannot start the execu-
tion of the first tile in the next column before time-step ¢ + T};., where
Tiite = Teomp + Teomm = ningt + (a + bng) (this is due to the dependence
vector (1,0)!). Note that Ty, is the same as in Section 3, but we pay a
communication cost only when the processors owning the tiles are not the
same. Two cases can occur:

Please insert Figure 3 here

e Either there are enough tiles in each column so that when a processor
has completed the execution of a whole tile column, it does not have to
wait for its next tile column to be ready. This will happen if ]X—;Tcomp =
Nonit is greater than or equal to the delay imposed by horizontal

constraints, i.e. if

N
_Tcomp > r Ttile-
n2

If this condition holds, all processors remain active throughout the
entire computation, once they have started execution. Since the last
processor starts at time (P — 1)T};. and has 1]3\21]222 tiles to execute
(each in time Ty, = ningt), we obtain Tj, the first expression in
Equation (1). See Figure 3 where Teopmp = Teomm = 1, and P = 3.
There are ]X—; = 8 tiles per column, and PT};. = 6, hence the condition

is satisfied.




Please insert Figure 4 here

e Or each processor has to wait upon finishing a tile column until the
next column is ready. This translates into the condition %Tcomp <
PTi.. In that case, the total computation time is equal to the time
at which the last processor starts the execution of the first tile in the
last column, namely (g—ll — 1)T}1¢ plus the time needed to process this

column. We obtain the expression (]7;7—11 — DTy + %Tcomp, as stated
in the second formula of Equation (1). See Figure 4 where Tiomp = 1,
Teomm = 2, and P = 3. There are % = 8 tiles per column, and

PTie =9, hence %Tcomp < PTije- Processors remain idle at the end
of each tile column, waiting for their next column to be ready. |

The optimal number of processors that should be used so as to minimize
the total execution time is given by the following proposition:

Corollary 1 Under the hypotheses (H2) to (H6) of Section 3, and allowing
for communication-computation overlap, let

NNt Nongt
P, = \/ 1772 and Pg= 2
ninet + a + an

- ninet + a + an

The number of processors P that minimizes the total execution time is given
by:

[ Z'fpﬂgl O’I“Paglgpﬂ, theanl,
o if 1 < P <P, then P = Pg,
o if 1 <P, < Pgthen P=PF,.
Proof The “steady-state” condition Nonit > P(ningt+ a+ bng) in Equa-

tion (1) can be rewritten as
P <P

Consider T} = (P — 1)(ninst + a + bno) + %t (see Equation (1)). The
minimum of 7T} is obtained for P = P,. The expression of 77 shows that
is a non-increasing function of P when P < P,, and then a non-decreasing



function of P when P > P,. Also, note that 7% does not depend on P (ex-
cept than through the condition P > Pg). Then the result follows according
to a simple case analysis. |

For large domains, we will have 1 < Pg < P,, and it is no surprise that
the optimal number of processors is the one required to ensure steady-state
execution: Equation (1) in Proposition 1 states that all processors remain
active once started if

Ngnlt Z P(nlngt +a—+ bTLQ)

So far, we have assumed that n; and ny were input parameters, because
the size and shape of the tiles may be imposed by some a priori considera-
tions (such as the cache size). We can try to determine the values of n; and
ng in the range 1 < n; < N, 1 < ng < Ny that would minimize the total
execution time. We rewrite the steady-state inequality by introducing the
following function f:

Ngnlt — Pa

Flm) = P(nt + b)

(2)

f is defined so that Nonit > P(ninot + a + bng) <= ng < f(n1). We
have the following result:

Corollary 2 Under the hypotheses (H1) to (H6) of Section 3, and allowing
for communication-computation overlap, the total execution time is mini-
mum for

o mi = /(Y and ny = 1if f(5F) <1
o n| = tf]\(fZ+P)) and ny = 1 otherwise.

Proof We break down the problem into two sub-cases depending on the
N.

values taken by the function f, whose argument n; ranges from 1 to +;

e Vny, f(ny) < 1. Since f is a nondecreasing function of ny, this con-
dition is equivalent to f (%) < 1. In this case, Equation (2) is never
satisfied (ny > 1). Then the minimum of 7' is obtained by minimizing

T5 with no = 1, namely

N
T = (n—1 — 1)(n1t+a+b) + Nonit
1

10



This easily leads to ny = %, as stated in the theorem

e Jny, f(n1) > 1. We take n{ such that f(n?) = min f(n1) and n? > 1.
Note that all values of n; > n? will lead to admissible values for ns,
because we always have f(ni) < % by definition of f. Now consider
the expression of T for arbitrary ny and ne:

— ifng < f(n1), then T = Ty, T is a non-increasing function of both
n1 and no decreases, then the minimum is obtained with no =1
and nj = n.

— if ng > f(n1) then T' = T5 and is a non-increasing function of 7.
Then the minimum of 7' is reached if ny = f(n1). In that case
Ty = T, and again the minimum is reached when ny = 1 and

ny = n[l]

This result is disappointing in that we end up with degenerate tiles in
most practical situations. For instance if P <« Ny (which is very likely to
happen in practice), f(1) > 1, and the optimal tile size is n; = ng = 1, not
a very coarse-grain tiling indeed! For other values of the problem parame-
ters we would have an optimal tile size that depends upon the domain size,
thereby contradicting the assumption that tiles are bounded (Section 2).
Note that Ohta et al [18] also have this problem in their original model.
The flaw is that the model is not accurate enough to take the impact of
data locality and data reuse into account (which are the main objectives of
tiling, and the main motivation for designing blocked linear algebra algo-
rithms [12]). A first solution is to model the computation cost of a tile by
an affine expression like Tty = ninot + u, where u represents some access
overhead. It is not difficult to plug this expression into the formula given
for the total execution time 7', and to derive the optimal tile size. Another
solution is to assume a fixed tile size that would be imposed by some a pri-
ori considerations (such as the cache size). Again, we can let njny = S in
Equation (1), and minimize T for n;, say.

4.3 Generalizing the model

Assuming communication-computation overlap seems a reasonable hypoth-
esis for current machines which have communication coprocessors and allow
for asynchronous communications (posting instructions ahead, or using ac-
tive messages). We can think of independent computations going along a

11



thread while communication is initiated and performed by another thread.
As written in Pacheco [19, p. 268], “if we have communication coproces-
sors (and smart compilers) ... the actual running time [for performing &
computations and sending/receiving a message of length m] ... might be
max{ts + mitc, kt,}” (with our notations, t, =t, t; = a and t. = b/w).

A very interesting approach has been proposed by Andonov and Ra-
jopadhye [3]: they introduce the tile period P; as the time elapsed between
corresponding instructions of two successive tiles that are mapped to the
same processor, while they define the tile latency L; to be the time be-
tween corresponding instructions of two successive tiles that are mapped
to different processors. With these notations, the parallel execution time
becomes [3]

Ty =(P-1)L+%8221p  if 2P > PL,

T = (3)

Ty = (8 -1+ 22p otherwise

The power of this approach is that the expressions for L; and P; can
be modified to take into account several architectural models, while Equa-
tion (3) still remains valid. A very detailed architectural model is presented
in [3], and several other models are explored in [2].

With our notations, Py = Teomp and Ly = Teomp +Teomm- We can rewrite
Equation (1) as

Ty = (P = 1)(Teomp + Teomm) + 2222 5 Teomp i 22 Teomp = P(Teomp + Teomm)

T =

IPES (]7\;_11 - 1)(Tcomp + Tcomm) + ]X_;Tcomp otherwise

(4)

Equation (3), or its variant Equation (4), is the key to our tiling problem,
because it expresses the parallel execution time as a function of the domain
size, of the number of processors, and of the tile parameters P, and Ly, or
equivalently Ti.o,p and Teomm.-

5 Optimal mapping and scheduling

Hypotheses (H5) and (H6) are very restrictive in that they impose the map-
ping of tiles to processors as well as their scheduling. The intuitive moti-
vation for (H5) is that a cyclic distribution of tiles is quite natural to load-
balance computations. Once the distribution of tiles to processors is fixed,

12



there are several possible schedulings (any wavefront execution that goes
along a left-to-right diagonal is valid). Specifying a column-wise execution
may lead to the simplest code generation.

It turns out that (H5) and (H6) provide the best solution among all
possible distributions of tiles to processors, which is a very strong result.
This result holds true under the assumption that the communication cost
for a tile is not larger than its computation cost. Since the communication
cost for a tile grows linearly with its size, while the computation costs grows
quadratically, this hypothesis will be satisfied if the tile is large enough?.
This result is formally stated in the theorem below. Beforehand, we need to
refine the communication cost as follows:

® Teomm_horiz = @ + bng is the cost of communicating data from (the
processor owning) tile (4, ) to (the processor owning) its right neighbor
tile (i + 1, ),

e Teommvert = @' +b/'ny is the cost of communicating data from (the pro-
cessor owning) tile (7, j) to (the processor owning) its bottom neighbor
tile (3,5 + 1).

We pay a communication cost only when the two processors that own the
neighboring tiles are not the same. So far we never paid any cost for vertical
communications, and we always did for horizontal communications, because
of hypothesis (H5). We had to refine the communication cost because in
this section, we do not make any assumption on the mapping of tiles to
processors. Depending upon the values of Teomm_horiz and Teomm_vert, the
best mapping will be column-wise or row-wise:

Theorem 1 Under the hypotheses (H2) to (H4) of Section 3, and allowing
for communication-computation overlap, let ny and ny be chosen so that

/ /
maX{Tcomm_horiZ7 Tcomm_vert} = max{a +bng,a’ + b nl} < Tcomp = ninot.

1. If Teommonoriz < Teomm_vert; assume that the steady state equation
holds: Nonit > P(ningt + a + bng). Then the absolute minimum
for the total execution time is

NN,

p

and it 4s achieved by mapping and scheduling tiles according to hy-
potheses (H5) and (H6),

Tl = (P - 1)(Tcomp + Tcomm_horiz) + t

20f course, we can imagine theoretical situations where the communication cost is so
large that a sequential execution would lead to the best result.

13



2. If Teommvert < Teomm_horiz, @Ssume that the steady state equation
holds: Ninaot > P(ninot + o' + b'ny). Then the absolute minimum
for the total execution time is

N1N>

Tll = (P - 1)(Tcomp + Tcomm_vert) + P

t

and it is achieved by mapping rows of tiles using a one-dimensional
cyclic distribution (tile (i,7) is allocated to processor i mod P), and by
scheduling the tiles with a row-wise ordering.

Proof Without loss of generality, assume that Teomm_vert < Teomm_horiz
(the result is symmetric in the rows and columns), and let Teomm = Teomm_vert-
We begin the proof with the following preliminary result, where o denotes
any valid scheduling of the tiles (o(I) is the time-step at which the execution
of I begins):

Lemma 1 Let I = (i,j) be a tile index, and let I' = (i + 1,7) and 1" =
(i,7 + 1) be its successor tiles. We have

max{co(I") — o(I),oc(I') — o(I)} > Teomm + Teomp-

Proof Let proc(I) be the processor that executes tile I. We have three
cases to consider, depending upon whether proc(I) also executes both suc-
cessors I' and I", or exactly one of them, or none of them:

both successors: proc(I) = proc(I') = proc(I")
The same processor executes both successors. They are executed se-
quentially and the last one being executed cannot begin execution be-
fore time-step o(I) + 2Tcomp- AS Teomm < Teomp the result is proven.

one successor: proc(I) = proc(I') and proc(I) # proc(I")
(respectively proc(I) = proc(I") and proc(I) # proc(I')). A commu-
nication is needed between I and I" (respectively I and I'), hence
o(I") —o(I) > Teomm + Teomp (respectively o(I') — o(I) > Teomm +
Tcomp)

no successor: proc(I) # proc(I') and proc(I) # proc(1")
This case is similar to the previous one. |

14



Back to the proof of the theorem, let T, the total execution time using
P processors. Let Idle be the cumulated idle time of all processors dur-
ing execution. Finally, let Ti., = N1 Nat be the sequential execution time.
Clearly,
PT// = Idle + Tseq-

Hence, to show that T/, > Ty = (P — 1)(Teomp + Teomm) + Tjﬁq, we need to

show that

Idie > P(P — 1)(Teomp + Teomm)-

The structure of the dependence graph does impose that some proces-
sors are idle at the beginning of the computation, which will lead to a lower
bound for Idle. For instance, during the execution of tile (0,0), there are
necessarily P—1 idle processors. To go on, we recursively define pivot_tile(k)
as follows (see Figure 5):

Please insert Figure 5 here

e pivot_tile(0) = (0,0), and

e for k > 1, pivot_tile(k) is the one of the two successors of pivot_tile(k—
1) which is executed last: if pivot_tile(k — 1) = I = (4,7), let I' =
(¢+1,7) and I" = (4,5 + 1) be the successors of tile I:

— If o(I') > o(I"), then pivot_tile(k) = I', and we define S(k) as
the remaining tiles in column j: S(k) = {(i,j +1),l > 1}),

— If o(I") > o(I'), then pivot_tile(k) = I", and we define S(k) as
the remaining tiles in row i: S(k) = {( +1,7),l > 1},

We know from Lemma 1 that for all & > 1,
o(pivot_tile(k)) — o(pivot_tile(k — 1)) > Teomm + Teomp-

We prove by induction that for 1 <k < P —1, at least P — k processors
are kept idle between the beginning of the execution of pivot_tile(k — 1) and
that of pivot_tile(k). This will lead to:

PP -1)
2

This will prove the desired result, because the same amount of idleness, so
to speak, will be spent at the end of the computation (by symmetry of the
dependence graph). Now, for the induction:

Idle > (P=1)+(P-2)+...41)(Teomm+Teomp) = (Teomm+Teomp)-

15



e Let £ = 1: pivot_tile(1) is either (0,1) or (1,0). See Figure 5 where
pivot _tile(1) = (1,0) and S(1) = {(0,0 4+ 1),l > 1}. Between the the
beginning of the execution of pivot_tile(0) and that of pivot_tile(1),
the only successors of pivot_tile(0) that can be executed are in S(1).
But all tasks in S(1) must be executed sequentially, hence between the
beginning of the execution of pivot_tile(0) and that of pivot_tile(1), at
least (P — 1) processors are kept idle.

e Assume that the hypothesis is true until step k. Between the beginning
of the execution of pivot_tile(k) and that of pivot_tile(k 4+ 1), at most
one processor can be active in S(1), at most another one in S(2), ...,
and at most one processor in S(k+1), so that at most k+ 1 processors
can be active, or equivalently, at least P — (k + 1) processors remain
idle.

It is worth to point out that Theorem 1 holds true in a large framework.
Whatever the model used for estimating the communication time T4,y and
the computation time Tiypp, the parallel execution time for a columnwise
allocation of tiles to processors is given by Equation (4). Theorem 1 basically
says that such a columnwise or rowwise allocation will be optimal as soon
as

1' Tcomm S Tcomp

2. Steady-state condition: the weight of a tile column (or tile row) is
greater that the tile latency

Lt = P(Tcomm + Tcomp)

The first hypothesis will be fulfilled if the tile is large enough (because
the communication cost grows linearly while the computation cost grows
quadratically). The second hypothesis will be fulfilled as soon as the domain
is large enough in front of the number of processors, a situation very likely
to happen in practice.

Finally, note that when the steady-state condition is not satisfied, we can
still derive similar results. For instance assume a square N x N tiled iteration
space (N tiles per row and per column). Let T, be the computation time
for a tile, and let Tiomm be the communication time (either horizontal or
vertical). With P processors, if NTvomp < P(Teomm + Teomp), & columnwise
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allocation of tiles to processors leads to the parallel execution time T =
(N = 1)(Teomp + Teomm) + NTeomp- I Teomm < Teomp, this is optimal: use
Lemma 1 to show that the execution of diagonal tile (7,7), 0 <4 < N, cannot
start before time-step (¢ — 1)(27%omp + Teomm,)-

6 Conclusion

In this paper, we have studied tiling techniques aimed at adapting the gran-
ularity of permutable loop algorithms towards execution on distributed-
memory machines. We view tiling as a two-step process: the first step
amounts to determining the best shape and size of the tiles (assuming an
infinite grid of virtual processors), while the second step consists in mapping
and scheduling the tiles to physical processors. We have concentrated on
the second step, assuming a realistic model where (independent) communi-
cation and computation may overlap. We have obtained several new results,
including a strong result on the optimal mapping and scheduling. However,
much remains to be done to extend these results to arbitrary dimensions
and domain shapes.

More generally, the relationship between tiling, scheduling and mapping
is not yet well understood, and the two-step approach may prove too com-
plicated for practical problems. Yet, such a two-step approach is typical in
the field of parallelizing compilers (other examples are general task graph
scheduling, software pipelining and loop parallelization algorithms).

Finally, the recent development of heterogeneous computing platforms
may well lead to using tiles whose size and shape will depend upon the
characteristics of the processors they are assigned to ... a truly challenging
problem!
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Figures and Tables

]

Figure 2: Mapping rectangular tiles onto a ring of processors.
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Figure 3: Scheduling tiles with T¢omp = 1, Teomm = 1 and P = 3.
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Figure 4: Scheduling tiles with Ttomp = 1, Teomm = 2 and P = 3.
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Figure 5: A schedule when T¢y, = 1 and Ttppmyp = 2. Pivot tiles are labeled,
and sets S(k) are framed.
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