
Co-scheduling HPC workloads on
cache-partitioned CMP platforms∗

Journal Title
XX(X):1–16
c©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Guillaume Aupy1, Anne Benoit2,3, Brice Goglin1, Löıc Pottier2, and, Yves Robert2,4

Abstract
With the recent advent of many-core architectures such as chip multiprocessors (CMP), the number of processing units
accessing a global shared memory is constantly increasing. Co-scheduling techniques are used to improve application
throughput on such architectures, but sharing resources often generates critical interferences. In this paper, we focus on
the interferences in the last level of cache (LLC) and use the Cache Allocation Technology (CAT) recently provided by
Intel to partition the LLC and give each co-scheduled application their own cache area. We consider m iterative HPC
applications running concurrently and answer to the following questions: (i) how to precisely model the behavior of these
applications on the cache partitioned platform? and (ii) how many cores and cache fractions should be assigned to each
application to maximize the platform efficiency? Here, platform efficiency is defined as maximizing the performance either
globally, or as guaranteeing a fixed ratio of iterations per second for each application. Through extensive experiments
using CAT, we demonstrate the impact of cache partitioning when multiple HPC application are co-scheduled onto
CMP platforms.

Keywords
Co-scheduling, cache partitioning, HPC application, chip multiprocessor (CMP).

1 Introduction

Co-scheduling applications on a chip multiprocessor
(CMP) has received a lot of attention recently (Mu-
ralidhara et al. (2011); Lo et al. (2016)). The main
motivation is to improve the efficiency of the parallel
execution of each application. Consider for instance the
Gyoukou ZettaScaler supercomputer, currently ranked
#4 in the TOP500 benchmark (Erich Strohmaier et
al. (2017)): it uses PEZY-SC2, a 2048-core processor
chip sharing a 40MB last level cache (LLC) (Computing
(2017)): with so many cores at disposal, few applications
can efficiently be deployed on the entire computing
platform. This is because most application speedup
profiles obey Amdahl’s law, which tends to severely limit
the number of cores to be used in practice.

The remedy is simple: schedule many applications to
execute concurrently; each application receives only a
fraction of the total number of cores, hence its parallel
efficiency is improved. The fraction of computing
resources that should actually be assigned to each
application depends on many factors, including speedup
profiles, but also external constraints prescribed by the
user, such as response times or application priorities.

Unfortunately, the remedy comes with complications:
when multiple applications run concurrently on a CMP,
they compete to access shared resources such as the
LLC, and their performance actually degrades. This
issue turned out so severe (Leverich and Kozyrakis
(2014); Zhuravlev et al. (2010)) that the name co-run
degradation has been coined. Modeling and studying
cache interferences to prevent co-run degradation has
been the object of many studies (Zhang et al. (2014);

Bui et al. (2008); Tian et al. (2009)) (see Section 2 on
related work for more details).

Intel recently introduced a new hardware feature for
cache partitioning called Cache Allocation Technology
(CAT) (Nguyen (2016)). CAT allows the programmer
to reserve cache subsections, so that when several
applications execute concurrently, each of them has its
own cache area. Using CAT, Lo et al. (Lo et al. (2016))
showed experimentally that important gains could be
reached by co-scheduling latency-sensitive applications
with a strict cache partitioning. In this paper, we
also use CAT to partition the LLC into several areas
when co-scheduling applications, but with the objective
of optimizing the throughput of in-situ or in-transit
analysis for large-scale simulations. Indeed, in such
simulations, data is generated at each iteration and
periodically analyzed by parallel processes on dedicated
nodes, concurrently of the main simulation (Sewell et al.
(2015)). If these dedicated nodes belong to the main
simulation platform (thereby reducing the number of
available cores for simulation), we speak of in-situ
processing, while if they belong to an auxiliary platform,
we speak of of in-transit processing (Bauer et al. (2016)).
In both cases, several applications (various kernels

1Inria, Université de Bordeaux, France
2Laboratoire LIP, École Normale Supérieure de Lyon, France
3Georgia Institute of Technology, Atlanta, USA
4University of Tennessee, Knoxville, USA

Corresponding author:
A. Benoit, LIP laboratory, École Normale Supérieure de Lyon, France

Email: Anne.Benoit@ens-lyon.fr

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

for analysis) have to run concurrently to analyze the
data in parallel with the current simulation step. The
constraint is to achieve a prescribed throughput for
each application, because the outcome of the analysis
drives the next steps of the simulation. In the simplest
case, each application will have to complete within the
time of a simulation step, hence we need to achieve the
same throughput for each application, and maximize
that value. In other situations, some applications may
be needed only every k simulation steps, with a different
value of k per application (Malakar et al. (2015)).
This calls for achieving a weighted throughput per
application, and for maximizing the minimum value of
these weighted throughputs, which dictates the global
rate at which the analysis can progress.

The first major contribution of this paper is
to introduce a model that characterizes application
performance, and to show how to optimally decide how
many cores and which cache fraction should be assigned
to each application in order to maximize the weighted
throughput. The second major contribution is to provide
an extensive set of experiments conducted on the Intel
Xeon, which assesses the gains achieved by our optimal
resource allocation strategy.

The rest of the paper is organized as follows.
Section 2 provides an overview of related work.
Section 3 details the main framework and all
application/platform parameters, as well as the
optimization problem. Section 4 presents five co-
scheduling strategies, including a dynamic programming
approach that provides an optimal resource assignment
(according to the model). Section 5 describes the
real cache partitioned platform used to perform the
experiments. Section 6 assesses the accuracy of the
model. Section 7 reports extensive experiments. Finally,
Section 8 summarizes our main contributions and
discusses directions for future work.

2 Related work

Recent multi-core processors show dozens of cores and
large shared caches. In this context, co-scheduling has
been extensively studied (Muralidhara et al. (2011);
Lo et al. (2016)). The main idea behind co-scheduling
is to execute applications concurrently rather than in
sequence in order to improve the global throughput
of the platform. Indeed, many HPC applications are
not perfectly parallel, and it is not beneficial to deploy
them on the entire platform: the application speedup
becomes too low beyond a given core count. A new
trend in large-scale simulations are in-situ and in-transit
approaches, to visualize and analyze the data during
the simulation (Dreher and Raffin (2014)). Basically,
the idea behind these approaches is that a new dataset
is generated periodically, and we need to run different
applications on different parts of this dataset before the
next period. In the in-situ approach, simulation and
analysis are co-located in the same node, while in the
in-transit approach, the data analysis are outsourced
onto dedicated nodes (Bauer et al. (2016)). Several

studies have shown that large-scale simulations with in-
situ could benefit from co-scheduling approaches (Sewell
et al. (2015); Bao et al. (2017)). The difficulty consists
in ensuring that the in-situ part processes the data
fast enough to avoid slowing down the main simulation,
which is directly related to co-scheduling issues: how to
partition the resources across the concurrent analysis
applications that share the CMP?

Shared resources include cache, memory, I/O channels
and network links, but among potential degradation
factors, cache accesses are prominent (Zhuravlev
et al. (2012)). Modeling application interferences is
challenging, and one way to address this problem
is to partition the cache to avoid these potential
interferences. Multiple cache partitioning schemes have
been designed, through hardware techniques (Kim et al.
(2004); Qureshi and Patt (2006); Nesbit et al. (2007))
and software techniques (Taylor et al. (1990); Tam et al.
(2007); Lin et al. (2008); Guan et al. (2009)). Most of
the hardware approaches are efficient with a very low
overhead at the execution time, but they suffer from an
extra cost in terms of hardware components. In addition,
hardware solutions are difficult to implement and often
only tested through simulated architectures. On the
side of software-based solutions, the most popular is
page coloring, where physical pages are selected for
application allocations so that they end up in specific
sections of the cache. Tam et al. (2007) showed that
important gains can be achieved through a static
partitioning of the L2 cache using page coloring. Besides
static strategies, dynamic cache partitioning strategies
using page coloring have also been studied. In Lin et al.
(2008), the cache partitioning is refined and adjusted
periodically at runtime, with the objective to maximize
platform efficiency.

Modeling application interference is a challenging
task. Hence, Hartstein et al. (2008) showed, with the
Power Law of cache misses (or the

√
2 rule), how the

cache size affects the cache miss ratio. The Power Law
states that, if for a baseline cache of size C0, the cache
miss ratio is equal to m0, then for a cache of size C, the
cache miss ratio m = m0

(
C0

C

)α
, where α is usually set

to 0.5.

In a previous work (Aupy et al. (2018)) using this law,
we were focusing on a static allocation of LLC cache
fractions, and core numbers, to concurrent applications
as a function of several parameters (cache-miss ratio,
access frequency, operation count). We used simulations
to assess the performance of our algorithms, because
at that time no cache partitioning technologies were
available. Furthermore, we were only considering the
makespan of the co-schedule, while we aim here at
maximizing a weighted throughput. Indeed, this new
objective better fits the target applications that we
execute on the platform. Also, we focus on iterative
HPC kernels, instead of general applications obeying
Amdahl’s law as in Aupy et al. (2018). Finally, we focus
exclusively on integer numbers of cache fractions and
processors, since fractions cannot be assigned on the
Intel Xeon.

Prepared using sagej.cls



Aupy et al. 3

Intel recently released a new software technique to
internally partition the last level cache (LLC), called the
Cache Allocation Technology (CAT) (Nguyen (2016); Lo
et al. (2016)). In this paper, we use CAT to experiment
with a real cache partitioned platform. To the best of
our knowledge, this work is the first co-scheduling study
for a cache partitioned system (using CAT) with HPC
workloads.

3 Model and optimization problem

In this section, we first describe the application model,
and then we formalize the optimization problem.

3.1 Application model

The objective is to execute m iterative applications
A1, . . . , Am on P identical cores. The applications are
sharing a cache of size C. As explained in Section 1,
new technologies allow us to decide how many cores and
which fraction of cache are allocated to each application.
Specifically, the cache can be divided into X different
fractions. For instance, if X = 20, we can give several
fractions of 5% of the cache to each application.

Let pi be the number of cores on which application Ai
is executed, and let xi be the number of fractions of
cache assigned to Ai, for 1 ≤ i ≤ m. Hence, Ai uses
a cache of size xi

XC. We must have
∑m
i=1 pi = P and∑m

i=1 xi = X, i.e., all the cores and the cache fractions
are partitioned across the applications.

Given pi and xi, an application Ai executes one
iteration in time

Ti(pi, xi) = ti(pi) (1 + hi(xi)) , (1)

where ti(pi) represents the computation cost and hi(xi)
the slowdown induced by cache misses in the LLC.
Intuitively, the computation cost decreases when pi
increases, and similarly, the slowdown decreases when
xi increases. In this formula, the slowdown incurred by
cache misses does not depend on the number of cores
assigned to the application. We keep this assumption in
our model, and discuss its accuracy in Section 6, where
we measure cache misses and refine the model.

Assumption 1. In the execution time, the slowdown
due to cache misses does not depend on the number of
cores involved.

We now detail the model for ti(pi) and hi(xi).

Computations ti(pi). We assume that all applications
obey Amdahl’s law (Amdahl (1967)), hence

ti(pi) = siT
seq
i + (1− si)

T seqi

pi
, (2)

where T seqi is the sequential time of the application
executed with 100% of the cache, and si is the sequential
fraction of the application.

Cache misses effect hi(xi). The most challenging
part is to model the slowdown factor hi(xi). In chip
multiprocessors (CMP), many studies have observed
that cache miss ratio follows the Power Law, also called

the
√

2 rule (Hartstein et al. (2008); Krishna et al.
(2012); Rogers et al. (2009)). The Power Law of cache
misses states that for a cache of size Cact, the cache miss
ratio r can be expressed as

r = r0

(
C0

Cact

)α
, (3)

where r0 represents the cache miss ratio for a baseline
cache of size C0, and α is a parameter ranging from 0.3
to 0.7, with an average at 0.5. We consider α = 0.5 in
the following.

We slightly generalize the Power Law formula (with
α = 0.5) to avoid side effects, and define the slowdown
as follows:

hi(xi) = ai +
bi√
xi
, (4)

where ai and bi are constants depending on the
application Ai. From Equation (3) with α = 0.5, we

have bi = r0

√
C0X
C (since Cact = xi

XC). In Section 6,

we determine ai and bi by interpolation, from
experimentally measured cache misses, see Table 2.

Finally, when assigning pi cores and a fraction xi of
the cache, an application Ai executes one iteration in
time

Ti(pi, xi) = ti(pi)

(
ci +

bi√
xi

)
, (5)

where ci = 1 + ai.

3.2 Optimization problem

As stated in Section 1, the goal is to maximize a
weighted throughput, since analysis applications may be
required at different rates, from every simulation step to
every tenth (or more) step (Malakar et al. (2015)). We
let βi denote the weight of application Ai for 1 ≤ i ≤ m.
Intuitively, βi represents the number of times that we
should execute application Ai at each iteration step.
These priority values are not absolute but relative: for
m = 2 applications, having β1 = 1

4 and β2 = 1 means
we execute four times A2 (at each step) while executing
A1 only once (every fourth step). This is equivalent to
having β1 = 1 and β2 = 4 if we change the granularity of
the simulation steps. In fact, what matters is the relative
number of executions of each Ai that is required, hence
we aim at maximizing the weighted throughput:
• The throughput achieved when executing βi

instances of application Ai is 1
βiTi(pi,xi)

;

• The objective is to partition the shared cache and
assign cores such that the total time taken by
the slowest application is minimal, i.e., the lowest
weighted throughput is maximal.

The weighted throughput allows us to ensure some
fairness between applications, and to enforce a better
analysis rate of the simulation results whenever the
bottleneck is the slowest application. Of course, letting
βi = 1 lead to maximizing the rate of the analysis when
all applications are needed at the same frequency. The
optimization problem is formally expressed below:

Prepared using sagej.cls



4 Journal Title XX(X)

Definition 1. CoSched-CachePart. Given
m iterative applications with priorities
(A1, β1), . . . , (Am, βm) and a platform with P identical
cores sharing a memory of size C with X fractions of
cache, the CoSched-CachePart problem consists in
finding a schedule {(p1, x1), . . . , (pm, xm)} such that

Maximize min
1≤i≤m

{
1

βiTi(pi,xi)

}

subject to

{ ∑m
i=1 pi = P,∑m
i=1 xi = X.

4 Scheduling strategies

In this section, we introduce several co-scheduling
strategies that we will compare via experiments on
the Intel Xeon. We start with a (theoretically) optimal
schedule, and then present simple heuristics that we use
for comparison.

4.1 Optimal solution to
CoSched-CachePart

Given the time to execute one iteration of application Ai
with pi cores and a fraction xi of the cache Ti(pi, xi),
we can solve the CoSched-CachePart problem
optimally, with a dynamic programming algorithm.

Theorem 1. CoSched-CachePart can be solved in
time O(mPX), where m is the number of applications,
P is the number of processors, and X is the number of
different possible cache fractions.

Proof. Let T (i, q, c) be the maximum weighted
throughput that can be obtained with applications
A1, . . . , Ai, using q cores and c fractions of cache. The
goal is to find T (m,P,X). We compute T (i, q, c) as
follows:

T (i, q, c) =



max
1≤q1≤q
1≤c1≤c

1
β1T1(q1,c1)

if i = 1,

max
1≤qi<q
1≤ci<c

{
min

{
T (i− 1, q − qi, c− ci),

1
βiTi(qi,ci)

}}
otherwise.

The base case i = 1, for one application, takes the
best out of all possible allocations (in terms of number
of processors and number of cache fractions). Note that
for most execution time profile, the execution time in
this case is obtained by T (1, q, c) = 1

β1T1(q,c)
, since

using less processors or less fractions of cache would only
increase the execution time, but we write the general
expression to encompass any execution time profile, and
not only the one given by Equation (5).

In the recurrence, we try all possible number
of processors and number of cache fractions for
application i, and re-use the optimal solution for the
i− 1 other applications. If we did not use the optimal
solution, we would be able to create a better solution,
hence it is easy to see that the problem has an optimal

substructure property and can be solved with a dynamic
programming algorithm.

There are mPX values to compute, and they can each
be obtained in constant time, except for the generalized
base case, where we need to perform a maximum over
PX values. Overall, with the execution profile of our
model, we can compute all values in time O(mPX),
and the complexity becomes O(mP 2X2) in the general
case. In practice on the Intel Xeon, we havem ≤ P = 14,
and X = 20, hence the dynamic programming algorithm
executes almost instantaneously in all the experiments.

This optimal algorithm provides us with our first
strategy to schedule applications, and it is called DP-
CP (Dynamic Programming with Cache Partitioning).
Checking the behavior of this strategy in practice will
assess the accuracy of the performance model, when
using the values of Ti(pi, xi) obtained with the model
of Section 3.

4.2 Equal-resource assignment

To evaluate the global efficiency of the optimal solution
for DP-CP, we compare it to Eq-CP, a simple strategy
that allocates the same number of cores and the same
number of cache fractions to each application. The
algorithm is the following: we start to give xi =

⌊
X
m

⌋
and

pi =
⌊
P
m

⌋
for all i, then, we give the P mod m extra

cores one by one to the first P mod m applications,
and we give the X mod m extra cache fractions one by
one to the last X mod m applications. Doing this, we
forbid the case where an application receives an extra
core plus an extra fraction of cache, thereby avoiding a
totally unbalanced equal assignment.

4.3 Impact of cache allocation

In order to isolate the impact of cache partitioning on
performance, we introduce some variants where only the
cache allocation is modified:

• DP-Equal uses the number of cores returned by
the dynamic programming algorithm, hence the
same as for DP-CP, but shares the cache equally
across applications, as done by Eq-CP.

• We also consider strategies that do not enforce any
cache partitioning, but only decide on the number
of cores for each application. DP-NoCP uses the
same number of cores as DP-CP, and Eq-NoCP
uses an equal-resource assignment as in Eq-CP.
However, for these two strategies, all applications
share the whole cache, i.e., CAT is disabled.

Algorithm 1: Equal allocation with cache partition-
ing

1 Eq-CP (m,P,X) begin
2 for i = 1 to m do pi ←

⌊
P
m

⌋
; xi ←

⌊
X
m

⌋
;

3 for i = 1 to P mod m do pi ← pi + 1 ;
4 for i = 1 to X mod m do

xm+1−i ← xm+1−i + 1 ;

5 end

Prepared using sagej.cls



Aupy et al. 5

5 Experimental setup

In this section, we first describe the platform and
the benchmark applications in Section 5.1. Then in
Section 5.2, we explain in details the Cache Allocation
Technology CAT.

5.1 Platform and applications

The experimental platform is composed of a Dell
PowerEdge R730 server with two Intel Xeon E5-
2650L v4 processors (Broadwell microarchitecture).
Each processor contains P = 14 cores (with Hyper-
Threading disabled) sharing a 35MB last-level cache
(Cluster-on-Die disabled), divided intoX = 20 slices (or
fractions). Nodes run a vanilla 4.11.0 Linux kernel with
cache partitioning enabled.

Only one processor (with 14 cores) is used for
the experiments, since the LLC is not shared across
processors. It matches standard practice because users
who co-schedule real-applications often place each
application inside a single processor to benefit from the
shared cache. Batch schedulers also allocate cores of
the same processor whenever possible. Hence our work
focuses on co-scheduling the subset of applications that
are assigned to a single processor by the user or by the
batch scheduler.

Cache experiments are very sensitive to perturba-
tions, so we take great care to ensure that all exper-
iments are fully reproducible. To avoid perturbations:
(i) we average values obtained (like cache misses) over
20 (in Section 6) or 5 (in Section 7) identical runs; (ii)
we flush the last-level cache entirely between runs; and
(iii) experiments run on a dedicated processor while
the program launching and monitoring them runs on
the other processor. All the data presented in this
paper (cache misses, number of floating operations, etc),
is obtained with PAPI 5.5.1 (Browne et al. (2000)).
Each benchmark is compiled using the Intel Fortran
Compiler 17.0.1 with the optimization level -O2 and the
flag -mcmodel=medium.

For validations and performance evaluation, we use
six HPC workloads from the NAS benchmarks (Bailey
et al. (1991)) (see Table 1). We consider only NAS
benchmarks from class A, as detailed in Table 1.

App Description

CG Uses conjugate gradients method to solve
a large sparse symmetric positive definite
system of linear equations

BT Solves multiple, independent systems of
block tridiagonal equations with a predefined
block size

LU Solves regular sparse upper and lower
triangular systems

SP Solves multiple, independent systems of
scalar pentadiagonal equations

MG Performs a multi-grid solve on a sequence of
meshes

FT Performs discrete 3D fast Fourier Transform

Table 1. Description of the NAS parallel benchmarks.

This benchmark allows us to compare different
type of applications, ranging from compute-intensive
to memory-intensive kernels. We have tried most
combinations of applications, in particular using CG,
FT and MG since they lead to significant results.
We believe that the heuristics should behave similarly
on other applications, and the interested reader is
encouraged to experiment with its own applications.
The code of our heuristics is available at graal.

ens-lyon.fr/~abenoit/code/cachepart.tgz.

5.2 Cache Allocation Technology

The Cache Allocation Technology (CAT) (Nguyen
(2016)) is part of a larger set of Intel technologies that
are called the Resource Director Technology (RDT)
and supported since the Haswell architecture. RDT lets
the operating system group applications into classes
of service (COS). Each class of service describes the
amount of resources, in particular cache, that assigned
applications can use.

The CAT divides the LLC into X slices of cache (see
Figure 1). Each class of service has a set of slices that
applications can use: When reading or writing memory
requires to fetch a cache line in the LLC, that cache
line must be allocated in the slices available to the class
of the current application. However applications may
read/modify cache lines that are already available in
other slices, for instance when sharing memory between
programs in different classes (each cache line can only
exist once in the entire cache).

Each slice may only be used by a single class. By
default, applications are placed in the default class
(COS0) which contains slices not used by any other
class. The set of slices available to a class is a capacity
bit-mask (CBM) of length X. With X = 20, if COS1

has access to the last 4 slices (the top 20% of the LLC),
CBM1 would be set to 0xf0000.

Note that CAT has some technical restrictions:
• The number of slices (CBM length) and classes

are architecture dependent (20 and 16 on our
platform);

• A CBM cannot be empty (each class of
applications must have at least one fraction of
cache);

• Bits set in a CBM must be contiguous;
• Slices are not distributed geographically in the

LLC, and address hashing ensures spreading of
slices over the entire LLC; In other words, 0x10000
and 0x00001 CBM should behave exactly the
same with respect to locality; there are no NUCA
effects (Non Uniform Cache Access).

Also, we consider a strict cache partitioning, hence each
COS contains only one application (and each cache slice
is available to a single application).

6 Accuracy of the model

In this section, we assess the precision of the
model developed in Section 3. First, we detail the
experimental protocol and explain how to obtain the
model parameters for each application in Section 6.1.

Prepared using sagej.cls

graal.ens-lyon.fr/~abenoit/code/cachepart.tgz
graal.ens-lyon.fr/~abenoit/code/cachepart.tgz


6 Journal Title XX(X)

LLC

CBM1 = 1110 CBM2 = 0001

p1 p2

COS1

p3

COS2

Figure 1. CAT example with 2 classes of service, 3 cores and
a 4-bit capacity mask (CBM). First COS has 2 cores and 75%
of the LLC, the second class of service has the remaining
resources.

Then, we study in Section 6.2 the behavior of cache
misses on the platform described in Section 5.1, so
as to verify whether the Power Law holds for HPC
workloads on such architectures. Finally, we study in
Section 6.3 the accuracy of the model proposed in
Section 3.1 by comparing the expected execution time
from Equation (5) to the measured one.

6.1 Experimental protocol

To instantiate the model and check its accuracy,
we need to find for each application the value of
three parameters used in Equation (5): si (sequential
fraction), ai (or equivalently ci = ai + 1), and bi
(cache slowdown). To this purpose, we monitor each
application with PAPI (Browne et al. (2000)) and use
multiple interpolations on the produced data to find the
desired constants. More precisely, we proceed as follows.
Each application Ai executes alone on a dedicated
processor. First, we give 100% of the cache to the
application Ai and vary the number of cores from 1 to
14 to derive the sequential fraction si. Then, for each
cache fraction xi ranging from 15% to 85%, we record
the number of cache misses when pi ranges from 1 to
14 and derive values for ci and bi. Finally, we put the
pieces together, keeping the value of si while scaling ci
and bi by a constant factor, thereby deriving the final
values for Ti(pi, xi) in Equation (5).

As a side note, we point out that this complicated
(and definitely not scalable) approach was necessary
because the least-square interpolation program would
not converge when fed directly with 80% of the 280
experimental values for each application (14 processors,
and 16 values of x out of 20). We expect it will be
even more challenging to instantiate the model for future
platforms where the number of cores will be higher.

Note that the Power Law with α = 0.5 suits well
the behavior of compute-intensive benchmarks such as
CG, but struggles to model memory/communication-
intensive applications such as MG and FT. The results
for all applications are displayed in Table 2.

6.2 Accuracy of the Power Law

Figure 2 shows the evolution of cache miss ratios for the
six applications depending on the number of cores and
cache fraction. We observe that for most applications,
the cache miss ratio increases with the number of

Appi ai bi si

BT -0.0026 0.0287 0.010

CG -0.0379 0.0474 0

FT 0.0092 0.0129 0.016

LU -0.0247 0.0275 0.020

MG 0.0460 0.0073 0.065

SP -0.0110 0.0254 0.018

Table 2. si, ai and bi obtained by interpolation from the data
produced by measurements (averaged on the core numbers,
according to Assumption 1).

cores for small cache fractions, while it does not vary
significantly with the number of cores for higher cache
fractions. Therefore, these results verify the assumption
about the relation between number of cores and cache
misses (Assumption 1).

LU MG SP

BT CG FT

5 25 50 75 100 5 25 50 75 100 5 25 50 75 100

5 25 50 75 100 5 25 50 75 100 5 25 50 75 100

0.2

0.4

0.6

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.4

0.5

0.6

0.7

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

Fraction of cache (%)

C
ac
h
e
m
is
s
ra
ti
o

1

5

10

14
Cores

Figure 2. Evolution of cache miss ratio when the cache
fraction xi is ranging from 1 to 20 (i.e., from 5% to 100%)
and the number of cores pi is ranging from 1 (blue) to 14
(red).

LU (α = 1.146) MG (α = 0.084) SP (α = 0.485)

BT (α = 0.446) CG (α = 0.795) FT (α = 0.019)

25 50 75 100 25 50 75 100 25 50 75 100

25 50 75 100 25 50 75 100 25 50 75 100

0.12

0.16

0.20

0.24

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

Fraction of cache (%)

C
a
ch
e
m
is
s
ra
ti
o

Experimental data Interpolation Model α = 0.5

Figure 3. Comparison between the predicted cache miss ratio
given by the Power Law with α = 0.5 in red, the best found α
parameter in blue and the measured cache miss ratio in black.
Applications run alone on the platform with 1 core.

On Figure 3, we study the evolution of cache
miss ratios for each considered application, running
alone with a single core. We do not look at cache
fractions below x = 3 (or 15%) because, according to

Prepared using sagej.cls



Aupy et al. 7

our experiments, it shows irrelevant results due to
cache contention. We observe that the Power Law with
α = 0.5 suits well the behavior of compute-intensive
benchmarks CG, BT, LU and SP, but struggles to model
memory/communication-intensive applications like MG
and FT.

6.3 Accuracy of the execution time

We aim at verifying the accuracy of the execution
time predicted by the model. Figure 4 shows, for
each application, the comparison between the measured
execution time and the model, when the application
runs alone on the platform (no co-scheduling here). In
Figure 4 , the number of cores varies from 1 to 14 while
the cache fraction is fixed at x = 3 (or 15%).

LU MG SP

BT CG FT

1 5 10 14 1 5 10 14 1 5 10 14

1 5 10 14 1 5 10 14 1 5 10 14

1

2

3

4

5

10

20

30

40

0.5

1.0

1.5

0.4

0.8

1.2

20

40

60

80

10

20

30

40

50

Number of cores

E
x
ec
u
ti
on

ti
m
e
(s
)

Measured Data Model

Figure 4. Comparison between predicted execution time by
the model and measured execution time, when varying the
number of cores up to 14 and with a cache fraction set to
15%.

LU MG SP

BT CG FT

0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15 0 5 10 15

25

50

75

25

50

75

25

50

75

25

50

75

25

50

75

25

50

75

Number of cores

F
ra
ct
io
n
of

ca
ch
e
(%

)

0.2

0.4

0.6
Error

Figure 5. Heat-map of the relative error between the model
predictions and the measured execution times when the cache
fraction is varying from 15% to 85% and the number of cores
from 1 to 14.

Figure 5 shows the relative error between predictions
and the real data. The relative error is defined as

Ei(pi, xi) =

∣∣Ti(pi, xi)− T reali (pi, xi)
∣∣

T reali (pi, xi)
,

where T reali (pi, xi) is the measured execution time on
the cache partitioned platform for application Ai with

pi cores and xi fractions of cache. We observe that our
model predicts execution times rather well for LU, BT,
CG and MG, with less than 25% of error for worst
cases. For FT, the model is accurate for xi ≥ 6 (30%)
and pi ≤ 10, with a relative error below 15%, but the
model loses accuracy for small cache fractions and high
number of cores. For SP, we have the same observation,
the model is not accurate for a number of cores larger
than 8 if the cache fraction is below 50% (the red part
in the Figure 5). This is due to a specific behavior
of FT and SP: their execution times tend to become
constant after a certain core threshold (see Figure 4),
while the model expects a strictly decreasing execution
time. For both applications, this constant plateau is not
due to Amdahl’s law (both FT and SP are parallel
enough to scale up to 14 cores), hence a contention
effect (either from the cache or the memory bandwidth)
is probably behind this constant level in performance.
Another reason to explain these mis-predictions when
the number of cores increases, is Assumption 1, which
states that the number of cores does not impact LLC
cache misses, which is not true for all applications in
practice.

7 Results

To assess the performance of the scheduling strategies
of Section 4 and to evaluate the impact of cache
partitioning on co-scheduling performance, we conduct
an extensive campaign of experiments using a real cache
partitioned system.

7.1 Experimental protocol

The platform and the applications used for all the
experiments are described in Section 5. Recall that we
consider iterative applications, hence we have modified
their main loop such that each of them computes for a
duration T . We choose a value for T large enough to
ensure that each application reaches the steady state
with enough iterations (for instance, T = 3 minutes
for small applications like CG, FT, MG and T = 10
minutes for the others). If a co-schedule contains both
small and big applications, we use T = 10 minutes
for all applications. In addition, for all the following
experiments, we use 12 cores out of the 14 available, to
avoid rounding effects when we co-schedule a number of
applications that is not divisible by the number of cores.

Evaluation framework. To study the performance
of the different algorithms in terms of weighted
throughput, we measure the time for one iteration
of Ai: Ti = T

#iteri
, where #iteri is the number of

iterations of application Ai during T . Then, we compute
mini

1
βiTi

. We are then interested in the relative speed
of each application with respect to the others. Indeed,
recall that for all i, j, the goal is to have βiTi = βjTj ,
by definition of the β’s. Hence, we further study the
following fairness criterion, representing the distance to
the optimal fairness, ∆fairness:

∆fairness =
∑
i 6=j

∣∣∣∣ βiTiβjTj
− 1

∣∣∣∣ . (6)

Prepared using sagej.cls



8 Journal Title XX(X)

In addition to studying the maximum weighted
throughput that can be obtained with the applications,
we also report the value of ∆fairness in the experiments,
so as to assess whether the heuristics are ensuring that
the correct number of iterations of each application is
performed during a given amount of time. The goal is
to have ∆fairness as close to 0 as possible.

7.2 Impact of cache partitioning

The first step is to assess the impact of cache
partitioning (CP) on performance. To this purpose,
we co-schedule two applications, so we have three
combinations (CG+MG, CG+FT, FT+MG). For all
i, j, we set the number of cores for Ai and Aj to
six, and we vary the fraction of cache allocated to Ai
from 5% to 95% while, at the same time, the cache
fraction of Aj is varying from 95% to 5%. The y-axis
represents the aggregated number of iterations executed
by all applications. We run the applications both with
CP enabled, and CP not enabled. Figure 6a shows
the impact of CP for CG+MG: we can see that when
CG has more than 35% of the cache, CP outperforms
the version without CP. The impact of CP lies in the
behavior of each application, more specifically their data
access pattern. CG is a compute intensive application
with an irregular memory access pattern, while MG is
a memory intensive application. More specifically, MG
does not take a great benefit for more cache after 35%,
while the performance of CG greatly depends on the
cache size (for more details on application behaviors,
see Figure 2). Without a cache partitioning scheme, by
reading/writing a lot of different cache lines, MG will
often evict CG cache lines, resulting into a performance
degradation of both applications.

Figure 6b shows the impact of CP for CG+FT. In
this case, we note a small improvement when CG has
80% of the cache. The reason behind this improvement
is that FT is more communication intensive (all-to-all
communication) than strictly memory intensive, hence
the gain obtained by CP is less important than for
CG+MG. Since we consider only one processor, the
applications that run are the shared memory version
(OpenMP), and in that context, the impact of cache on
communications is small.

Finally, Figure 6c presents the result for the last
combination FT+MG. The cache partitioning is not
efficient for that combination of two memory and
communication intensive applications. If FT has 25%
and MG has 75%, then CP can almost achieve the
same performance as without CP. This inefficiency is
mostly due to the memory intensive and communication
intensive behaviors of both applications involved, none
of them needs a strict cache partitioning, since their use
of the cache varies during iterations.

Summary. The cache partitioning is very interesting
when compute-intensive and memory-intensive applica-
tion are co-scheduled (important gain, up to 25%, for
CG+MG, small gain for CG+FT). On the contrary,
FT and MG together perform badly with the cache
partitioning enabled, these applications do not benefit

800

900

1000

1100

1200

5% 25% 35% 50% 75% 95%
Fraction of cache reserved for CG

T
ot
al

n
u
m
b
er

o
f
it
er
at
io
n
s

Cache partitioning Without cache partitioning

(a) CG and MG

600

800

1000

5% 25% 35% 50% 75% 95%
Fraction of cache reserved for CG

T
ot
al

n
u
m
b
er

o
f
it
er
at
io
n
s

Cache partitioning Without cache partitioning

(b) CG and FT

600

650

700

750

5% 25% 35% 50% 75% 95%
Fraction of cache reserved for FT

T
ot
al

n
u
m
b
er

of
it
er
at
io
n
s

Cache partitioning Without cache partitioning

(c) FT and MG

Figure 6. CG+MG, CG+FT or FT+MG with 6 cores for each
application, with different cache partitioning strategies.

from the cache to improve their execution time by iter-
ation. Hence, the behavior of applications has a strong
impact on the global performance of cache partitioning,
and in general, co-scheduling applications with the same
behavior results in degraded global performance when
using CP.

7.3 Co-scheduling results with two applications

Now that we have demonstrated the interest of cache
partitioning, we study the performance of the scheduling
strategies of Section 4. Recall that the CoSched-
CachePart optimization problem aims at maximizing
the minimum weighted throughput among co-scheduled
applications. Considering two applications (Ai, Aj), for
βi iterations of Ai, we aim at performing βj iterations
of Aj . To avoid some cache effects that appear when
the cache area is too small, we set the minimum cache
fraction allocated to each application to three (each

Prepared using sagej.cls



Aupy et al. 9

application has at least 15% of the cache), while the
minimum number of cores per application is set to one.
We use three different ways to present the result for
each studied combination: (i) the objective we want
to maximize (minimum weighted throughput), (ii) the
ratio of iterations done, and (iii) the fairness ∆fairness

defined in Equation (6).

CG+MG. On Figure 7a, we see what is the minimum
throughput achieved by each method for CG+MG. The
weight β associated to MG varies from 0.25 to 4. The
algorithms based on dynamic programming DP-CP,
DP-Equal and DP-NoCP outperform both equal-
resource assignment heuristics Eq-CP and Eq-NoCP.
In this scenario, the cache partitioning provides a good
performance improvement, since on average DP-CP
outperforms DP-NoCP.

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

T
c
g

T
m
g

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is
better).

0

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Fairness ∆fairness (lower is better).

Figure 7. CG and MG when βmg is varying from 0.25 to 4.

Figure 7b shows the ratio of iterations for CG+MG.
Ideally, we would like to obtain βcgTcg = βmgTmg, the

dashed black line represents that optimal iteration ratio.
First, note that Eq-CP and Eq-NoCP show constant
results because they do not depend on weight, but Eq-
CP performs better (even without a clever algorithm,
cache partitioning helps). Second, we observe that DP-
CP is the closest (on average) to the ideal line, hence
the cache partitioning really helps here.

Finally, Figure 7c presents the fairness ∆fairness, as
defined in Equation (6). We observe that DP-CP, DP-
NoCP and DP-Equal exhibit the same ∆fairness, near
to zero, while Eq-CP and Eq-NoCP are far from the
optimal fairness.

CG+FT. In Figure 8a, we observe that DP-CP,
DP-Equal and DP-NoCP outperform Eq-CP and
Eq-NoCP when βft is larger than 0.5. Only, DP-
NoCP outperforms Eq-NoCP all the time. When
βft is smaller than 0.5, the two variants without
cache partitioning perform better than the two versions
with cache partitioning. As explained in Section 7.2,
due to its communication-intensive behavior, FT will
not benefit a lot from cache partitioning techniques.
Figure 8b presents the iteration ratio (i.e., the fairness
among co-scheduled applications) when we co-schedule
CG+FT: DP-CP, DP-Equal and DP-NoCP exhibit
good performance, and we are very close to the dashed
line that represents the ideal iteration ratio to reach. On
Figure 8c, we observe the fairness ∆fairness: Eq-CP and
Eq-NoCP show a poor ∆fairness as expected, and DP-
CP, DP-Equal and DP-NoCP show the same good
performance, very close to zero.

MG+FT. Figure 9a presents the results obtained
for MG+FT. DP-CP, DP-Equal and DP-NoCP
outperform Eq-CP and Eq-NoCP, except for βft lower
than 0.50. For both DP-CP and Eq-CP, the cache
partitioning does not bring much improvement. The
main reason is that co-scheduling one memory and one
communication intensive application is not very efficient
(see Section 7.2). Figure 9b shows that DP-CP, DP-
Equal and DP-NoCP perform well, very close to the
ideal iteration ratio (the dashed line). On Figure 9c, we
note that the fairness ∆fairness is close to zero for DP-
CP, DP-Equal and DP-NoCP, while (logically) the
∆fairness is larger (hence worst) for Eq-CP and Eq-
NoCP.

BT, LU, SP co-scheduled with MG. Figures 10, 11
and 12 show the minimum throughput (on the left)
and the fairness ∆fairness (on the right) obtained
by co-scheduling, respectively, BT+MG, LU+MG and
SP+MG. For the minimum throughput (on the left
of each figure), all results are quite similar, and all
variants based on our algorithm DP-CP outperform
Eq-CP and Eq-NoCP. The cache partitioning does not
bring a significant gain in this scenario, but DP-CP
is almost always better than DP-NoCP. We observe
that DP-Equal always performs worst than DP-CP
and DP-NoCP, which means that doing a naive cache
partitioning (an equal one in that case) can lead to
significant performance degradations. Concerning the
fairness ∆fairness, values are quite high in all cases.
Indeed, BT, LU and SP are much larger than MG in

Prepared using sagej.cls



10 Journal Title XX(X)

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

T
c
g

T
f
t

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is
better).

0.0

2.5

5.0

7.5

10.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Fairness ∆fairness (lower is better).

Figure 8. CG and FT when βft is varying from 0.25 to 4.

terms of number of operations (by roughly 103), hence
it is impossible to do, for instance, four times more
iterations of LU than iterations of MG without a very
large value of T (the time during which we compute
applications).

Special case: CG and MG when each application has six
cores. We are now considering a special case, in order
to investigate how the cache is impacting co-scheduling
performance. In this case, all applications have the same
number of cores (six in our case), so only the cache is
available to increase performance. Figure 13a shows the
global performance of all methods. Obviously, only DP-
CP takes advantage of this scenario because only this
method can choose how to partition the cache. If βmg
is smaller than 1, it means that we have to compute
more CG than MG, and in that case, the cache has
a strong effect (up to 25% improvement with cache
partitioning enabled). With this scenario, we are able

1

2

3

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

1

2

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

T
m
g

T
f
t

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is
better).

0.0

2.5

5.0

7.5

10.0

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Fairness ∆fairness (lower is better).

Figure 9. MG and FT when βft is varying from 0.25 to 4.

0.08

0.10

0.12

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.4

0.6

0.8

1.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 10. Minimum throughput and ∆fairness for BT+MG.

to isolate which part of performance relies on cache
effect. Figure 13b depicts the iteration ratio achieved
with an equal number of cores for each application.
We observe that with only the cache, it is hard to
enforce the required ratio of the number of iterations,
according to the values of the βi. Figure 13c represents
the fairness ∆fairness between the ideal iteration ratio
and the iteration ratio obtained with each method. Note

Prepared using sagej.cls



Aupy et al. 11

0.100

0.125

0.150

0.175

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.25

0.50

0.75

1.00

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 11. Minimum throughput and ∆fairness for LU+MG.

0.09

0.12

0.15

0.18

0.21

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0.4

0.6

0.8

1.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 12. Minimum throughput and ∆fairness for SP+MG.

that the fairness ∆fairness is high for every method, but
the ∆fairness of DP-CP is the smallest.

Summary. The model is accurate enough to enforce
that the corresponding optimal DP algorithm performs
well: in most cases, DP-CP, DP-Equal and DP-
NoCP outperform Eq-CP and Eq-NoCP. On the
cache partitioning side, when co-scheduling CG and
MG, the cache partitioning is really interesting to
isolate applications that pollute the cache, such as MG.
Figure 13a clearly shows the impact of cache on
performance when the number of cores is set for each
application. In the worst cases, for instance with FT
and MG, the cache partitioning does not improve
performance, but does not degrade it either.

7.4 Co-scheduling results with three
applications

In this section, we present the results with three co-
scheduled applications. Similarly to the case with two
applications, with three applications (A1, A2, A3), only
β3 is ranging from 0.25 to 4, while β1 = β2 = 1. First, we
focus only on co-schedules with CG and MG, because
they are very interesting applications to study. Second,
we study all combinations of co-scheduling with CG, FT
and MG. We do not look at the iteration ratio in this
section, but focus on minimum throughput and fairness
∆fairness.

2CG+MG. Figure 14 shows the minimum throughput
obtained when we co-schedule 2CG+MG, while the
weight associated to MG is ranging from 0.25 to 4. Note
that it is interesting to co-schedule multiple copies of
the same application (two CGs in this scenario) in order
to improve the global efficiency, when this application
exhibits a speedup profile with limited gain from adding
extra cores and/or extra fractions of caches. We observe
that the scheduling strategies building on the dynamic
programming algorithm DP-CP, DP-Equal and DP-
NoCP outperform Eq-CP and Eq-NoCP. In addition,
cache partitioning is very helpful in this case: DP-CP
exhibits a gain around 15% on average over DP-NoCP
and DP-Equal. The fairness ∆fairness is also depicted

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

(a) Minimum throughput (higher is better).

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

T
c
g

T
m
g

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(b) Iteration ratio done (closer to the solid black line is
better).

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

(c) Fairness ∆fairness (lower is better).

Figure 13. CG and MG when βmg is varying from 0.25 to 4
and when both applications have six cores.

on the right. Recall that ideally, we would like to have
βiTi = βjTj for all i, j (see Equation (6)). We observe
that the method that is the closest to zero is DP-CP,
confirming the strong influence of cache partitioning.

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 14. Minimum throughput and ∆fairness for
2CG+MG.

2MG+{CG, BT, LU, SP}. Figure 15 presents the
minimal throughput obtained by each method when

Prepared using sagej.cls



12 Journal Title XX(X)

we co-schedule 2MG+CG, where the weight of CG is
ranging from 0.25 to 4. Again, the DP-based strategies
DP-CP, DP-Equal and DP-NoCP exhibit good
performance for βcg smaller than 0.50, but they suffer
from a lack of performance when βcg is between 0.50 and
1. When βcg is larger than 1, DP-CP becomes the best
method again. On the right of Figure 15, we can see the
confirmation that the proposed dynamic programming
algorithm is the method that best minimizes the
fairness ∆fairness, even though the cache partitioning
with DP-CP and DP-Equal does not bring any clear
advantage in this scenario. This is mainly due to
the fact that the application with the varying weight
is a compute-intensive application, co-scheduled with
two memory-intensive applications. According to our
experiments, when compute-intensive applications are
outnumbered by memory-intensive applications, the
cache partitioning is often less efficient.

0.5

1.0

1.5

2.0

2.5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βCG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

2

4

6

8

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βcg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 15. Minimum throughput and ∆fairness for
2MG+CG.

Figures 16, 17 and 18 also present the minimal
throughput obtained when we co-schedule, respectively,
2MG+BT, 2MG+LU and 2MG+SP. 2MG co-scheduled
with BT, LU or SP lead to the same behavior for the
minimum throughput and the fairness ∆fairness, the
variants based on our dynamic algorithm DP-CP, DP-
Equal and DP-NoCP perform better than Eq-CP
and Eq-NoCP. The fairness ∆fairness, for the three
cases, is very large. The reason behind the large values
of ∆fairness is that MG is very small compared to LU,
BT and SP.

0.0

0.1

0.2

0.3

0.4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βBT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

300

400

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βbt

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 16. Minimum throughput and ∆fairness for
2MG+BT.

CG+MG+FT. Figure 19 shows the minimum
throughput obtained when co-scheduling the three
different applications, while varying only the weight
βft of FT. We observe that the performance of the
three DP-based algorithms is close to the performance
obtained with the equal-resource assignment for βft
smaller than 0.5, but for the other cases, DP-CP and
all its variants outperform Eq-CP and Eq-NoCP. The
fairness ∆fairness leads to the same conclusion: DP-
CP, DP-NoCP and DP-Equal are much closer to

0.0

0.2

0.4

0.6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βLU

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

300

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βlu

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 17. Minimum throughput and ∆fairness for
2MG+LU.

0.0

0.2

0.4

0.6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βSP

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

100

200

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βsp

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 18. Minimum throughput and ∆fairness for 2MG+SP.

zero than Eq-CP and Eq-NoCP, especially when βft
is larger than 0.5.

0.5

1.0

1.5

2.0

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

5

10

15

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βft

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 19. Minimum throughput and ∆fairness for CG, MG
and FT.

Next, Figure 20 is the counterpart of Figure 19 when
varying only the weight βmg of MG. The results obtained
by the DP-based algorithms are very good with an
average gain around 50% over the Eq-CP variants,
especially when βmg is below 1. We note that the cache
partitioning does not take advantage of this scenario,
DP-CP shows degraded performance compared to DP-
NoCP. For the fairness ∆fairness, the method that
performs best is DP-CP, close to DP-NoCP and DP-
Equal though.

0.50

0.75

1.00

1.25

1.50

1.75

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 20. Minimum throughput and ∆fairness for CG, FT
and MG.

Finally, Figure 21 is the counterpart of Figures 19
and 20 when varying only βcg. The behavior of all
DP-CP variants is interesting: for 0.25 ≤ βcg ≤ 0.44,
the resource allocation, both for cores and cache,
does not change, resulting into the decreasing of the
minimum weighted throughput when βcg is increasing

Prepared using sagej.cls



Aupy et al. 13

(so 1
βcgTcg

, which is actually the minimum here, is

decreasing). At βcg = 0.5, the allocation of resources
changes for DP-CP variants (more and more resources
are allocated to CG, in order to fit the increasing
requirement). We observe that DP-CP, DP-Equal
and DP-NoCP logically outperform Eq-CP and Eq-
NoCP to maximize the minimum weighted throughput
among the co-scheduled applications. However, the
cache partitioning does not help in this scenario, mainly
because we vary the weight of the only compute-
intensive application. In terms of fairness ∆fairness,
obviously DP-CP, DP-Equal and DP-NoCP perform
better than Eq-CP and Eq-NoCP. Among DP-CP,
DP-Equal and DP-NoCP, we see that the cache
partitioning version is the best method to minimize the
fairness ∆fairness.

0.50

0.75

1.00

1.25

1.50

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βCG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βcg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure 21. Minimum throughput and ∆fairness for MG, FT
and CG.

Summary. Overall, we showed that we can obtain
significant gains using cache partitioning (CP) when
co-scheduling three applications, but it is not always
the case. The difficulty of obtaining some gain with
CP increases with the number of applications involved.
The first reason lies in the cache size, often too small
to be efficiently partitioned between the applications.
The second reason is related to the behavior of the
co-scheduled applications. The results show that co-
scheduling one or two compute-intensive applications,
such as CG, plus one memory-intensive application,
such as MG, is a good way to achieve significant
improvements with CP. CG is a compute-intensive
kernel that performs a lot of irregular memory accesses,
while MG is a memory-intensive kernel, hence if we co-
schedule one CG and one MG, MG will frequently evict
cache lines belonging to CG, which will slow down its
execution.

7.5 Scalability and accuracy results

Scalability results. In order to study the scalability
of the results, we have plotted on Figure 22 the total
number of iterations done by DP-CP and DP-NoCP
when varying the maximal fraction of cache used (from
10 to 20, i.e., from 50% to 100%). The only case where
cache partitioning is useful is for the combination of CG
with MG when a large part of the cache is available (at
least 85%). This is in line with previous results, i.e., it
is beneficial to schedule compute-intensive applications
with a memory-intensive application. This figure leads
us to think that future architectures with larger caches
may benefit more from cache partitioning for these kinds
of applications.

0.90

0.95

1.00

10 12 14 16 18 20

Maximal fraction of cache used

It
er
at
io
n
ra
ti
o:

D
P
-C

P
/
D
P
-N

o
C
P

1CG+1FT 1CG+1MG 1FT+1MG

Figure 22. Iteration ratio when using cache partitioning
compared to the solution without cache partitioning.

Accuracy results. In order to study the impact of
model accuracy on the performance, we have plotted
on Figure 23 the minimum throughput done by DP-
CP when varying the weight of the second application
for three different models. We instantiate the DP-CP
algorithm with two different interpolations: the first
one uses P ×X points where P is the total number
of processors and X the total number of cache slices,
denoted High accuracy on Figure 23. The second one,
denoted Low accuracy, is an interpolation that only uses
P +X (29) values instead of P ×X (220): to obtain
ai, bi and si we only consider cache slices from 15% to
85% with 1 processor, and from 1 to 14 processors with
100% of the cache slices. Finally, we also compared the
performance obtained by running DP-CP with the real
experimental values T reali (pi, xi), depicted as Real data
on Figure 23. We observe that decreasing the accuracy
of the model by interpolating much less points still leads
to good results. This leads us to think that our approach
is robust enough to reduce the amount of data needed
to feed the model and thus, gain in scalability.

8 Conclusion

We have investigated the problem of co-scheduling
iterative HPC applications, using the CAT technology
provided by Intel to partition the cache. We have
proposed a model for the execution time of each
application, given a number of cores and a fraction of
cache, and we have shown how to instantiate the model
on applications coming from the NAS benchmarks.
The model turns out to be accurate, as shown in
the experiments where we compare the execution
time predicted by the model to the real execution
time. Several scheduling strategies have been designed,
with the goal to maximize the minimum weighted
throughput of each application. In particular, we have
introduced an optimal strategy for the model, based
upon a dynamic programming algorithm. The results
demonstrate that in practice, the optimal strategy often
leads to better results than a naive strategy sharing
equally the resources between applications. Also, we
have determined which combinations of applications
benefit most from cache partitioning, and demonstrated
the usefulness of cache partitioning.

Future work will be devoted to pursuing this
experimental study. We hope to get access to platforms

Prepared using sagej.cls



14 Journal Title XX(X)

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

High accuracy Low accuracy Real data

(a) CG+MG.

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

High accuracy Low accuracy Real data

(b) CG+FT.

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βFT

m
in
i

1
β
i
T
i

High accuracy Low accuracy Real data

(c) MG+FT.

Figure 23. Minimum throughput when using DP-CP with
three input models.

with larger shared caches, so that we could scale up
the experiments and confirm the usefulness of cache
partitioning techniques.

Notes

∗. A preliminary version of this work appeared in the

proceedings of IEEE Cluster 2018.

References

Amdahl G (1967) The validity of the single processor

approach to achieving large scale computing capabilities.

In: AFIPS Conference Proceedings. pp. 483–485.

Aupy G, Benoit A, Dai S, Pottier L, Raghavan P, Robert

Y and Shantharam M (2018) Co-scheduling Amdahl

applications on cache-partitioned systems. The Int.

Journal of High Performance Computing Applications

32(1): 123–138.

Bailey DH et al. (1991) The NAS Parallel Benchmarks -

Summary and Preliminary Results. In: Proc. of the

1991 ACM/IEEE Conf. on Supercomputing. ISBN 0-

89791-459-7. DOI:10.1145/125826.125925. URL http:

//doi.acm.org/10.1145/125826.125925.

Bao S, Huo Y, Parvathaneni P, Plassard AJ, Bermudez

C, Yao Y, Llyu I, Gokhale A and Landman BA

(2017) A data colocation grid framework for big data

medical image processing-backend design. arXiv preprint

arXiv:1712.08634 .

Bauer AC, Abbasi H, Ahrens J, Childs H, Geveci B, Klasky

S, Moreland K, O’Leary P, Vishwanath V, Whitlock

B et al. (2016) In situ methods, infrastructures, and

applications on high performance computing platforms.

In: Computer Graphics Forum, volume 35. Wiley Online

Library, pp. 577–597.

Browne S, Dongarra J, Garner N, Ho G and Mucci P (2000)

A portable programming interface for performance

evaluation on modern processors. The international

journal of high performance computing applications

14(3): 189–204.

Bui BD, Caccamo M, Sha L and Martinez J (2008) Impact of

cache partitioning on multi-tasking real time embedded

systems. In: 4th IEEE Int. Conf. on Embedded and

Real-Time Computing Systems and Applications. IEEE

Computer Society, pp. 101–110.

Computing P (2017) Zettascaler-2.0 configurable

liquid immersion cooling system. URL http:

//www.exascaler.co.jp/wp-content/uploads/2017/

11/zettascaler2.0_en_page.pdf.

Dreher M and Raffin B (2014) A Flexible Framework for

Asynchronous In Situ and In Transit Analytics for Sci-

entific Simulations. In: 14th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing.

Chicago, United States: IEEE Computer Science Press.

URL https://hal.inria.fr/hal-00941413.

Erich Strohmaier et al (2017) The top500 benchmark.

https://www.top500.org/.

Guan N, Stigge M, Yi W and Yu G (2009) Cache-aware

scheduling and analysis for multicores. In: Proc. 7th

ACM Int. Conf. Embedded Software, EMSOFT ’09.

ACM, pp. 245–254.

Hartstein A, Srinivasan V, Puzak T and Emma P (2008) On

the nature of cache miss behavior: Is it
√

2. The Journal

of Instruction-Level Parallelism 10: 1–22.

Kim S, Chandra D and Solihin Y (2004) Fair cache sharing

and partitioning in a chip multiprocessor architecture.

In: Proceedings of the 13th International Conference

on Parallel Architectures and Compilation Techniques.

IEEE Computer Society, pp. 111–122.

Krishna A, Samih A and Solihin Y (2012) Data sharing

in multi-threaded applications and its impact on chip

design. In: Int. Symp. Performance Analysis of Systems

and Software (ISPASS). IEEE, pp. 125–134.

Leverich J and Kozyrakis C (2014) Reconciling high server

utilization and sub-millisecond quality-of-service. In: 9th

European Conf. on Computer Systems.

Lin J, Lu Q, Ding X, Zhang Z, Zhang X and Sadayappan

P (2008) Gaining insights into multicore cache parti-

tioning: Bridging the gap between simulation and real

Prepared using sagej.cls

http://doi.acm.org/10.1145/125826.125925
http://doi.acm.org/10.1145/125826.125925
http://www.exascaler.co.jp/wp-content/uploads/2017/11/zettascaler2.0_en_page.pdf
http://www.exascaler.co.jp/wp-content/uploads/2017/11/zettascaler2.0_en_page.pdf
http://www.exascaler.co.jp/wp-content/uploads/2017/11/zettascaler2.0_en_page.pdf
https://hal.inria.fr/hal-00941413
https://www.top500.org/


Aupy et al. 15

systems. In: High Performance Computer Architecture,

2008. HPCA 2008. IEEE 14th International Symposium

on. IEEE, pp. 367–378.

Lo D, Cheng L, Govindaraju R, Ranganathan P and

Kozyrakis C (2016) Improving resource efficiency at scale

with Heracles. ACM Transactions on Computer Systems

(TOCS) 34(2).

Malakar P, Vishwanath V, Munson T, Knight C, Hereld M,

Leyffer S and Papka ME (2015) Optimal scheduling of

in-situ analysis for large-scale scientific simulations. In:

Proc. of the Int. Conf. for High Performance Computing,

Networking, Storage and Analysis, SC’15.

Muralidhara SP, Subramanian L, Mutlu O, Kandemir M

and Moscibroda T (2011) Reducing memory interference

in multicore systems via application-aware memory

channel partitioning. In: Proc. 44th IEEE/ACM Int.

Sym. Microarchitecture, MICRO-44. ACM, pp. 374–385.

Nesbit KJ, Laudon J and Smith JE (2007) Virtual private

caches. ACM SIGARCH Computer Architecture News

35(2): 57–68.

Nguyen KT (2016) Introduction to Cache Allocation Tech-

nology in the Intel R© Xeon R© Processor E5 v4 Fam-

ily. https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology.

Qureshi MK and Patt YN (2006) Utility-based cache par-

titioning: A low-overhead, high-performance, runtime

mechanism to partition shared caches. In: Microar-

chitecture, 2006. MICRO-39. 39th Annual IEEE/ACM

International Symposium on. IEEE, pp. 423–432.

Rogers BM, Krishna A, Bell GB, Vu K, Jiang X and Solihin

Y (2009) Scaling the bandwidth wall: challenges in and

avenues for CMP scaling. ACM SIGARCH Computer

Architecture News 37(3): 371–382.

Sewell C et al. (2015) Large-scale compute-intensive analysis

via a combined in-situ and co-scheduling workflow

approach. In: Proc. of the Int. Conf. for High Perf.

Computing, Networking, Storage and Analysis, SC’15.

Tam D, Azimi R, Soares L and Stumm M (2007) Managing

shared l2 caches on multicore systems in software. In:

Workshop on the Interaction between Operating Systems

and Computer Architecture. Citeseer, pp. 26–33.

Taylor G, Davies P and Farmwald M (1990) The tlb slice-a

low-cost high-speed address translation mechanism. In:

Computer Architecture, 1990. Proceedings., 17th Annual

International Symposium on. IEEE, pp. 355–363.

Tian K, Jiang Y and Shen X (2009) A study on

optimally co-scheduling jobs of different lengths on chip

multiprocessors. In: Proc. 6th ACM Conf. Computing

Frontiers, CF ’09. ACM, pp. 41–50.

Zhang Y, Laurenzano MA, Mars J and Tang L (2014) Smite:

Precise QOS prediction on real-system SMT processors

to improve utilization in warehouse scale computers. In:

Proc. of the 47th Int. Symp. on Microarchitecture. pp.

406–418.

Zhuravlev S, Blagodurov S and Fedorova A (2010)

Addressing shared resource contention in multicore

processors via scheduling. ACM Sigplan Notices 45(3):

129–142.

Zhuravlev S, Saez JC, Blagodurov S, Fedorova A and

Prieto M (2012) Survey of scheduling techniques for

addressing shared resources in multicore processors.

ACM Computing Surveys (CSUR) 45(1): 4.

Author biography

Guillaume Aupy is a tenured researcher at Inria
Bordeaux – Sud-Ouest. His research interests include
algorithm design and scheduling techniques for parallel and
distributed platforms, and also the performance evaluation
of parallel systems. Specifically his current focus revolves
around data-aware scheduling at the different levels of the
memory hierarchy (cache, memory, buffers, disks).

He completed his PhD at ENS Lyon in 2014 on
reliable and energy efficient scheduling strategies in High-
Performance Computing, after which he worked as a research
Assistant Professor at Penn State University and Vanderbilt
University. He served as the Technical Program vice-chair for
SC’17, workshop chair for SC’18 and algorithm track vice-
chair for ICPP’18.

Anne Benoit received the PhD degree from Institut
National Polytechnique de Grenoble in 2003, and the
Habilitation à Diriger des Recherches (HDR) from École
Normale Supérieure de Lyon (ENS Lyon) in 2009. She is
currently an associate professor in the Computer Science
Laboratory LIP at ENS Lyon, France. She is the author
of one book, 45 papers published in international journals,
and 91 papers published in international conferences. She is
the advisor of 9 PhD theses. Her research interests include
algorithm design and scheduling techniques for parallel and
distributed platforms, and also the performance evaluation
of parallel systems and applications, with a focus on energy
awareness and resilience. She is Associate Editor (in Chief) of
Parco, and Associate Editor of IEEE TPDS and JPDC. She
is the program chair of several workshops and conferences,
in particular she is technical papers chair for SC’2017 and
program chair for IPDPS’2018. She is a senior member of the
IEEE, and she has been elected a Junior Member of Institut
Universitaire de France in 2009.

Brice Goglin is research scientist at Inria Bordeaux –
Sud-Ouest. He earned his PhD at Ecole normale superieure
de Lyon (France) in 2005. He then worked for Myricom, inc.
(Oak Ridge, TN) as a software architect for low latency
networks. His research interests at Inria now include the
management of data locality in many-core HPC platforms as
well as high performance I/Os. He is the main developer of
hwloc, the de-facto standard library for managing hardware
topology and locality information in parallel applications.

Löıc Pottier completed his master at the University
of Versailles in 2015, and then moved to École Normale
Supérieure de Lyon (ENS Lyon), where he is currently
a PhD candidate under the supervision of Anne Benoit
and Yves Robert. As part of completing his PhD, he also
spent three months as visiting student at Argonne National
Laboratory, where he worked with Swann Perarneau. His
main topics of interest include co-scheduling, fault tolerance,
and scheduling techniques for large scale platforms.

Yves Robert received the PhD degree from Institut
National Polytechnique de Grenoble. He is currently a
full professor in the Computer Science Laboratory LIP
at ENS Lyon. He is the author of 7 books, 157 papers
published in international journals, and 237 papers published
in international conferences. He is the editor of 11 book
proceedings and 13 journal special issues. He is the advisor
of 32 PhD theses. His main research interests are scheduling
techniques and resilient algorithms for large-scale platforms.
Yves Robert served on many editorial boards, including
IEEE TPDS, JPDC and IJHPCA. He was the program

Prepared using sagej.cls

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology


16 Journal Title XX(X)

chair of HiPC’2006 in Bangalore, IPDPS’2008 in Miami,
ISPDC’2009 in Lisbon, ICPP’2013 in Lyon and HiPC’2013
in Bangalore. He is a Fellow of the IEEE. He has been elected
a Senior Member of Institut Universitaire de France in 2007
and renewed in 2012. He has been awarded the 2014 IEEE
TCSC Award for Excellence in Scalable Computing, and
the 2016 IEEE TCPP Outstanding Service Award. He holds
a Visiting Scientist position at the University of Tennessee
Knoxville since 2011.

Prepared using sagej.cls


	1 Introduction
	2 Related work
	3 Model and optimization problem
	3.1 Application model
	3.2 Optimization problem

	4 Scheduling strategies
	4.1 Optimal solution to CoSched-CachePart
	4.2 Equal-resource assignment
	4.3 Impact of cache allocation

	5 Experimental setup
	5.1 Platform and applications
	5.2 Cache Allocation Technology

	6 Accuracy of the model
	6.1 Experimental protocol
	6.2 Accuracy of the Power Law
	6.3 Accuracy of the execution time

	7 Results
	7.1 Experimental protocol
	7.2 Impact of cache partitioning
	7.3 Co-scheduling results with two applications
	7.4 Co-scheduling results with three applications
	7.5 Scalability and accuracy results

	8 Conclusion

