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Overview PERFORMANCE
Performance of various implementations of mixed-precision LU factorization routines

artificialintelligence (Al) workloads.

While traditional HPC focused on

simulation runs for modeling phenomena

in physics, chemistry, biology, and so on,

the mathematical models that drive these

computations require, for the most part,

64-bitaccuracy. On the other hand, the

machine learning methods that fuel

advances in Al achieve desired results at

32-bitand even lower floating-point precision formats. This lesser
demand for accuracy fueled a resurgence of interest in new hardware
platforms that deliver a mix of unprecedented performance levels and
energy savings to achieve the classification and recognition fidelity
afforded by higher-accuracy formats.

The HPL-MxP benchmark seeks to
highlight the emerging convergence of
high-performance computing (HPC) and
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Matrix Size
HPL-MxP strives to unite these two realms by delivering a blend of modern
algorithms and contemporary hardware while simultaneously connecting
to the solver formulation of the decades-old HPL framework of PUBLICATIONS
benchmarking the largest supercomputing installations in the world. The Azzam Haidar, Stanimire Tomov, Jack Dongarra, Nicholas J. Higham
solver method of choice is a combination of LU factorization and iterative Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up
refinement performed afterwards to bring the solution back to 64-bit Mixed-Precision Iterative Refinement Solvers In Procedeedings of SCI8, 2018,
accuracy. The innovation of HPL-MxP lies in dropping the requirement of https://dl.acm.org/citation.cfm?id=3291719

64-bit computation throughout the entire solution process and instead Erin Carson and Nicholas . Higham

opting for low-precision (likely 16-bit) accuracy for LU, and a Accelerating the Solution of Linear Systems by Iterative Refinement in Three
sophisticated iteration to recover the accuracy lost in factorization. The Precisions SIAM J. SCI. COMPUT, Vol. 40, No. 2, pp. AB7-AB4T, 2018.

iterative method guaranteed to be numerically stable is the generalized https://epubs.siam.org/doi/pdf/101137/17M1140819

minimal residual method (GMRES), which uses application of the Land U
factors to serve as a preconditioner. The combination of these algorithms
is demonstrably sufficient for high accuracy and may be implemented in a
way that takes advantage of the current and upcoming devices for
accelerating Al workloads.

Erin Carson and Nicholas J. Higham

A New Analysis of Iterative Refinement and its Application to Accurate Solution
of Ill-Conditioned Sparse Linear Systems 2017.
http://eprints.maths.manchester.ac.uk/2537/

Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon
Squeezing a Matrix into Half Precision, with an Application to Solving Linear
Systems 2018.

IN COLLABORATION WITH http://eprints.maths.manchester.ac.uk/2678/

2 Pierre Blanchard, Nicholas J. Higham, Florent Lopez, Theo Mary, and Srikara Pranesh
CHARLES MANCH E§I ER Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to
UNIVERSITY 2 GPU Tensor Cores 2015,

[Leboentyciianchester http://eprints.maths.manchester.ac.uk/2733/
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The idea for the benchmark is to solve a system of linear equations to 64-bit floating point accuracy by doing a
mixed-precision factorization of a matrix and compute an approximate solution from the low-precision
factorization (LU decomposition), and then use an iterative method like GMRES in 64-bit precision to iterate with
the approximate low-precision solution to compute a final solution obtaining the accuracy one would have

k achieved by LU decomposition in 64-bit floating point arithmetic. The low-precision LU factors should be used as
a preconditioner in the iterative algorithm.

The benchmark should use the HPL benchmark harness (https://www.netlib.org/benchmark/hpl/) with a
modification of the matrix generator. The generator will produce a non-symmetric matrix with the diagonal N
entries being the sum of the off-diagonal rows, this will force the matrix to be diagonally dominant. \
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In an attempt to obtain uniformity across all computers in performance reporting, the algorithm used in solving
the low-precision system of equations in the benchmark procedure must numerically conform t? anLU
factorization with partial pivoting. In particular, the operation count for the algorithm must be §n3+0(n2) double
precision floating point operations even though double-precision arithmetic is not required.
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The HPL harness computes a backward-error: |l 4] [[x_ +[5l, x(nxe) I, where ¢ is the machine precision in 64-bit
floating point arithmetic (on IEEE machines this is ¢ = 27%) and 71 is the size of the problem. There is no restriction

on the problem size. | llAx=b],
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The implementation is allowed to do balancing to get the numbers within range of the floating point format, but
the time to do the balancing must be included in the time to solution.

Mr w
The computation rate is based on the time to solve the problem: factor the matrix in lower precision, perhaps
balance the matrix to prevent overflow, perform GMRES in 64-bit floating point arithmetic using the LU factors as

a preconditioner. If the implementation takes more than 50 iterations, the method should trigger a failure and the
runis not valid.

The factorization can use mixed precision during its construction, e.g., the panel factorization and triangular
solves can be done in 32-bit arithmetic and the Schur complement (matrix-matrix multiply) can be computed in
16-bit arithmetic with 32-bit accumulation.
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In computing a rate of execution, - +§”2 operations ( 3" ~3"accounts for LU factorization and 2n

for the subsequent back- and forward-solves) will be divided by the complete time to solution to achieve
operations per second.

As part of the submission of results we expect the submitter to provide a detailed explanation of the algorithm
used in the submission.

We have provided a reference implementation whose purpose is to show how the benchmark could be
implemented. We do not expect this to be used in actually running of the benchmark. Optimizations should be
applied to achieve higher performance than the reference implementation could achieve. The reference
implementation can be found here on Bitbucket (https://bitbucket.org/icl/hpl-ai/)
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