PREMISE

DEFINITION

Batched BLAS computes multiple and
independent BLAS operations on small-sized
matrices and/or vectors in a single routine
invocation.

APPLICATIONS

Batched BLAS benefits multiple
computational fields:

« Structural mechanics

« Astrophysics

= Direct sparse solvers

=« High-order FEM simulations

PERFORMANCE

BATCHED LEVEL 3 BLAS DGEMM EXAMPLE

DGEMM (N,N) batch_count = 500
CPU: Intel Xeon Gold 6140, 18 cores, 2 sockets
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BATCHED BLAS

In a growing number of computational science disciplines, multidimensional non-linear equations are approximated as large batches of rudimentary
linear algebra computations. Basic Linear Algebra Subprograms (Batched BLAS) aims to standardize the interface to these routines through a
community-driven process. This enables the users to efficiently perform thousands of small-size BLAS operations on massively parallel hardware, be
it traditional multi-core CPUs or a variety of computational hardware accelerators.
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PERFORMANCE OF BATCH QR

double-precision arithmetic on 1 thousand matrices

BATCHED LEVEL 2 BLAS DGEMV EXAMPLE

DGEMM (N,N) batch_count = 100000 3000
CPU: Intel Xeon Gold 6140, 18 cores, 2 sockets
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Matrix size: M = N = K

TECHNOLOGIES

OpenMP

= Multicore
= Accelerators
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= Multiple Streams
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ADVANTAGES

More efficient and portable implementations
HPC numerical library for modern architectures
Better hardware utilization and energy efficiency

Encourages and simplifies community efforts to build higher-level
algorithms on top of Batched BLAS

Multiple precisions: 16, 32, and 64 bits in real and complex domains
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FIND OUT MORE AT https://icl.utk.edu/bblas =t




WORKSHOPS

Sparse BLAS Workshop 2023

Workshop on the Design and Standardization of Basic
and Advanced Sparse Linear Algebra Routines
Knoxville, TN | November 7-9, 2023

https://icl.utk.edu/workshops/sparseblas2023
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ReproBLAS
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Compact Batched API Document

Intel MKL Team
https://www.dropbox.com/s/gplop3sxhg8le3r/MKL
_COMPACT_v4.docx?dl=0
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